
����������
�������

Citation: Yamada, S.; Asakura, H.

Coagulopathy and Fibrinolytic

Pathophysiology in COVID-19 and

SARS-CoV-2 Vaccination. Int. J. Mol.

Sci. 2022, 23, 3338. https://doi.org/

10.3390/ijms23063338

Academic Editor: Jean-Luc Wautier

Received: 19 February 2022

Accepted: 15 March 2022

Published: 19 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Coagulopathy and Fibrinolytic Pathophysiology in COVID-19
and SARS-CoV-2 Vaccination
Shinya Yamada and Hidesaku Asakura *

Department of Hematology, Kanazawa University Hospital, Takaramachi 13-1, Kanazawa 920-8640, Ishikawa,
Japan; abacus3shinya@gmail.com
* Correspondence: hasakura@staff.kanazawa-u.ac.jp; Tel.: +81-76-265-2275; Fax: +81-76-234-4252

Abstract: Coronavirus Disease 2019 (COVID-19) is caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and is frequently complicated by thrombosis. In some cases of severe
COVID-19, fibrinolysis may be markedly enhanced within a few days, resulting in fatal bleeding. In
the treatment of COVID-19, attention should be paid to both coagulation activation and fibrinolytic
activation. Various thromboses are known to occur after vaccination with SARS-CoV-2 vaccines.
Vaccine-induced immune thrombotic thrombocytopenia (VITT) can occur after adenovirus-vectored
vaccination, and is characterized by the detection of anti-platelet factor 4 antibodies by enzyme-linked
immunosorbent assay and thrombosis in unusual locations such as cerebral venous sinuses and
visceral veins. Treatment comprises high-dose immunoglobulin, argatroban, and fondaparinux. Some
VITT cases show marked decreases in fibrinogen and platelets and marked increases in D-dimer,
suggesting the presence of enhanced-fibrinolytic-type disseminated intravascular coagulation with
a high risk of bleeding. In the treatment of VITT, evaluation of both coagulation activation and
fibrinolytic activation is important, adjusting treatments accordingly to improve outcomes.

Keywords: COVID-19; SARS-CoV-2 vaccine; coagulopathy; fibrinolysis; enhanced-fibrinolytic-type
DIC; nafamostat

1. Introduction

The novel coronavirus disease 2019 (COVID-19), which was first identified in Wuhan
in December 2019, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). As of the end of January 2022, approximately two years had passed since the
beginning of the COVID-19 pandemic, with the number of infected people worldwide
exceeding 3.5 billion and the number of deaths exceeding 550 million at that time. COVID-
19 is often complicated by coagulopathy and thrombosis. Though immobility of severely ill
patients needs to be considered [1], the incidence of thrombosis appears high among severe
COVID-19 cases [2,3].

SARS-CoV-2 vaccines have been developed by many countries to prevent the spread
of the infection and reduce the severity of COVID-19. However, it is known that vaccination
rarely causes coagulopathy [4].

In both COVID-19-associated coagulopathy and SARS-CoV-2 vaccination-associated
coagulopathy, attention to both thrombosis and bleeding is required. While much attention
has been given to thrombosis and coagulation activation, almost never have reports dis-
cussed bleeding and fibrinolysis. We would therefore like to highlight and discuss these
relatively neglected factors. A summarizing figure is shown in (Figure 1).
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Figure 1. Summarizing figure. COVID-19 causes coagulation activation depending on its severity. 
In addition, some cases of severe COVID-19 have markedly increased fibrinolysis. Thrombosis ap-
pears as the main symptom when coagulation activation exceeds fibrinolytic activation. Conversely, 
bleeding appears as the main symptom when fibrinolytic activation exceeds coagulation activation. 
After SARS-CoV-2 vaccination, VITT rarely occurs. In most cases, coagulation activation exceeds 
fibrinolytic activation and thrombosis occurs, but in some cases, bleeding appears when fibrinolytic 
activation exceeds coagulation activation. Abbreviations: COVID-19, coronavirus disease 2019; 
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; VITT, vaccine-induced immune 
thrombotic thrombocytopenia. 

2. COVID-19-Associated Coagulopathy 
In COVID-19-associated coagulopathy, concentrations of D-dimer, von Willebrand 

factor (VWF), and interleukin (IL)-6 are elevated with increasing severity of the disease, 
and the incidence of thrombosis is higher in severe cases. Two theories have been pro-
posed for the mechanisms underlying COVID-19-associated coagulopathy [5]. 

The first is that SARS-CoV-2 infects endothelial cells and causes thrombosis with vas-
cular inflammation [6]. Electron microscopy [7,8], immunohistochemistry [9–11], and in 
situ hybridization [9,10,12] have shown SARS-CoV-2 itself, viral particles, and corona-
virus-like particles in endothelial cells. These reports support the theory that SARS-CoV-
2 directly infects endothelial cells and impairs their antithrombogenic properties. Damage 
to endothelial cells by viral infection could readily be understood as a cause of thrombosis. 
However, the mechanism by which SARS-CoV-2 enters vascular endothelial cells through 
binding to the angiotensin-converting enzyme 2 (ACE2) receptor of such cells [13] has not 
been demonstrated in endothelial cells in vivo. Furthermore, the structures in endothelial 
cells interpreted as representing SARS-CoV-2 and coronavirus-like particles have been 
suggested to be misinterpretations of coated vesicles and multivesicular bodies [14,15]. 

Figure 1. Summarizing figure. COVID-19 causes coagulation activation depending on its severity. In
addition, some cases of severe COVID-19 have markedly increased fibrinolysis. Thrombosis appears
as the main symptom when coagulation activation exceeds fibrinolytic activation. Conversely,
bleeding appears as the main symptom when fibrinolytic activation exceeds coagulation activation.
After SARS-CoV-2 vaccination, VITT rarely occurs. In most cases, coagulation activation exceeds
fibrinolytic activation and thrombosis occurs, but in some cases, bleeding appears when fibrinolytic
activation exceeds coagulation activation. Abbreviations: COVID-19, coronavirus disease 2019;
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; VITT, vaccine-induced immune
thrombotic thrombocytopenia.

2. COVID-19-Associated Coagulopathy

In COVID-19-associated coagulopathy, concentrations of D-dimer, von Willebrand
factor (VWF), and interleukin (IL)-6 are elevated with increasing severity of the disease,
and the incidence of thrombosis is higher in severe cases. Two theories have been proposed
for the mechanisms underlying COVID-19-associated coagulopathy [5].

The first is that SARS-CoV-2 infects endothelial cells and causes thrombosis with
vascular inflammation [6]. Electron microscopy [7,8], immunohistochemistry [9–11], and in
situ hybridization [9,10,12] have shown SARS-CoV-2 itself, viral particles, and coronavirus-
like particles in endothelial cells. These reports support the theory that SARS-CoV-2
directly infects endothelial cells and impairs their antithrombogenic properties. Damage to
endothelial cells by viral infection could readily be understood as a cause of thrombosis.
However, the mechanism by which SARS-CoV-2 enters vascular endothelial cells through
binding to the angiotensin-converting enzyme 2 (ACE2) receptor of such cells [13] has not
been demonstrated in endothelial cells in vivo. Furthermore, the structures in endothelial
cells interpreted as representing SARS-CoV-2 and coronavirus-like particles have been
suggested to be misinterpretations of coated vesicles and multivesicular bodies [14,15].

