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In kidney transplantation, deteriorated progression of rejection is considered to be a
leading course of postoperative mortality. However, the conventional histologic diagnosis
is limited in reading the rejection status at the molecular level, thereby triggering
mismatched pathogenesis with clinical phenotypes. Here, by applying uniform manifold
approximation and projection and Leiden algorithms to 2,611 publicly available microarray
datasets of renal transplantation, we uncovered six rejection states with corresponding
signature genes and revealed a high-risk (HR) state that was essential in promoting
allograft loss. By identifying cell populations from single-cell RNA sequencing data that
were associated with the six rejection states, we identified a T-cell population to be the
pathogenesis-triggering cells associated with the HR rejection state. Additionally, by
constructing gene regulatory networks, we identified that activated STAT4, as a core
transcription factor that was regulated by PTPN6 in T cells, was closely linked to poor
allograft function and prognosis. Taken together, our study provides a novel strategy to
help with the precise diagnosis of kidney allograft rejection progression, which is powerful
in investigating the underlying molecular pathogenesis, and therefore, for further
clinical intervention.

Keywords: kidney transplantation rejection, transcriptome-based re-classification, high-risk rejection, T cells,
PTPN6-STAT4 signaling
Abbreviations: HR, high-risk; ESKD, end-stage kidney disease; scRNA-seq, single-cell RNA sequencing; GEO, Gene
Expression Omnibus; STA, stable state; ABMR, antibody-mediated rejection; TCMR, T-cell-mediated rejection; Mix, Mixed
state, ABMR and TCMR; AR, acute rejection; CR, chronic rejection; GSE, series record of GEO; HVGs, highly variable genes;
UMAP, Uniform Manifold Approximation and Projection; WGCNA, weighted correlation network analysis; DEGs,
differentially expressed genes; GO, Gene Ontology; Fib, fibrosis state; Infla1/2, inflammatory state 1/2; Prog1/2, progressive
state 1/2; M1/2, type I/II macrophages; LASSO, least absolute shrinkage and selection operator; PTP, protein tyrosine
phosphatase; v-STA/Fib/Prog2/HR, STA/Fib/Prog2/HR of validation; STAT4, signal transducer and activator of
transcription 4.
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INTRODUCTION

Kidney transplantation is the gold standard treatment for most
patients with end-stage kidney disease (ESKD), whereas
transplantation rejection leads to allograft loss (1). Despite the
widely accepted histology-dependent criteria Banff for the
diagnosis of rejection progression, it is still limited to precisely
distinguish different graft rejection statuses due to the inherent
requirement for subjective assessment (2). Moreover, histology-
basis assessment makes it impossible to identify pathogenesis at
the molecular level, especially on the immune aspect, which
triggers an increase in inflammatory burden to allograft function
(3–7). These above limitations altogether leave an urgent
concern to obtain appropriate strategies for a better diagnosis
and for molecular pathogenesis investigation.

Bulk transcriptomic datasets from renal transplantation
biopsies have been applied to reveal rejection states in a more
accurate way. Based on mechanical learning algorisms (2) and
signature gene sets regarding rejection status (8–10), these studies
have established prognostic models to refine the traditional clinical
classifications. However, it is still hard to meet the needs of
repetitive and systematic classification on different rejection
states, and it is difficult to further understand the underlying
molecular mechanisms driving transplant rejection.

The recently developed single-cell RNA sequencing (scRNA-
seq) allows the measurement of transcriptomes from individual
cells, which provide new insights into complex biological systems
and enable the identification of rare cell types, new cell states, as
well as intercellular communication networks that may be masked
by traditional bulk transcriptional profiling (11). It also offers an
unprecedented opportunity to define cell types and states
comprehensively with molecular precision (12). Therefore,
combination data taken from the advancement of both scRNA-
seq and bulk transcriptome strategies would be helpful to discover
special cell types and heterogeneous gene signatures of rejection
subpopulations in response to different stages of rejection.

In this study, we establish a new pathogenic classification of
renal allograft rejection status based on Uniform Manifold
Approximation and Projection (UMAP) and Leiden algorithms at
single-cell resolution. Using this strategy, we identified a high-risk
(HR) rejection status prone to allograft loss, which was mediated by
accumulated T-cell immune responses. Through constructing gene
regulatory networks, we further uncovered a PTPN6-involved and
STAT4-dominated mechanism, which provides new insights for
clinical interventions for renal allograft failure.
MATERIALS AND METHODS

Data Collection
A total of 2,611 human microarray datasets from tissue biopsies
of kidney allografts were obtained from the Gene Expression
Omnibus (GEO) database (Supplementary Table 1). According
to the Banff standard, samples diagnosed as “non-rejection” are
classified as “stable state (STA)”, and samples diagnosed as
“antibody-mediated rejection (ABMR)” and “T-cell mediated
rejection (TCMR)” are classified as “Mixed state (Mix)”. All
Frontiers in Immunology | www.frontiersin.org 2
other data diagnosed as “borderline” are excluded. The data used
are all samples from patients diagnosed as ABMR, TCMR, acute
rejection (AR), stable state (STA), chronic rejection (CR), and
mixed state (Mix) (2, 3, 8, 13–21). The single-cell datasets of
samples were downloaded from GEO (12, 22) (GSE145927 and
GSE109564), which were collected from kidney biopsies with a
diagnosis of acute ABMR and acute Mix.