A second theory is that SARS-CoV-2 does not directly infect endothelial cells, but
rather, that cytokine storms as excessive immune responses are responsible for thrombosis.
Although ACE2 receptors, as the host receptor for SARS-CoV-2, have been thought to be
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highly expressed in vascular endothelial cells [16], endothelial cells may actually not express
ACE2 receptors [17,18] or may only express ACE2 receptors at very low levels [19]. Another
study found that cultured endothelial cells were resistant to SARS-CoV-2 infection [20].
However, infection of alveolar epithelial cells and alveolar macrophages with SARS-CoV-2
results in these cells producing markedly elevated levels of cytokines or chemokines such
as IL-6, IL-8, tumor necrosis factor (TNF)-α, and C-X-C motif chemokine ligand 8 (CXCL8),
resulting in a cytokine storm [21–23]. Cytokine storms are thought to lead to platelet activa-
tion, coagulation activation, endothelial injury, and a consequent decrease in endothelial
antithrombogenic activity and increase in prothrombogenic activity [5]. Furthermore, the
SARS-CoV-2 spike protein alone has been reported to stimulate endothelial activation [24],
resulting in cytokine release and complement activation [25].

Considering that direct entry of SARS-CoV-2 into endothelial cells has not been con-
firmed and that entry of SARS-CoV-2 is not necessarily required for endothelial cell dam-
age [26], the latter theory may be more relevant at present, but clarification of these issues
is expected in the near future.

2.1. COVID-19 and Physical Findings

Urticarial rash reportedly accounts for more than 10% of COVID-19-related skin
findings [27,28]. Chilblain-like acral patterns [29–32] are not rare among young adults and
children and have gained attention in social media. Pathologically, epidermal necrotic
keratinocytes, dermal edema, endotheliitis, and microthrombi have been identified [31,33].
Livedo reticularis [34–37] is found in approximately 5% of COVID-19-associated skin
lesions [28], reflecting impaired skin circulation, and histopathological examination shows
inflammatory micro-thrombotic vasculopathy [38]. Attention to skin findings may facilitate
early diagnosis of COVID-19.

Apart from skin findings, an interesting report stated that in the early stage of
COVID-19, oral ulcer lesions were found in 65.9% of cases and histopathological examina-
tion showed thrombosis in small and middle-sized vessels [39]. If COVID-19 is suspected,
intraoral findings should also be noted.

Cases have also been reported in which COVID-19 was diagnosed subsequent to deep
vein thrombosis or abdominal pain (visceral vein thrombosis), despite the absence of any
respiratory symptoms [40]. Many reports have also described lower limb ischemia from
intra-aortic thrombi [41–44].

Thrombosis caused by COVID-19 is most commonly identified in the lungs, but can
occur in various parts of the body, with associated physical findings. COVID-19 should
therefore be included among the differential diagnoses when physical findings suggest
thrombosis, particularly during the current pandemic.

2.2. D-Dimer and Prognostic Factors for Poor Clinical Outcome in COVID-19

Elevated levels of D-dimer have been reported as a prognostic factor for poor clin-
ical outcome in COVID-19 [45–49]. High D-dimer levels are associated with COVID-19
severity [50,51], death [47,52], and the development of venous thromboembolism [53,54].

High D-dimer levels, however, are not only reflective of thrombosis; the progressive
lung tissue damage associated with COVID-19 may also lead to the formation of fibrin in
the alveoli and lung parenchyma, the degradation products of which subsequently enter
the bloodstream [55–58]. This may be another reason why elevated D-dimer levels are
closely associated with poor prognosis, as high D-dimer levels can reflect either thrombosis
or lung tissue damage.

In addition to D-dimer, other markers predicting poor prognosis include lympho-
cytopenia [59,60], thrombocytopenia [59,60], elevated C-reactive protein [61,62], elevated
IL-6 [60–62], elevated lactate dehydrogenase (LDH) [63], elevated ferritin [60], sphingolipid
profile [64], increases in soluble tumor necrosis factor or its receptor, or an increase in a
disintegrin and metalloproteinase 17 (ADAM17) [65]. Other risk factors for severe dis-
ease and death include advanced age [48], obesity [66], vitamin D deficiency [67], zinc
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deficiency [68], and coexisting cardiovascular disease [69]. Combinations of these factors
may thus contribute to more accurate assessment of prognosis. In addition, corrections of
abnormalities in some of these factors in advance are expected to contribute to prevention
of SAR-CoV-2 infection or COVID-19 exacerbation.

In addition to high D-dimer levels, other clotting abnormalities that predict poor
prognosis include a slow decline in D-dimer after anticoagulation [70]; D-dimer should be
tracked over time, not simply at COVID-19 diagnosis, and adjusting the dose of anticoagu-
lation based on such tracking may be important.

Prolonged prothrombin time (PT) [71], decrease in antithrombin activity (AT) [72],
and decrease in a disintegrin-like metalloprotease with thromboplastin type 1 motif 13
(ADAMTS13) activity [73] at the time of COVID-19 diagnosis are also predictors of poor
prognosis. A decrease in ADAMTS13 activity may be a result of the consumption of
ADAMTS13 during the cleavage of VWF [74], which is overexpressed following damage to
the vascular endothelium. In other words, elevated VWF and decreased ADAMTS13 may
represent markers of a thrombotic tendency, along with D-dimer. These markers reportedly
reflect strong inflammation and vascular endothelial damage [75].

Platelet-related markers such as the presence of platelet aggregates [76], platelet
activation (high mean platelet volume (MPV) and high immature platelet fraction (IPF)) [77],
and high immature platelet count (IPC) [78] have also recently been considered as predictors
of poor prognosis. As platelets mature, their volume and MPV both decrease. Meanwhile,
immature platelets show a larger volume and higher activity. Both these markers indicate
increased platelet consumption and production. MPV has an advantage, in that the data
exist for all patients who have had a hemogram. However, MPV is disadvantageous in that
the value cannot be used when platelet counts are very low; in such cases, IPF should be
used. IPF is not currently available at all medical institutions, but is a useful marker for
differentiating conditions in which the platelet count is low

2.3. COVID-19 and Thrombotic/Hemorrhagic Disease

In COVID-19, low platelet count [59,60] and platelet hyperfunction [76–78] are im-
portant predictors of poor prognosis. Conditions with marked platelet activation and
high consumption are thought to be associated with poor prognosis. Diseases and condi-
tions that can cause thrombocytopenia in COVID-19 are summarized in Table 1. Some of
these conditions can be cured by early diagnosis and treatment, so differentiating between
etiologies is necessary when platelet counts are decreased.

Table 1. Causes of thrombocytopenia in COVID-19.

1. COVID-19 per se [59,60]
2. Disseminated intravascular coagulation (DIC) [45]

3. Idiopathic thrombocytopenic purpura or immune thrombocytopenia (ITP)
4. Thrombotic thrombocytopenic purpura (TTP)

5. Antiphospholipid antibody syndrome (APS) [79]
6. Hemophagocytic syndrome (HPS) [80,81]
7. Heparin-induced thrombocytopenia (HIT)

8. Drug-induced thrombocytopenia
9. Pseudo-thrombocytopenia

Abbreviation: COVID-19, Coronavirus Disease 2019.