Microarray Data Preprocessing
Microarray datasets were re-annotated to unify the gene names
corresponding to each probe. We aligned all probe sequences
from 2,611 microarray datasets to the FASTA file of hg38 using
bowtie2 (23) and annotated them using bedtools (24). The
samples from each series record of GEO were standardized
using limma (25). Two expression matrices were prepared. The
first one was acquired by directly merging the matrices from each
GSE based on the intersection of genes without removing the
batch effect and normalization. The second matrix was
progressed with Combat to remove batch effects. Batch effect
was removed according to the GPL number and the company
category. All the combined data of the second matrix were
normalized by the logarithm of 2.

Single-Cell Transcriptomic Sequencing
Data Preprocessing
The raw gene expression matrices of scRNA-seq datasets from all
renal samples were merged and converted to an Anndata object
using the Python package Scanpy (version 1.4.4) (26). Cells that
expressed less than 500 genes and genes detected in less than 3
cells were filtered out. Potential doublet cells were then detected
and filtered by applying the Python package scrublet (version 0.2)
(27) for each sample. Next, doublet-dominated sub-clusters were
checked to ensure a low doublet rate in all populations using the
previously described method (28). The gene expression levels were
normalized by the total UMI count per cell (1e4) with data being
log-transformed. The interferences arising from cell cycling genes
were eliminated by using the regress_out function of the Scanpy
package. Then, highly variable genes (HVGs) in gene expression
matrices were identified for further analysis using the
highly_variable_genes function of the Scanpy package. Finally,
the batch effect was eliminated using the Python package bbknn
(version 1.2.0) (29). The dimensionality of HVGs was primarily
reduced by principal component analysis (PCA). The first 40
principal components were further summarized by UMAP for
dimensionality reduction using the default setting of the UMAP
function of the Scanpy package. Cells were clustered with the
Leiden algorithm using the leiden function of the Scanpy package.
Cell-specific gene markers across all cell types were identified with
the get_DEG_single function of Python package PLOGS (https://
github.com/ZhangHongbo-Lab/PLOGS) that we developed, with
parameter ratio ≥ 0.5 and q-value ≤ 1e-30.

Reclassification Based on Dimensionality
Reduction and Clustering Algorithm
To reclassify the samples of human microarray datasets, we used
Scanpy (version 1.6.0) to read the first expression value data and
the log1p function of Scanpy to perform logarithmic calculations.
July 2022 | Volume 13 | Article 895762
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Then, HVGs were calculated based on each batch and screened
with parameter batches ≥ 1. The second expression value data
was screened using the HVG, which was the third expression
matrix. The dimensionality of HVGs was primarily reduced by
PCA. The first 40 principal components were further
summarized by UMAP (30) dimensionality reduction using
the default setting of the umap function of the Scanpy package
and clustered with the Leiden algorithm using the leiden
function of the Scanpy package. In order to make the data
classification results clearer and more credible, the batch effect
was eliminated again using the Python package bbknn (version
1.2.0). The cluster-specific gene markers were identified with the
get_DEG_single function of the Python package PLOGS with
parameter ratio ≥ 0.5 and q-value ≤ 1e-30. The reclassified
clusters were annotated by differential expression gene groups
of six rejection states.

Identification of Rejection State
Associated Cells
Scissor (31) was performed to identify the cell subpopulations
most highly associated with the states of reclassified clusters in
bulk RNA-seq data. All of the states of reclassified clusters were
merged, and each cell corresponded to the rejection state with the
largest positive correlation coefficient.

Prediction of the Proportion of Cell Types
and Capture of Important Cell Types
The expression matrices of the marker genes of each cell type
were regarded as the cell characteristics, and CIBERSORT (32)
was performed to analyze the cell ratio of the six states using the
2,611 microarray datasets. The R package pheatmap was used to
visualize the results, and the cell type was set to scale for
horizontal comparison. Then, we output the numerical matrix
after the scale, calculated the power function matrix
corresponding to the numerical matrix with 2 as the base, and
rounded it, selecting the cell type with the value greater than 1 as
the potentially important cell type. This value was used as the
proportion of the cell type in the corresponding rejection state.
The score_genes function of the Scanpy package was used to
show the degree of gene expression in different states.

Co-Expression Network Construction
Co-expression network analysis was performed using weighted
correlation network analysis (WGCNA, R package) (33). All
genes were selected as input matrix. The co-expression network
was constructed by the automatic construction function with the
parameter power 10. Co-expression network was visualized by
Cytoscape (34). IRegulon (35) was used to predict the
transcription factors.