Thrombosis occurring in COVID-19 can be classified as either “macro-thrombosis” or
“micro-thrombosis”, according to size. These two types of thrombosis are thought to differ
not only in size, but also in etiology and response to treatment.

2.3.1. Macro-Thrombosis in COVID-19

Macro-thrombosis is an arterial or venous thrombosis of varying size that can be diag-
nosed from imaging studies such as contrast-enhanced CT or ultrasonography. Among 184
COVID-19 patients who entered an intensive care unit (ICU), 40% had macro-thrombosis [82].
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However, the actual frequency of macro-thrombosis in severe COVID-19 is not known, due
to the difficulty of performing adequate contrast-enhanced CT examinations in patients
with severe disease admitted to the ICU [83]. The actual frequency of macro-thrombosis in
severe COVID-19 may thus be even higher.

2.3.2. Micro-Thrombosis in COVID-19

Micro-thrombi are not detectable on imaging studies, and most micro-thrombi are
pathologically confirmed on autopsy [84–86]. Although COVID-19 causes a systemic ten-
dency toward thrombosis, the involvement of the lung in this is overwhelmingly common,
with multiple thrombi in the pulmonary arteriovenous system [84–86]. These thrombi
contain both fibrin and platelet components [86], and an autopsy report of the site of
SARS-CoV-2 revealed an overwhelming amount of SARS-CoV-2 in the lungs [11]. This may
be because the ACE2 receptor, the host-side receptor for SARS-CoV-2, is highly expressed
in alveolar epithelial type II cells [16]. In the lungs, endothelial damage with macrophage
activation, complement activation, tissue factor upregulation, and loss of thrombomod-
ulin [87] may proceed, resulting in the formation of massive thrombi [57]. As mentioned
above, the origin of the elevated plasma D-dimer in patients with COVID-19 is thought
to reflect not only the origin of the thrombi in circulating blood but also the degradation
of fibrin clots formed in the alveoli or lung parenchyma and entry of the byproducts of
this degradation into the circulation. Since these sites of fibrin formation are most com-
mon in the lung, pulmonary intravascular coagulation (PIC), rather than disseminated
intravascular coagulation (DIC), has been suggested as the more appropriate term for
coagulation abnormalities in COVID-19 [88–90]. Since micro-thrombosis involves various
factors other than platelet and coagulation activation, such as neutrophil extracellular
traps [91,92] and vascular endotheliitis [7], the efficacy of antiplatelet and anticoagulant
drugs against micro-thrombosis may be even less than that against macro-thrombosis

2.4. Dynamic Changes in Coagulation/Fibrinolysis in COVID-19

The incidence of DIC in COVID-19 was 0.6% in patients who survived, compared to
71.4% in patients who died [45]. In other words, DIC is more likely to occur only in severe
cases. Survival in cases of DIC also appears difficult.

In general, DIC due to severe infection or sepsis is considered to represent suppressed-
fibrinolytic-type DIC [93]. In suppressed-fibrinolytic-type DIC, the thrombin–antithrombin
complex (TAT), representing a marker of coagulation activation, is markedly increased,
whereas the plasmin-α2 plasmin inhibitor complex (PIC), as a marker of fibrinolytic activa-
tion, is only mildly elevated. In other words, clots are formed but do not lyse sufficiently.
Ischemic organ damage due to multiple micro-thrombi is thus easily observed. Owing to
the lack of thrombus dissolution, levels of fibrin/fibrinogen degradation products (FDP)
and D-dimer are only mildly elevated [93]. Ergo, what is the situation in COVID-19?

Important detailed and longitudinal follow-up reports of changes to coagulation/
fibrinolysis markers in COVID-19 have been published in China [45] and Japan [94].

In a report by Tang et al. from China [45], PT, activated partial thromboplastin time
(APTT), fibrinogen, FDP, D-dimer, and AT were analyzed on days 1, 4, 7, 10, and 14
after admission for 183 COVID-19 patients (162 survivors, 21 non-survivors). PT was
significantly prolonged and FDP and D-dimer were significantly increased among non-
survivors. Fibrinogen increased to more than 400 mg/dL (normal range: 200–400 mg/dL)
on day 7 in both survivors and non-survivors, but fibrinogen decreased to about 100 mg/dL
on day 10 only in non-survivors. In addition, only fatal cases showed a marked increase in
FDP and an increase in the FDP/D-dimer ratio (reflecting the discrepancy between FDP
and D-dimer) during the 3 days from day 7 to day 10. Patients were thought to present
with suppressed-fibrinolytic-type DIC on admission, suddenly changing to enhanced-
fibrinolytic-type DIC between days 7 and 10 [95].

A report by Ishikura et al. from Japan [94] described the detailed clinical course,
PT, APTT, fibrinogen, FDP, D-dimer, and AT, along with TAT, PIC, and plasminogen
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activator inhibitor-1 (PAI-1) in six patients (four survivors, two non-survivors) admitted
to the ICU. In addition to PT, APTT, fibrinogen, FDP, D-dimer, and AT, the coagulation
activation marker TAT, the fibrinolytic activation marker PIC, and the fibrinolytic inhibition
marker PAI-1 were tracked daily. Similar to the report by Tang et al., Ishikura et al. found
not only a marked decrease in fibrinogen, a marked increase in FDP, and an increase in
FDP/D-dimer ratio among some patients after seven days in the ICU, but also a marked
increase in the fibrinolytic activator marker PIC. This further supported the existence of
a dynamic change from fibrinolytic suppression to fibrinolytic enhancement in just one
day. In particular, the presence of PIC > 40 µg/mL (reference: ≤0.8 µg/mL) is striking.
Even in aortic aneurysms and vascular malformations, which are among the most common
diseases causing enhanced-fibrinolytic-type DIC, PIC is approximately 10 µg/mL [96–98].
PIC is also around 10 µg/mL in acute promyelocytic leukemia, in which fatal bleeding can
arise if therapeutic intervention is delayed [93]. Meanwhile, in addition to the findings
from Ishikura et al., a marked increase in PIC to >10 µg/mL in COVID-19 patients with
confirmed PIC has been reported [99]. Such a large increase in PIC is rarely seen in patients
other than those with COVID-19 [100]. In addition, Ishikura et al. [94] reported cerebral
hemorrhage in patients with markedly increased PIC, suggesting that fibrinolytic activation
in COVID-19 is associated with hemorrhage.

Whether elevated PIC is associated with fatal hemorrhage and death remains to be
systematically investigated, but several autopsy cases have shown prominent hemorrhage
as well as thrombosis [84]. This suggests that in a subset of severe COVID-19 cases, fibrinol-
ysis may suddenly become markedly activated, resulting in hemorrhage (Figure 2) [95,101].
For patients with moderate COVID-19, the use of therapeutic doses of heparin contributed
to an increase in survival to hospital discharge and a decrease in embolic events [102].
However, for patients with severe COVID-19, heparin was not only ineffective, but also
did not improve the probability of survival to hospital discharge and may have increased
major bleeding [103]. This may be due to the possibility that therapeutic doses of heparin
induced major bleeding in enhanced-fibrinolytic-type DIC, which is thought to be present
in some critically severe patients, in addition to the possibility that heparin was not fully
effective in patients with severe COVID-19. This is an issue for further investigation.