Upstream Network Analysis in T Cells
NicheNet (36) was used to predict upstream regulatory networks
that drive STAT4. All expressed genes in T cells were used as the
background of genes. Genes were considered as expressed when
they have nonzero values in at least 10% of the cells in a cell type.
Here, all ligands were adopted to determine signaling paths
between ligands and STAT4.
Frontiers in Immunology | www.frontiersin.org 3
Establishment and Assessment of
Predictive Models
Putative STAT4-regulated genes excluding those with insignificant
correlations were applied to least absolute shrinkage and selection
operator (LASSO) regression to identify critical prognostic genes
and construct a diagnostic model with low variance and strong
universality. The dataset GSE21374 was divided into training and
validation sets by 6:4 randomization without replacement. The
package glmnet was used in R version 4.1.0.
RESULTS

Unsupervised Clustering Reveals a
High-Risk Status Prone to Renal
Allograft Failure
In the current clinical diagnosis of kidney transplant prognosis,
allograft rejection is usually classified into six progression statuses
based on divergent histology manifestations: stable (STA),
antibody-mediated (ABMR), acute (AR), chronic (CR), T-cell
mediated (TCMR), and mixed TCMR with ABMR (Mix)
rejection. To evaluate the correlation between state from current
clinical diagnosis and transcriptome and understand the cellular
and molecular mechanisms that lead to kidney transplant
rejection, we first applied the current clinical criteria and
analyzed microarray data of 2,611 kidney biopsies (2, 3, 8, 13–
21) from patients receiving renal transplantation (Supplementary
Table 1). Through PCA, we found that allograft samples with
different clinical diagnoses were mixed and randomly distributed
in two separate groups (Supplementary Figure 1A), suggesting
the discrepancy between traditional clinical diagnosis and
transcriptomic heterogeneity of disease status. At the gene
expression level, different clinical diagnoses were also difficult to
be recognized by differentially expressed genes (DEGs) as
compared between each rejection state and the stable condition
(Supplementary Figures 1B, C). Similar results were also
observed in other previous transcriptomic analyses (2, 17, 37).
These results indicated that the traditional clinical classifications
might not accurately distinguish patients with different rejection
states at the molecular level.

To precisely refine the rejection status at the molecular level, we
constructed a classification pipeline based on UMAP and Leiden
(Figure 1A). Unsupervised clustering of 2,611 samples from
kidney transplantation yielded 6 main rejection states
(Figure 1B). As expected, each status was distinguished by its
signature gene sets and characterized by specific Gene Ontology
(GO) functions (Figure 1C; Supplementary Table 2). Samples in
the stable state (STA) showed significant enrichment in renal
homeostasis and detoxification function (Supplementary
Figure 2) representing a relevant homeostatic condition after
receiving transplantation. In addition, samples in fibrosis state
(Fib) indicated allografts suffering from fibrotic diseases. The
population of inflammatory state 2 (Infla2) seemed to represent
a status suffering from dysfunctional leukocytes. With enrichment
of tube morphogenesis, renal insufficiency, and humoral immune
function, both the progressive state 1 (Prog1) and 2 (Prog2) were
characterized to be the activated progression stages of rejection.
July 2022 | Volume 13 | Article 895762
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Interestingly, the population of inflammatory state 1 (Infla1)
was not only correlated with graft-versus-host disease, but also
predominantly enriched in immune activation responses with
more than 70% of samples in Infla1 showing apparent rejection
phenotypes, representing the severest rejection status (Figure 1C;
Frontiers in Immunology | www.frontiersin.org 4
Supplementary Figures 2, 3). To further verify its rejection-
triggering feature, we mapped these new classifications and
phenotypes on human and mouse renal allografts (37) (https://
www.ualberta.ca/medicine/institutes-centres-groups/atagc/
research/gene-lists, Supplementary Table 3). Transcript sets that
A B

D E F

G

C

FIGURE 1 | Classifications based on the unsupervised algorithms revealed a high-risk rejection state prone to allograft lost. (A) The flowchart of reclassification
towards renal transplantation rejection. HVG, highly variable genes. (B) UMAP plot showing annotations of the 6 newly defined rejection states. Infla1, inflammatory
state 1; Prog1, progressive state 1; Prog2, progressive state2; Infla2, inflammatory state 2; STA, stable state; Fib, fibrosis state. (C) Heatmap showing signature
genes of each rejection state (left panel) and the enriched disease terms for the corresponding state (right panel). (D–F) Transcripts from different rejection
phenotypes from mouse allograft datasets were enriched in the corresponding rejection states. (G) Enrichment of transcripts presenting high risk of graft failure in
Infla1. CTL, cytotoxic T lymphocytes.
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were reduced after injury or rejection (termed “reduced after
injury” and “reduced >90% in day21 mouse allografts”) were
enriched in all rejection states that specifically excluded Infla1,
suggesting that these states, to some extent, still maintained
stability (Figures 1D, E). However, the injury- and repair-
induced transcripts were highly enriched in Infla1 and, to a
lesser extent, Fib, indicating that a part of allograft samples in
Fib and Infla1 were damaged (Figure 1F).