In COVID-19 clinical practice, in addition to the global markers PT, APTT, fibrinogen,
FDP, D-dimer, and AT, the coagulation activation marker TAT, the fibrinolysis activation
marker PIC, plasminogen, and the alpha2 plasmin inhibitor (alpha2 PI) (α2PI < 50%
increases the risk of bleeding) should also be measured [93]. However, in many medical
facilities, tests such as TAT and PIC must be outsourced, and checking the results on the
same day and adjusting the treatment plan accordingly is therefore difficult. In such cases,
a decrease in fibrinogen, a marked increase in FDP, a moderate increase in D-dimer, and
an increase in the FDP/D-dimer ratio should be considered as indicators of significant
fibrinolytic activation, and the test results should be utilized to inform adjustments to
treatment plans on the same day [93,95,101,104]. In addition, medical facilities that treat a
large number of patients with severe COVID-19 should work to obtain the capability to
measure TAT and PIC at their own facilities.

2.5. Treatment of COVID-19-Associated Coagulopathy

In general, thrombosis is a common complication of COVID-19, with a higher inci-
dence of thrombosis in severe cases [2,3]. However, the reported incidence of thrombosis
should be interpreted with caution. In other words, whether contrast-enhanced computed
tomography (CT) or venous echocardiography are actively performed in patients with
COVID-19 needs to be considered. If contrast-enhanced CT is performed infrequently,
thrombosis may frequently be missed [83]. In addition, assuming the presence of micro-
thrombosis that cannot be detected by contrast-enhanced CT, the number of thromboses
may be much higher than reported.



Int. J. Mol. Sci. 2022, 23, 3338 7 of 26Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 28 
 

 

 
Figure 2. Dynamic changes in fibrinolytic pathophysiology in some severe COVID-19 cases. The 
time course of coagulation markers in COVID-19 patients with sudden enhancement of fibrinolytic 
activation and severe bleeding are shown. In some severe COVID-19 patients, PIC suddenly in-
creases (PIC surge) at a certain point (around 7–10 days after admission to the ICU, as indicated by 
the vertical dotted line). At the same time, fibrinogen decreases significantly, but the degree of in-
crease in TAT does not change significantly (upper panel). Meanwhile, FDP increases significantly, 
while D-dimer increases only mildly. Both solid and dotted arrows indicate the FDP/D-dimer ratio 
(lower panel). As PIC increases and fibrinogen decreases, discrepancy between FDP and D-dimer 
or the FDP/D-dimer ratio increases. These changes in coagulation markers are suggestive of en-
hanced-fibrinolytic-type DIC. Abbreviations: COVID-19, coronavirus disease 2019; ICU, intensive 
care unit; PIC, plasmin–α2 plasmin inhibitor complex; TAT, thrombin–antithrombin complex; FDP, 
fibrin/fibrinogen degradation products; DIC, disseminated intravascular coagulation. 
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Figure 2. Dynamic changes in fibrinolytic pathophysiology in some severe COVID-19 cases. The
time course of coagulation markers in COVID-19 patients with sudden enhancement of fibrinolytic
activation and severe bleeding are shown. In some severe COVID-19 patients, PIC suddenly increases
(PIC surge) at a certain point (around 7–10 days after admission to the ICU, as indicated by the vertical
dotted line). At the same time, fibrinogen decreases significantly, but the degree of increase in TAT
does not change significantly (upper panel). Meanwhile, FDP increases significantly, while D-dimer
increases only mildly. Both solid and dotted arrows indicate the FDP/D-dimer ratio (lower panel). As
PIC increases and fibrinogen decreases, discrepancy between FDP and D-dimer or the FDP/D-dimer
ratio increases. These changes in coagulation markers are suggestive of enhanced-fibrinolytic-type
DIC. Abbreviations: COVID-19, coronavirus disease 2019; ICU, intensive care unit; PIC, plasmin–α2

plasmin inhibitor complex; TAT, thrombin–antithrombin complex; FDP, fibrin/fibrinogen degradation
products; DIC, disseminated intravascular coagulation.

On the other hand, advanced fibrinolytic activation and severe bleeding symptoms are
seen in some severe cases. In addition to the transition to enhanced-fibrinolytic-type
DIC, other causes of bleeding in severe COVID-19 include side effects of anticoagu-
lants used to prevent or treat thrombosis, vascular fragility associated with endotheli-
itis, acquired von Willebrand syndrome under extracorporeal membrane oxygenation
(ECMO), and low platelet counts. The causes of bleeding in COVID-19 are summarized in
Table 2 [95,99,101,105,106]. Concern has been raised that bleeding seen during anticoagu-
lation for COVID-19 might easily be considered a side effect of anticoagulation, whereas
bleeding in COVID-19 can have many causes, and appropriate differentiation is important.

Table 2. Causes of bleeding in COVID-19.

1. Side effects of anticoagulation therapy
2. Complications of enhanced-fibrinolytic-type DIC

3. Vascular endotheliitis, fragility of vessel walls
4. Acquired von Willebrand syndrome (during ECMO)

5. Thrombocytopenia
6. Decreased coagulation factors (liver failure, vitamin K deficiency, etc.)

7. Others
Abbreviations: COVID-19, Coronavirus Disease 2019; DIC, disseminated intravascular coagulation; ECMO,
extracorporeal membrane oxygenation.



Int. J. Mol. Sci. 2022, 23, 3338 8 of 26

When bleeding emerges in severe COVID-19 patients, measurement of PT, APTT,
fibrinogen, FDP, D-dimer, AT, TAT, PIC, plasminogen, and αPI2 represents the first step
toward appropriate differentiation. If the patient is under ECMO, VWF antigen, VWF ac-
tivity, factor VIII activity, and VWF multimer analysis should be performed to differentiate
acquired von Willebrand syndrome [107]. In addition, although blood thrombomodulin
levels reportedly reflect vascular endothelial damage [108], thrombomodulin is a renal
metabolite and should be assessed with caution, because renal failure will increase blood
levels of thrombomodulin regardless of vascular endothelial damage.

2.5.1. Antiplatelet Agents

As mentioned above, values such as MPV and platelet distribution width are elevated
in COVID-19 patients, possibly reflecting platelet activation [77,109], and the use of aspirin
for at least one week prior to admission significantly reduced the induction of ventila-
tion [110]. The use of antiplatelet agents reduced mortality and ventilator duration [111],
decreased in-hospital mortality [112], and slightly increased the proportion of patients dis-
charged alive within 28 days with the use of aspirin among hospitalized patients [113]. On
the other hand, some reports have found that antiplatelet therapy was ineffective against
COVID-19 [114–116].

The reasons for such opposing conclusions regarding antiplatelet therapy may lie in
differences of patient populations, duration of antiplatelet therapy, and combined antico-
agulant therapy. In addition, patients on aspirin show more risk factors for COVID-19
aggravation such as aging, coronary artery disease, and diabetes [47], warranting care-
ful evaluation.

2.5.2. Heparin Therapy

Heparin exerts anti-inflammatory effects by binding to complement [117,118] and
cytokines [119,120], and antiviral effects by inhibiting host cell–virus interactions [121–123].
As mentioned above, heparin therapy is effective in cases of mild to moderate COVID-19 [102],
but the antiviral effects of heparin and anticoagulation with heparin alone are consid-
ered to be limited in severe cases.

In this regard, the development of regimens with other drugs in combination with
heparin to improve the therapeutic effects of anticoagulation and to reduce the side effects
of bleeding is expected in the future.

2.5.3. Combination Therapy with Heparin and Nafamostat (Attention to Fibrinolytic Patho-
physiology)

If bleeding symptoms associated with elevated PIC occur during anticoagulation for
severe COVID-19, the intensity of anticoagulation and the type of anticoagulant should be
reconsidered. For example, the dose of anticoagulant could be reduced, or nafamostat, a
synthetic serine protease inhibitor with potent antiplasmin effects, could be added to the
ongoing anticoagulant therapy (heparin-nafamostat combination therapy) [100,124–127].
Nafamostat has been used in Japan for acute pancreatitis and DIC for more than 30 years,
and Japanese clinicians are familiar with this agent.

Nafamostat holds promise in the treatment of COVID-19 for three reasons.

(1) Anti-thrombin effects

Nafamostat has inhibitory effects on serine proteases, inhibiting coagulation factors
such as factors VIIa, IXa, Xa, and IIa (thrombin), all of which are serine proteases [128].
These factors are also inhibited by heparin, but heparin is antithrombin-dependent, whereas
nafamostat can inhibit these factors in a heparin-independent manner. In other words,
nafamostat is sufficiently effective even in patients with reduced AT activity based on the
molecular mechanism of the nafamostat.
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(2) Anti-plasmin activity

Cleavage of the S protein of SARS-CoV-2 by plasmin has been reported to increase
virulence [129], and nafamostat, which also shows antiplasmin effects, may also have
antiviral effects in this regard.

(3) Anti-transmembrane serine protease 2 (TMPRSS2) action

In addition, SARS-CoV-2 completes its entry into host cells when the S protein bound
to the ACE2 receptor is degraded by the cell surface enzyme TMPRSS2, but nafamostat
inhibits the function of TMPRSS2 and thus acts to block this step [130–133].

In short, nafamostat appears to be an effective COVID-19 treatment that not only acts
against thrombin, but also weakens the virulence of the virus itself and inhibits its entry
into host cells such as alveolar epithelial cells. Nafamostat is a promising agent, even as
a single agent. Nafamostat alone did not affect the clinical improvement of moderate to
severe COVID-19, but in the severe subgroup, nafamostat alone improved clinical improve-
ment [134]. However, nafamostat also has the limitation of being a weak anticoagulant,
and thus may be best used in combination with heparin [124]. Attention should also be
paid to the side effect of hyperkalemia [135,136] from nafamostat. On the other hand, the
near-total absence of bleeding side effects with nafamostat represents a major point in its
favor, based on our experience with its use in a large number of DIC cases in Japan.

Anticoagulant therapies that also have anti-inflammatory and antiviral effects, such as
heparin and nafamostat, hold promise as treatments for COVID-19. Currently, a number of
clinical trials investigating nafamostat for COVID-19 are underway [137].

2.5.4. Direct Oral Anticoagulant

Patients with COVID-19 are often treated with heparin during hospitalization to pre-
vent thrombosis. However, the hypercoagulable state often persists after discharge [138–140],
and some reports have suggested that transition to a direct oral anticoagulant (DOAC) at
discharge may be useful [141].

Some patients may have been taking DOACs prior to the onset of COVID-19 and
continue to take DOACs. However, concomitant use of antivirals (lopinavir, ritonavir, or
darunavir) and DOACs has been reported to markedly increase DOAC blood levels by a
mean of 6.14-fold (1.6–31.6 fold) [142]. It has been reported that administration of rival-
oxaban to COVID-19 inpatients with elevated D-dimer showed no clinical improvement
and increased bleeding [143]. In addition, no appropriate monitoring index for DOACs
has yet been established [144], and attention should be paid to the occurrence of bleeding
symptoms when DOACs are combined with antiviral drugs.

2.5.5. Fibrinolytic Treatment

In COVID-19, systemic administration of the fibrinolytic agent tissue plasminogen
activator (tPA) has been reported to be both effective [145–147] and ineffective [148,149].
High levels of PAI-1 [149] have been identified in ineffective cases, suggesting that different
patient backgrounds may have led to these widely divergent results, since tPA is not
sufficiently effective when PAI-1 is high.

We believe that systemic fibrinolytic therapy in COVID-19 is dangerous to the point
of contraindication. Particularly in severe cases of COVID-19, fibrinolysis becomes highly
activated in just one to three days [94,95]. We are concerned that fibrinolysis may cause
fatal bleeding in such patients.

However, inhalation of fibrinolytic agents such as tPA and plasminogen [150,151] can
reduce the risk of bleeding much more than systemic administration and may improve
acute respiratory distress syndrome (ARDS) by dissolving fibrin clots in and near the
alveolar spaces [152]. Inhaled heparin has also been shown to be effective in the treatment
of COVID-19 patients [153,154]. Some problems with inhaled heparin therapy still need
to be addressed, such as individual differences in blood transfer and the possibility of
exposure of health care providers to droplet infection.
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2.5.6. Treatments to Avoid

(a) Warfarin

Even under adequate warfarin control, reports have described cases of elevated D-
dimer [155] and pulmonary thromboembolism [156]. The lack of anti-inflammatory and
antiviral effects of warfarin compared with heparin and nafamostat may explain the
inferior therapeutic efficacy. Moreover, control of warfarin is likely to be greatly disturbed
by COVID-19 and its treatment [157,158]. In addition, when COVID-19 is complicated
by DIC, warfarin use may potentially exacerbate the DIC [96], so frequent monitoring is
recommended when warfarin is needed for patients with COVID-19.

If a patient on warfarin develops COVID-19, consideration should be given to switch-
ing the patient to a DOAC for outpatient treatment or heparin for inpatient treatment [96].

(b) Tranexamic acid

The addition of tranexamic acid, an antifibrinolytic agent, to anticoagulation is one
method of treatment [100,159,160]. This is because the increased pathogenicity of SARS-
CoV-2 by S-protein cleavage can be inhibited via the antiplasmin effect of tranexamic
acid [129]. However, given the high degree of coagulation activation in COVID-19, the
use of tranexamic acid, even in combination with anticoagulant therapy, may exacerbate
thrombosis [161] and should not be used lightly.

3. SARS-CoV-2 Vaccination-Associated Coagulopathy
3.1. Safety of Vaccination in Persons with Coagulation Abnormalities

Safe administration of vaccines to patients with coagulation abnormalities involves
two considerations: first, whether the physical invasion associated with vaccination will
cause bleeding in patients with bleeding tendencies or hemorrhagic diseases; and second,
whether patients with hemorrhagic or thrombotic diseases will experience exacerbation or
flare-up of the underlying disease.

3.1.1. Preventing Bleeding Due to Vaccination in Patients with Coagulation Abnormalities

Vaccination of patients on antiplatelet and anticoagulant medications (warfarin and
DOAC) is certainly possible. However, adequate compression of the vaccination site
should be performed after vaccination [162]. If the PT-INR is above the therapeutic range,
vaccination should be postponed until the PT-INR is back within the therapeutic range [161],
and in DOAC-treated patients, vaccination is best avoided when blood levels of DOACs
are high.