Previous studies showed that immunoglobins, effective CD8+

T cells, and cytotoxic molecules such as GZMB and IFN-g
increase the risk of graft failure (38–42). To identify the group
with a high risk of graft failure, we selected transcripts that not
only were used in clinical diagnosis but also represented a high
risk of allograft loss, and calculated the overall expression scores
(Supplementary Table 3). Interestingly, all four HR transcript
sets showed the highest expression scores in Infla1, further
indicating that Infla1 was the HR status prone to allograft loss
(Figure 1G). Considering all of the above lines of evidence, we
identified Infla1 as the HR state.

T Cells Are Recruited in Triggering
HR Rejection
To uncover key cell types with a significant impact on HR state,
we first collected scRNA-seq datasets (12, 22) to analyze all cell
Frontiers in Immunology | www.frontiersin.org 5
types present in kidney rejection samples. Unsupervised
clustering of the scRNA-seq data from 3 patients identified 11
main cell types defined by signature genes (Figure 2A, left panel;
Supplementary Figures 4A, B; Supplementary Table 4).
Using the Scissor (31) toolkit, we assigned all cells with each of
the rejection states (Supplementary Figure 4A) and further
applied 23,082 positively relevant cells to better illustrate the
relationship between specific cell types and rejection states
(Figure 2A, right panel). Notably, we identified type I (M1)
and type II (M2) macrophages and T cells were strikingly
aggregated in HR. Previous knowledge recognized that
macrophages and T lymphocytes were the dominant cell types
infiltrating acutely rejecting grafts (43). T lymphocytes are
central in promoting transplantation rejection and organ
damage through allorecognition of foreign antigens and
effector responses (44) (Figure 2B). We further performed
CIBERSORT (32) to predict relative ratios of each cell type in
rejection states and also revealed the immune-related cell types
including macrophages, T cells, and B cells highly aggregated in
HR (Supplementary Figure 4C). These results revealed the cell-
type characteristics of each rejection state, which were strikingly
beneficial for clinical diagnoses. Interestingly, the enrichment of
T cells in HR had more significant differences, showing that
changes in the amount of T cells were much stronger than other
A B

C

FIGURE 2 | T cells are recruited in triggering HR rejection. (A) UMAP plot showing all cell clusters and their annotations in the atlas (left panel) and the
corresponding rejection state (right panel). LOH_AL, loop of Henle, ascending limb; LOH_DL, loop of Henle, distal limb; Endo, endothelial cell; PT, proximal tubule;
PC, principal cell; MyoFB, myofibroblast; IC, intercalated cell. (B) The proportion of various clusters of cells in each rejection state. (C) Enrichment of transcripts
presenting high risk of graft failure in immune cell types. HR, high-risk state; Prog1, progressive state 1; Prog2, progressive state2; Infla2, inflammatory state 2; STA,
stable state; Fib, fibrosis state.
July 2022 | Volume 13 | Article 895762
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immune cell types in transcriptional datasets (Supplementary
Figure 4C). Indeed, in further distinguishing cell types highly
related to HR by applying HR transcript sets to scRNA-seq, we
observed that immune cells including macrophages, T cells, and
B cells were enriched in the HR state, while T cells appeared to be
specifically involved, indicating that T cells were more recruited
in driving HR rejection progression (Figure 2C).

STAT4 Is Essential in Mediating T-Cell
Immune Responses in HR Rejection
To explore the potential molecular mechanisms mediated in T
cells that lead to HR rejection, WGCNA (33) was performed to
seek out the gene co-expression networks (Supplementary
Figures 5A–C). Eighteen gene modules (labeled with colors,
such as MElightcyan) were generated by calculating the
correlation between total genes and the allograft samples
(Supplementary Figure 5B). The number of significant
correlation coefficients between gene modules and the newly
defined rejection states was far greater than the classification
based on traditional clinical diagnoses, suggesting the power of
this new classification (Figure 3A; Supplementary Figure 5C).
Additionally, the gene module MEblack has the biggest correlation
with the HR state (Figure 3A). To focus onmodules most relevant
to HR, we selected MEblack and identified that a large majority of
its hub genes were regulated by signal transducer and activator of
transcription 4 (STAT4), which was detected by IRegulon (35)
(Figure 3B; Supplementary Figure 6). GO analysis of these hub
genes regulated by STAT4 showed highly activated immune
functions, including leukocyte activation and regulation of
lymphocyte proliferation (Figure 3C), indicating that STAT4
mediated high levels of immune responses in HR rejection.
Indeed, upon analyzing an external microarray dataset
GSE21374 (45) from renal allograft, we observed that patients
with a higher expression of STAT4 showed poorer allograft
survival in renal transplantation (Figure 3D). Intriguingly,
STAT4 was not only strikingly expressed in HR (Figure 3E), but
also significantly enriched in T cells, illustrating that STAT4
mainly conducted HR rejection in T cells (Figure 3F). It is well
documented that STAT4 is a member of the STAT family, which
are identified as the major components of DNA-binding proteins
that activate gene transcription in response to a variety of
cytokines (46, 47). It contributes to the differentiation and
proliferation of both Th1 and Th17 cells, which are also crucial
effectors in chronic inflammatory disorders (48). Therefore, highly
correlated with the development of autoimmune diseases (47),
STAT4 has a large potential to be a key regulator of graft-
rejection activation.

We next investigated whether hub genes regulated by STAT4 in
T cells could contribute to allograft failure. By applying LASSO
logistic regression on the randomly selected samples from
GSE21374, which were regarded as the training cohorts, seven
potential targets (CD247, NKG7, CD6, CCL5, FGD3, APBBAIP,
and ARHGAP30) from the hub gene sets were determined and
used to establish a diagnostic model (Supplementary Figure 7A;
Supplementary Table 5). The diagnostic ability of the model was
further tested in the training cohorts (Supplementary
Figures 7A–C), and in the rest of the samples of GSE21374,
Frontiers in Immunology | www.frontiersin.org 6
which was determined as the validation cohort (Figure 3G), of
which the ROC curves and the overall survival analysis showed a
high diagnostic and prognostic power of the model. Among the
seven genes, CD247, NKG7, CD6, and CCL5 were presented
relevant to transplantation rejection, reflecting poorer allograft
survival after renal transplantation (49–52). Intriguingly, all seven
genes were remarkably expressed in HR especially CD6, CD247,
NKG7, and CCL5, which were specifically expressed in T cells
(Figures 3H, I). These results revealed that STAT4 as a core
transcription factor, mediated T-cell immune responses, which is
essential in HR progression and renal allograft failure.

PTPN6 Is a Novel Signaling Molecular
Inducing STAT4 Signaling in T Cells
Since STAT4 and almost all of its putatively target genes triggered
adverse allograft survival in patients who received renal
transplantation, the essential upstream regulators of STAT4
deserve further identification. To explore upstream signaling
pathways targeting STAT4, Nichenet’s (36) analysis was first
performed to determine the overall ligand and receptor pairs
targeting STAT4 in T cells from the HR group (Figure 4A). All of
the receptors, signaling mediators, and transcription factors (TFs)
in the network were picked and those uncorrelated to HR were
filtered out by limiting the p-value larger than 0.05, of which
IL6ST, MET, and CXCR4 were verified as upstream signaling
molecules to regulate STAT4 (53–55) (Figure 4B). We applied
these signaling molecules to the LASSO logistic regression on the
training cohorts, which were randomly selected from GSE21374,
and eight optimal genes, namely, CD44, FTH1, CXCR4, PTPN6,
PRDX2, EWSR1, UBB, and RPS19BP1, were employed to establish
a diagnostic model (Figure 4C; Supplementary Table 5). ROC
curves and overall survival analysis revealed a high diagnostic and
prognostic power of the model on both the training cohorts
(Supplementary Figure 8A) and the validation cohorts, which
consisted of samples in GSE21374 excluding those in the training
set (Figure 4D). Among these genes, CD44, CXCR4, PRDX2, and
UBB were significantly related to transplantation rejection and
poor survival (Figure 4E), which were also proved by researchers’
studies (56–59). The other four were newly discovered genes
potentially playing key roles in rejection and graft failure
(Figure 4E). Interestingly, we found that CD44, CXCR4, PTPN6,
and EWSR1 were specifically expressed in an HR state from the
new classifications in bulk RNA-seq (Figure 4F). As expected, the
overall survival probability of patients with higher expression of
CD44, CXCR4, and PTPN6 showed worse disease consequences
(Figure 4G), suggesting that these genes were HR regulators of
allograft loss. It is known that antagonists of CD44 andCXCR4 can
help improve outcomes in allograft rejection (56, 60), which
further supports our hypothesis.