Vaccination after prophylaxis treatment is recommended in patients with hemophilia
who are receiving regular prophylaxis treatment and in patients with severe von Wille-
brand disease.

Thrombocytopenia/dysfunctional platelets do not interfere with vaccination, but
adequate compression of the vaccination site after vaccination is advisable.

In chronic DIC (e.g., cases with aortic aneurysms and vascular malformations), the
invasiveness of vaccination may cause severe bleeding and should be discussed with the
attending physician [128].

3.1.2. Vaccination and Thrombotic/Hemorrhagic Disease Exacerbations and Relapses

In patients with immune thrombocytopenia (ITP), the relapse of ITP with vaccination
represents a matter of concern. In fact, vaccination of patients with ITP resulted in a
≥20% decrease in platelet count from baseline in about half of patients [163]. However, no
reports have suggested that vaccination should be withdrawn in patients with ITP. Risk
factors for ITP relapse with vaccination include ongoing treatment, old age [164], and
post-splenectomy status or a long history of prior treatment [165]. In terms of platelets, low
platelet counts are reportedly associated with a higher risk of relapse [164], and platelet
counts often decrease rapidly in patients with normal platelet count [166]. Regardless
of the platelet count, attention should be paid to transition of the platelet count in ITP
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patients. The nadir of platelet counts in ITP patients has been observed around 7–10 days
after vaccination [165]. Reports have also recommended measuring platelet counts on
days 3–7 after vaccination to confirm the presence or absence of ITP flare-up [167]. Some
reports have described ITP cases after vaccination in which the patients were able to receive
additional vaccinations without problems [168].

Furthermore, a decrease in platelet count greater than 50% from baseline was observed
in 1.0% of healthy controls [164], suggesting that a significant number of patients after
vaccination may experience de novo ITP, including cases in which clinical symptoms do
not develop and go unnoticed [164].

In patients with paroxysmal nocturnal hemoglobinuria (PNH) or atypical hemolytic
uremic syndrome using eculizumab or ravulizumab, vaccination within one week of
eculizumab administration and within four weeks of ravulizumab administration is recom-
mended to maintain blood levels of these agents [169]. Thus far, no reports have described
an increased risk of relapse of the primary disease after vaccination in specific diseases or a
need to refrain from vaccination, and the benefits of vaccination are considered to outweigh
the disadvantages. Adequate consultation with the patient and careful observation of
changes in coagulation studies are important.

3.2. Novel Clotting Abnormalities after Vaccination

Vaccines are being developed and marketed around the world by a number of manu-
facturers. The number of vaccinations worldwide has exceeded 10 billion, and more than
50% of the global population had completed the required number of vaccinations as of
the end of January 2022 [170]. However, the occurrence of thrombosis and bleeding after
vaccination remains problematic.

3.2.1. Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT)

A series of reports have described thrombosis with thrombocytopenia after vaccination
with the adenovirus-vectored vaccine (ChAdOx1 nCoV-19) [171–174]. Similar reports
have been made for Ad26.COV2.S, which is an adenovirus vector type vaccine [175,176].
Thrombi occurring after adenovirus-vectored vaccinations have also been characterized as
occurring in unusual sites, such as cerebral venous sinuses and visceral veins (e.g., portal
vein) [171].

Thrombosis with thrombocytopenia following administration of adenovirus vector
vaccines has been referred to as VITT, as well as vaccine-induced prothrombotic immune
thrombocytopenia and thrombosis with thrombocytopenia syndrome [177]. VITT is cur-
rently the most commonly used term and is considered by the authors as the most appro-
priate term for describing this condition.

3.2.2. Thrombotic/Bleeding Disorders Other Than VITT

In addition to the adenovirus vector vaccines, ChAdOx1-nCoV-19 and Ad26.COV2.S,
the mRNA vaccines, BNT162b2 and mRNA-1273, have been reported to cause various
thrombotic/hemorrhagic diseases. Thrombotic/hemorrhagic adverse effects of SARS-CoV-2
vaccines, including those of the adenovirus vector type and the mRNA type, are described
below. The diseases that should be differentiated from VITT are shown in Table 3.

(1) Hemorrhagic disease

Complications such as hematuria, extensive petechial hemorrhage, subarachnoid
hemorrhage [178], immune thrombocytopenia [179–183], Evans syndrome [184], acquired
hemophilia [185], and factor XIII inhibitor [186] have been reported with the use of aden-
ovirus vector and mRNA vaccines. In particular, when platelet transfusion is performed for
hemorrhagic disease, examination to rule out VITT should always be performed, because
with the presence of VITT in the background, the underlying condition may be aggravated
after platelet transfusion.
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Table 3. Diseases that should be differentiated from VITT and their key considerations.

Disease Name Abbreviation Important Clinical and Laboratory Findings
Heparin-induced thrombocytopenia HIT History of exposure to heparin, 4T’s score

Thrombotic microangiopathy TMA Appearance of schizocytes (peripheral blood smear), marked
decrease in haptoglobin

Thrombotic thrombocytopenic purpura TTP A type of TMA with markedly reduced ADAMTS13 activity with
ADAMTS13 inhibitor

Immune thrombocytopenia ITP Diagnosis of exclusion. Increased megakaryocytes in bone marrow
and positive antiplatelet antibodies assist in diagnosis

Antiphospholipid antibody syndrome APS Positive for at least one of the following antibodies: lupus
anticoagulant; anticardiolipin antibody; and anti-β2 GPI antibody

Paroxysmal nocturnal hemoglobinuria PNH
Hemolysis (normocytic anemia, elevated reticulocyte, elevated

indirect bilirubin, elevated LDH, decreased haptoglobin),
presence of PNH type-cells (CD55/59-negative)

Disseminated intravascular coagulation DIC PT, APTT, fibrinogen, FDP, D-dimer, AT, TAT, PIC, plasminogen, α2PI
Abbreviations: VITT, vaccine-induced immune thrombotic thrombocytopenia; TMA, thrombotic microangiopathy;
ADAMTS13, a disintegrin-like and metalloproteinase with thrombospondin type 1 motifs 13; GP, glycopro-
tein; LDH, lactate dehydrogenase; PT, prothrombin time; APTT, activated partial thromboplastin time; FDP,
fibrin/fibrinogen degradation products; AT, antithrombin; TAT, thrombin-antithrombin complex; PIC, plasmin-
αplasmin2 inhibitor complex; α2PI, α2 plasmin inhibitor.

Since thrombosis after vaccination initially drew worldwide attention, there is a
tendency to focus on thrombosis, but it is important to remember that hemorrhagic side
effects may also occur.

(2) Thrombotic disease

Reports have described carotid artery thrombosis and aortic thrombotic complica-
tions [187], deep vein thrombosis [188,189], myocardial infarction [190], adrenal infarc-
tion/hemorrhage [191,192], and cerebral infarction/intracranial hemorrhage [193] follow-
ing adenovirus vector and mRNA vaccinations. Examination to rule out VITT should
always be conducted, not only in the case of hemorrhagic events, but also in the case
of thrombotic events, due to the concern that a background of VITT may exacerbate the
underlying condition with heparin administration.