Importantly, PTPN6, which was newly identified by our gene
regulatory network, encodes a member of the protein tyrosine
phosphatase (PTP) family and regulates multiple cellular processes,
such as cell growth, differentiation, and tumorigenesis (61). It is
demonstrated that PTPN6 functions in a TCR-dependent manner
(62) and elevated expression of PTPN6 recruits infiltration of T
cells (63), illustrating its role in mediating STAT4-induced T-cell
immune responses.
July 2022 | Volume 13 | Article 895762
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FIGURE 3 | STAT4 is essential in mediating T-cell immune responses towards HR rejection. (A) Heatmap presenting the 31 clusters of HVGs and the correlation
between gene modules and rejection states. ***p-value < 0.001. (B) Visualization of co-expression network and hub genes regulated by STAT4 from MEblack module in
HR. Dark blue-filled octagonal nodes: transcription factors; light blue-filled circular nodes: target genes; red lines with arrows: regulatory relationship; node size: degree of
transcription factor-target connectivity. (C) The enriched Gene Ontology terms for STAT4 and its downstream regulatory genes. (D) The survival curves for STAT4 in
patients with renal transplantation rejection. (E) Matrix plot showing the expression level of STAT4 in various rejection states. (F) The expression of transcription factor
STAT4 in various cell types. (G) The survival curve of validation cohorts with predicted high and low risk of graft failure. Genes marked in blue are known to be relevant to
graft rejection and those in gray were newly identified. (H) Matrix plot showing the expression level of optimal genes in rejection states. (I) The expression of the optimal
genes in various cell types. LOH_AL, loop of Henle, ascending limb; LOH_DL, loop of Henle, distal limb; Endo, endothelial cell; PT, proximal tubule; PC, principal cell;
MyoFB, myofibroblast; IC, intercalated cell. HR, high-risk state; Prog1, progressive state 1; Prog2, progressive state2; Infla2, inflammatory state 2; STA, stable state; Fib,
fibrosis state.
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External Data Re-Confirm the Power
of Our New Classification Strategy and
STAT4-Mediated Allograft Loss
in HR Rejection
To confirm the precision of the unsupervised classification built in
our study, we applied this strategy to the external microarray dataset
(GSE21374) and yielded 4 rejection states (Figure 5A). Each status
was finely characterized and annotated by the signature gene sets,
including STA (v-STA, NECTIN1+), Fib (v-Fib, CA3+), Prog2
Frontiers in Immunology | www.frontiersin.org 8
(v-Prog2, SLC5A3+), and HR of validation (v-HR, STAT4+).
Therefore, both the method and signature genes identified in
rejection states worked well in these external data. Importantly,
PTPN6, as well as CD44 and CXCR4, were upregulated specifically
in HR in the validation cohort, demonstrating that the two known
regulators, especially the newly discovered gene PTPN6, were critical
in HR progression (Figure 5B).

To further confirm the HR characteristic prone to allograft
loss in v-HR, we isolated samples with a final diagnosis of
A B

D E F

G

C

FIGURE 4 | PTPN6 is a novel regulator inducing STAT4 signaling in T cells. (A) Upstream regulatory networks targeting of STAT4 in T cells form HR. Sig_med, signaling
mediator; TF, transcriptional factors; MicroEnv, microenvironment. (B) Scatter plot showing negative and positive correlations between STAT4 and its upstream-regulators.
The red, blue, and gray dots indicate upstream regulators that were considered to be positive, negative, and no correlation, respectively. (C) The coefficient plot of the
LASSO model (left panel) and the selection of the tuning parameter in LASSO logistic regression analysis (right panel). (D) ROC curves for allograft loss diagnosis prediction
in the validation cohorts. € The survival plot of validation cohorts with predicted high and low risk of graft failure. Genes marked in blue are known to be relevant to graft
rejection and those in gray were newly identified. (F) Matrix plot showing the expression level of optimal genes in each rejection state. (G) The survival plot (top panel) and
UMAP plot (bottom panel) of CD44, CXCR4, and PTPN6 showing the relative expression level in each rejection state.
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allograft loss, and divided them into non-HR (not belonging to v-
HR) and v-HR according to the new classification. Indeed,
survival probability analysis revealed that patients from v-HR
showed greater susceptibility to renal failure compared to the
non-HR group (Figure 5C).

Taken together, our new classification strategy proves to be
precisely helpful for distinguishing renal allograft rejection
status, upon which we also provide new insights into PTPN6-
STAT4-immune responsive signaling in T cells that mediates HR
rejection (Figure 5D).
DISCUSSION

Despite the histology-dependent diagnosis of renal allograft
rejection being the currently widely accepted criterion, the
limitations in precisely defining pathogenesis remain to be an
obvious clinical concern. To uncover the molecular mechanisms
of renal allograft rejection in an easier, more precise and high-
throughput manner, three key pieces of information are
required: (1) transcriptome-based accurate classification with
high universality and easy operation, (2) identification of key
cell types driving rejection progression, and (3) well-documented
combination between bulk transcriptomic and scRNA-seq data.
Here, by reclassifying renal allograft rejection state based on an
unsupervised pipeline, we uncovered an HR rejection status
prone to allograft loss and revealed that T-cell immune
responses mediated by PTPN6-STAT4 signaling were essential
in triggering allograft failure.
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Based on the unsupervised algorithms, the new classification
pipeline avoids the mismatched pathogenesis with clinical diagnoses
and reveals different rejection states at the transcriptomic level,
especially the focused HR state. To our knowledge, the HR state is a
newly discovered stage predominantly correlated with graft-versus-
host disease and induces immune activation responses, which we
consider to be prone to allograft failure. This is further proved by
recent lines of evidence from renal transplantation showing that
allograft failure is highly associated with prolonged immune
activation (64, 65). HR mainly recruited T-cell and B-cell effector
transcripts to active mixed rejection, but is even more probable to
cause graft loss than pure ABMR or TCMR (66). It is reported that
the number and function of T cells are always considered being
inhibited at an early stage of renal transplantation by
immunosuppressive drugs (67). T-cell depletion eliminates anti-
donor alloantibodies and conferred protection from destruction of
renal allografts (68, 69). Therefore, HR is reasonable to bear more
burden from cytotoxic lymphocytes and effector T cells. Taken
together, activated T-cell immune responses that re-aggregate
significantly in HR rejection will most likely drive graft failure.

Mechanistically, we found that STAT4 is essential to stimulate T-
cell activation (Figure 5D). Apart from the known regulators CD44
(56) and CXCR4 (57), we also newly identified PTPN6, which is
associated with tumor rejection (61, 63) and T-cell aggregation (62,
63), to be essential in promoting renal transplantation rejection.
PTPN6 functions as an upstream regulator to activate STAT4 and
further impel the downstream immune gene set signaling, including
activation of receptors and signaling mediators (49, 51), as well as the
release of different kinds of cytokines (50, 52). Ultimately, allograft
A B

DC

FIGURE 5 | New classification pipeline re-confirms STAT4-mediated allograft loss in HR rejection. (A) UMAP plots showing the validation dataset and its annotation
based on the marker genes of rejection states. The black dashed box represents the corresponding state. (B) Matrix plot showing the expression level of CD44,
CXCR4, and PTPN6 in each rejection state. (C) The survival curve of patients with HR versus non-HR rejection of renal transplantation. (D) Diagram of renal allograft
failure triggered by HR rejection that is mediated by PTPN6-STAT4-immune responsive signaling in T cells. MicroEnv, microenvironment.
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failure is inevitable due to the continuous and uncontrollable
accumulation of inflammatory burden derived from T cells.
CONCLUSION

Our work provides a new classification for renal transplant
rejection at the systemic transcriptomic level, along with
corresponding signature genes and cell types. We also propose
an important rejection state HR, which is most prone to allograft
loss and highlights PTPN6-STAT4-proinflammation signaling in
T cells, which plays critical roles in triggering allograft failure.
This proposed strategy together with a new pathogenic
mechanism provides a new path for potential clinical diagnosis
and intervention for renal transplantation rejection.
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Martı ́nez-A C, Mellado M. The Chemokine Sdf-La Triggers Cxcr4
Receptor Dimerization and Activates the Jak/Stat Pathway. FASEB J (1999)
13(13):1699–710. doi: 10.1096/fasebj.13.13.1699

56. Rouschop KM, Roelofs JJ, Sylva M, Rowshani AT, Ten Berge IJ, Weening JJ,
et al. Renal Expression of Cd44 Correlates With Acute Renal Allograft
Rejection. Kidney Int (2006) 70(6):1127–34. doi: 10.1038/sj.ki.5001711

57. Fu J, Lehmann CHK, Wang X, Wahlbuhl M, Allabauer I, Wilde B, et al. Cxcr4
Blockade Reduces the Severity of Murine Heart Allograft Rejection by
Plasmacytoid Dendritic Cell-Mediated Immune Regulation. Sci Rep (2021)
11(1):23815. doi: 10.1038/s41598-021-03115-z

58. Spivey TL, Uccellini L, Ascierto ML, Zoppoli G, De Giorgi V, Delogu LG, et al.
Gene Expression Profiling in Acute Allograft Rejection: Challenging the
Immunologic Constant of Rejection Hypothesis. J Transl Med (2011) 9:174.
doi: 10.1186/1479-5876-9-174
July 2022 | Volume 13 | Article 895762

https://doi.org/10.1681/ASN.2009080876
https://doi.org/10.1681/ASN.2009080876
https://doi.org/10.1371/journal.pone.0056657
https://doi.org/10.1681/ASN.2020030326
https://doi.org/10.1093/bioinformatics/bty648
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1016/j.cels.2018.11.005
https://doi.org/10.1038/s41586-019-0933-9
https://doi.org/10.1038/s41586-019-0933-9
https://doi.org/10.1093/bioinformatics/btz625
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/s41587-021-01091-3
https://doi.org/10.1038/s41587-021-01091-3
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1371/journal.pcbi.1003731
https://doi.org/10.1038/s41592-019-0667-5
https://doi.org/10.1111/ajt.15685
https://doi.org/10.1111/ajt.15685
https://doi.org/10.1681/asn.2019080847
https://doi.org/10.1056/NEJMoa1302506
https://doi.org/10.1056/NEJMoa1302506
https://doi.org/10.1681/ASN.2016070797
https://doi.org/10.1681/ASN.2014111120
https://doi.org/10.1111/j.1365-2249.2011.04551.x
https://doi.org/10.1111/j.1365-2249.2011.04551.x
https://doi.org/10.1016/S0140-6736(58)90202-2
https://doi.org/10.1016/S0140-6736(58)90202-2
https://doi.org/10.1586/eci.09.64
https://doi.org/10.1172/jci41789
https://doi.org/10.1172/jci41789
https://doi.org/10.1126/science.8197455
https://doi.org/10.7150/ijbs.41852
https://doi.org/10.1111/j.0105-2896.2004.00211.x
https://doi.org/10.1186/s12882-015-0141-2
https://doi.org/10.1186/s12882-015-0141-2
https://doi.org/10.1371/journal.pone.0205107
https://doi.org/10.1371/journal.pone.0205107
https://doi.org/10.3389/fimmu.2020.613644
https://doi.org/10.1095/biolreprod.111.092379
https://doi.org/10.1136/jitc-2021-002451
https://doi.org/10.1096/fasebj.13.13.1699
https://doi.org/10.1038/sj.ki.5001711
https://doi.org/10.1038/s41598-021-03115-z
https://doi.org/10.1186/1479-5876-9-174
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. STAT4 Drives Renal Allograft Failure
59. Luo W CI, Chen Y, Alkam D, Wang Y, Semenza GL. Prdx2 and Prdx4 Are
Negative Regulators of Hypoxia-Inducible Factor Under Conditions of Prolonged
Hypoxia. Oncotarget (2016) 7(6):6379–97. doi: 10.18632/oncotarget.7142