(3) Thrombophilia with low platelet count

Numerous reports have described thrombotic thrombocytopenic purpura [194–196]
and DIC [197]. The exclusion of VITT is still important to determine an accurate treat-
ment strategy.

According to a systematic review of cardiovascular and hematological events after
SARS-CoV-2 vaccination, these abnormalities tended to be slightly more frequent among
women and young people. Adenovirus-vectored vaccines, ChAdOx1-nCoV-19 and for
Ad26.COV2.S, were associated with higher rates of thrombosis and thrombocytopenia,
while mRNA vaccines, BNT162b2 and mRNA-1273, were associated with higher rates
of cardiac injury in a higher proportion of cases [198]. Although accurate evaluation is
difficult due to differences in the number of vaccinations, age group, race, and other factors
among manufacturers, certain tendencies in thrombotic/hemorrhagic adverse effects may
exist depending on the type of vaccine. Although this remains a subject for further study,
knowing which manufacturer’s vaccine a patient received is still important in actual
clinical practice.

3.3. Pathophysiology of VITT

VITT is characterized by thrombosis occurring at unusual sites such as cerebral venous
sinuses and visceral veins (thrombosis in common sites such as venous thromboembolism
is also seen), decreased platelet count, and coagulation abnormalities (e.g., elevated D-
dimer) occurring 4–28 days after vaccination. In addition, a positive (usually strongly
positive) result from enzyme-linked immunosorbent assay (ELISA) for anti-platelet fac-
tor 4 (PF4) antibodies is the basis for a definitive diagnosis, even though heparin is not
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used. As such, the condition of VITT is considered similar to immune (spontaneous)
heparin-induced thrombocytopenia (HIT) [199]. An important point is that measurement
of anti-PF4 antibodies by chemiluminescent immunoassay (CLIA) or latex agglutination
will result in false-negative results, rendering definitive diagnosis impossible with these
two methods [177,200]. Importantly, anti-PF4 antibodies should be measured by ELISA.
However, false-negative results with the CLIA and latex agglutination methods can also be
used as one basis for VITT diagnosis [201].

Although the frequency of VITT is extremely low, ranging from a few to ten cases per
million [202], it is important to note that this condition is often fatal when present.

The mechanism of VITT is thought to be the formation of autoantibodies against
the complex of PF4 and free DNA or the coating protein of adenoviruses and binding
of the Fc portion of autoantibodies to the Fc receptor on the platelet membrane, which
may induce platelet activation and aggregation. In addition, prothrombotic microparticles
are released from activated platelets and thrombin production is promoted. PF4 binds
to heparin sulfate and chondroitin sulfate on vascular endothelial cells, and binding of
autoantibodies to these sites activates endothelial cells. Tissue factor expression from
endothelial cells is also thought to activate coagulation [171] (Figure 3). Although 67%
(29/43) of healthy controls are positive for anti-PF4 antibodies on day 22 after the first
dose of ChAdOx1-nCoV-19, no positive patients showed high antibody titers or developed
VITT [203]. When evaluating the anti-PF4 antibody (by ELISA), attention must be paid
not only to the positive or negative result, but also to the antibody titer. The prevalence
of anti-PF4 antibodies is 1.0–6.6% [204,205] in pre-vaccinated populations. A significant
number of post-vaccination anti-PF4 antibody-positive individuals are likely to have had
antibodies prior to vaccination, making routine anti-PF4 antibody testing of asymptomatic
individuals less useful [206].

Post-vaccination cerebral venous sinus thrombosis has also been reported with
BNT162b2 [207–209]. However, in all such cases, platelet counts were normal and anti-PF4
antibodies were not detected, therefore, VITT is not a consideration.

The mRNA vaccines work by delivering mRNA (for the formation of spike pro-
teins) protected by lipid nanoparticles to ribosomes in human cells, causing the produc-
tion of spike proteins [210]. S protein produced by mRNA vaccine is not exactly the
same as the S protein of SARS-CoV-2. For example, uridine of mRNA is converted to
pseudouridine [211,212] for more efficiency and safety [213]. The mechanism of mRNA
vaccine-induced thrombosis may resemble that of COVID-19 [209], although the details are
as yet unknown.

3.4. Diagnosis of VITT

If a patient presents with any of the symptoms listed in Table 4 within 4–28 days
after vaccination (day 0 being the date of vaccination), VITT should be suspected because
of the possibility of new thrombosis. Coagulation tests for PT, APTT, fibrinogen, and
D-dimer (FDP) are mandatory, and PT and APTT alone are insufficient. Since some VITT
patients present with DIC and bleeding tendency, measuring TAT (a marker of coagulation
activation) and PIC, plasminogen, and α2PI (as markers of fibrinolysis activation) at the
same time is advisable [214].

As mentioned above, measurement of anti-PF4 antibodies by ELISA is of paramount
importance, as almost all cases of VITT are positive and show a high titer. However, if
VITT is strongly suspected, waiting for the test results may take too long, and initiation of
empirical treatment is advisable.

A marked increase in D-dimer to more than four times the upper limit of normal
alongside a decreased platelet count is highly suggestive of VITT, but a marked increase in
D-dimer is not essential for diagnosis. This is because some VITT patients show only mild
elevations in D-dimer.
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Figure 3. Mechanism of VITT development in adenovirus vector vaccines. Immunoglobulin G
autoantibodies against the complex of platelet factor 4 and free DNA in the vaccine result in platelet
activation and aggregation. In addition, the release of microparticles and activation of coagulation
by vascular endothelial cells are thought to be mechanisms underlying thrombus formation in VITT.
Abbreviations: VITT, vaccine-induced immune thrombotic thrombocytopenia; PF4, platelet factor 4.

Table 4. Clinical features indicative of VITT.

Clinical Findings
(1) Onset 4–28 days after vaccination (counting the day of vaccination as day 0)

(2) Symptoms suggestive of stroke (unilateral facial palsy, unilateral motor palsy, language
disorder, joint parallax, hemispheric neglect, etc.)

(3) Symptoms suggestive of cerebral venous sinus thrombosis (persistent headache, visual
disturbance, seizure, nausea and vomiting, psychiatric symptoms, etc.)

(4) Symptoms suggestive of visceral vein thrombosis (persistent abdominal pain, nausea and
vomiting, etc.)

(5) Symptoms suggestive of deep vein thrombosis or pulmonary thromboembolism (pain and
swelling in lower limbs, chest and back pain, shortness of breath, etc.)

(6) Hemorrhagic tendencies such as hemorrhagic infarction, petechial hemorrhage, and mottled
hemorrhage can also occur.

Abbreviations: VITT, vaccine-induced immune thrombotic thrombocytopenia. (Modified from References [215–217]).

Another report proposed a “pre-VITT syndrome” in which severe headache at 5–20 days
after adenovirus-vectored vaccination should be considered a sign of cerebral venous
sinus thrombosis [218]. In fact, although no thrombosis was found on imaging, VITT was
suspected early based on clinical symptoms and blood test findings (such as thrombo-
cytopenia and elevated D-dimer), and treatment for VITT was started early, resulting in
discharge from hospital in less than one week [219,220]. Notably, VITT is known to occur
after administration of adenovirus vector-type COVID-19 vaccines. However, on day 10
after inoculation with the Gardasil 9 vaccine against human papillomavirus (inactivated
vaccine), thrombocytopenia similar to that in VITT, venous thrombosis, elevated D-dimer,
and the presence of anti-PF4-polyanion complex antibody have been reported [221]. Simi-
lar pathologies may have been observed with other vaccinations, but have simply gone
unnoticed until now.
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Initiating treatment is important when VITT is suspected, as the mortality rate for
VITT was an extremely high 50% when the disease was first recognized, although this has
now reportedly improved to 22% and even 5% [215]. This is probably due to increased
awareness of the disease and earlier detection. The FAPIC score has been devised as a
prognostic score looking at fibrinogen, age, platelet count, presence of intracerebral hemor-
rhage, and presence of cerebral venous sinus thrombosis [222]: fibrinogen < 150 mg/dL;
age ≤ 60 years; platelets < 25,000/µL, intracerebral hemorrhage, and cerebral venous sinus
thrombosis all represent prognostic factors for poor clinical outcome. This is a simple scor-
ing system, but does not address treatment options for each stratified risk level. In addition,
fibrinogen and platelets are suspected to be involved in enhanced-fibrinolytic-type DIC, as
described below.

3.5. Treatment of VITT (Attention to Fibrinolytic Pathophysiology)

The treatment strategy is based on the treatment of HIT, and includes discontinuation
of heparin (although heparin may reportedly be used if HIT can be reliably excluded [215]),
high-dose immunoglobulin therapy, anticoagulants other than heparin (argatroban, fonda-
parinux, DOACs, etc.), and steroids have all been mentioned [223,224].

However, in some VITT patients, in addition to a marked increase in D-dimer, marked
decreases in platelet count and fibrinogen have been observed (Figure 4) [171,225], sug-
gesting a change in coagulation markers as in enhanced-fibrinolytic-type DIC [93]. If such
patients are reflexively treated with anticoagulant therapy, major bleeding may result, and
rigorous evaluation of coagulation and fibrinolytic markers is thus necessary. In fact, a
clinical trial of argatroban for DIC was conducted in Japan more than 30 years ago, but
was discontinued after the occurrence of bleeding side effects in many patients. In ret-
rospect, we believe that argatroban was more likely to cause bleeding in patients with
enhanced-fibrinolytic-type DIC, and should not be prescribed without caution in patients
with enhanced-fibrinolytic-type DIC. The characteristics of suppressed-fibrinolytic-type
DIC, enhanced-fibrinolytic-type DIC, and VITT are summarized in Table 5.
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Figure 4. Relationship between VITT and fibrinolytic pathophysiology. We plotted fibrinogen on
the horizontal axis and D-dimer on the vertical axis for 30 definitive VITT cases (using data from
Reference [222]) in which both fibrinogen and D-dimer values were known. The lower the level of
fibrinogen, the higher the level of D-dimer. In particular, patients with blue dotted squares showed a
decrease in fibrinogen and a marked increase in D-dimer, suggesting the complication of enhanced-
fibrinolytic-type DIC (a subject for further investigation). If anticoagulants are administered to the
same intensity as in other cases, the risk of bleeding is considered high. To confirm the diagnosis of
enhanced-fibrinolytic-type DIC, measurement of not only the coagulation activation marker TAT, but
also the fibrinolysis activation marker PIC is essential. Patients with markedly decreased α2PI are at
high risk of bleeding. Importantly, in enhanced-fibrinolytic-type DIC, the increase in FDP is more
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prominent than the increase in D-dimer (discrepancy between FDP and D-dimer). Antithrombin, as a
coagulation inhibitor, does not often decrease, even in patients with a marked decrease in α2PI, a
fibrinolytic inhibitor (except in patients with reduced hepatic reserve). Abbreviations: VITT, vaccine-
induced immune thrombotic thrombocytopenia; DIC, disseminated intravascular coagulation; TAT,
thrombin–antithrombin complex; PIC, plasmin–α2 plasmin inhibitor complex; α2 PI, α2 plasmin
inhibitor; FDP, fibrin/fibrinogen degradation products.

Table 5. Laboratory findings in typical cases of suppressed/enhanced-fibrinolytic-type DIC and VITT.

Disease
Suppressed-

Fibrinolytic-Type
DIC

Enhanced-
Fibrinolytic-Type

DIC
VITT

Underlying disease/cause Severe sepsis
APL, aortic

aneurysm, prostate
cancer, etc.

Adenovirus vector type
vaccination

Pathophysiology

Activation of
coagulation and
mild fibrinolysis

activation

Activation of
coagulation and

enhanced
fibrinolysis

Antibodies against PF4 are mediated
platelet and coagulation activation

Main symptom Organ damage Bleeding Headache, abdominal pain, etc.

Examination
findings

Platelet count Decreased Decreased Decreased

PT Prolonged Normal to
prolonged Normal to prolonged *

APTT Prolonged Slightly shortened
to prolonged Normal to prolonged *

Fibrinogen Normal to elevated Decreased Significantly reduced to normal
D-dimer Increased Increased Increased

FDP Increased Markedly increased Increased—markedly increased *
TAT Increased Increased Increased *
PIC Slightly increased Markedly increased Increased—markedly increased *

Medical treatment Anticoagulant
therapy

Anticoagulant
therapy ±

antifibrinolytic
therapy

Anticoagulant therapy other than heparin,
high-dose immunoglobulin therapy, etc.

* Author’s guess due to insufficient information. Abbreviations: DIC, disseminated intravascular coagulation;
VITT, vaccine-induced immune thrombotic thrombocytopenia; APL, acute promyelocytic leukemia; PF4, platelet
factor 4; PT, prothrombin time; APTT, activated partial thromboplastin time; FDP, fibrin/fibrinogen degradation
products; TAT, thrombin–antithrombin complex; PIC, plasmin–α2 plasmin inhibitor complex.

Tranexamic acid has also been reported to save lives [226], but the use of tranexamic
acid in VITT should be considered with care, given the risk of exacerbating thrombosis.
Anti-PF4 antibodies persist for at least four months after the end of VITT treatment [227],
but advantages [227] and disadvantages [228] are seen with respect to VITT flare-ups, so
careful follow-up may be necessary.

In addition, no relapse of VITT occurred after a second additional dose of vaccine
was administered to 40 patients who had developed VITT after the first dose. In many
cases, mRNA-type vaccines, BNT162b2 and mRNA-1273, had been administered as the
second dose, suggesting that immune responses to spike proteins are not involved in
the pathogenesis of VITT. From the perspective of protection against infection, a second
vaccination should be administered even after the onset of VITT [229].

Cerebral venous sinus thrombosis occurring after vaccination with BNT162b2 (but not
after vaccination with ChAdOx1-nCoV-19) did not show a decreased platelet count or anti-
PF4 antibodies, was not VITT, and was treated with heparins [208]. Which manufacturer’s
vaccine was administered is an important piece of information for determining the course
of treatment.
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4. Summary

The hope is that the spread of novel coronavirus vaccines will bring the COVID-19
pandemic to a close. However, the spread of COVID-19 remains unpredictable. In addition,
more careful handling is required for coagulopathies occurring after vaccination.

Appropriate assessment of not only coagulation but also fibrinolysis and fine-tuning
of therapy on a case-by-case basis may lead to improved outcomes for COVID-19 and VITT.
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