60. Hsu WT, Lin CH, Jui HY, Tseng YH, Shun CT, Hsu MC, et al. Cxcr4
Antagonist Reduced the Incidence of Acute Rejection and Controlled Cardiac
Allograft Vasculopathy in a Swine Heart Transplant Model Receiving a
Mycophenolate-Based Immunosuppressive Regimen. Transplantation
(2018) 102(12):2002–11. doi: 10.1097/TP.0000000000002404

61. St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo B, Veri AO, Knight JDR,
et al. Phenotypic and Interaction Profiling of the Human Phosphatases
Identifies Diverse Mitotic Regulators. Cell Rep (2016) 17(9):2488–501.
doi: 10.1016/j.celrep.2016.10.078

62. Johnson DJ, Pao LI, Dhanji S, Murakami K, Ohashi PS, Neel BG. Shp1
Regulates T Cell Homeostasis by Limiting Il-4 Signals. J Exp Med (2013) 210
(7):1419–31. doi: 10.1084/jem.20122239

63. Shen C, Liu J, Wang J, Yang X, Niu H, Wang Y. The Analysis of Ptpn6 for
Bladder Cancer: An Exploratory Study Based on Tcga. Dis Markers (2020)
2020:4312629. doi: 10.1155/2020/4312629

64. Ravindranath MH, El Hilali F, Filippone EJ. The Impact of Inflammation on
the Immune Responses to Transplantation: Tolerance or Rejection? Front
Immunol (2021) 12:667834. doi: 10.3389/fimmu.2021.667834

65. Sellares J, de Freitas DG, Mengel M, Reeve J, Einecke G, Sis B, et al.
Understanding the Causes of Kidney Transplant Failure: The Dominant
Role of Antibody-Mediated Rejection and Nonadherence. Am J Transplant
(2012) 12(2):388–99. doi: 10.1111/j.1600-6143.2011.03840.x

66. Nickeleit V, Andreoni K. The Classification and Treatment of Antibody-
Mediated Renal Allograft Injury: Where Do We Stand? Kidney Int (2007) 71
(1):7–11. doi: 10.1038/sj.ki.5002003
Frontiers in Immunology | www.frontiersin.org 12
67. Safinia N, Afzali B, Atalar K, Lombardi G, Lechler RI. T-Cell Alloimmunity
and Chronic Allograft Dysfunction. Kidney Int Suppl (2010) 119:S2–12.
doi: 10.1038/ki.2010.416

68. Gaughan A, Wang J, Pelletier RP, Nadasdy T, Brodsky S, Roy S, et al.
Key Role for Cd4 T Cells During Mixed Antibody-Mediated Rejection of
Renal Allografts. Am J Transplant (2014) 14(2):284–94. doi: 10.1111/
ajt.12596

69. Ho V, Soiffer R. The History and Future of T-Cell Depletion as Graft-Versus-
Host Disease Prophylaxis for Allogeneic Hematopoietic Stem Cell
Transplantation. Blood (2001) 98(12):3192–204. doi : 10.1182/
blood.V98.12.3192

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Chen, Zhang, Liu, Chen, Wang and Zhang. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
July 2022 | Volume 13 | Article 895762

https://doi.org/10.18632/oncotarget.7142
https://doi.org/10.1097/TP.0000000000002404
https://doi.org/10.1016/j.celrep.2016.10.078
https://doi.org/10.1084/jem.20122239
https://doi.org/10.1155/2020/4312629
https://doi.org/10.3389/fimmu.2021.667834
https://doi.org/10.1111/j.1600-6143.2011.03840.x
https://doi.org/10.1038/sj.ki.5002003
https://doi.org/10.1038/ki.2010.416
https://doi.org/10.1111/ajt.12596
https://doi.org/10.1111/ajt.12596
https://doi.org/10.1182/blood.V98.12.3192
https://doi.org/10.1182/blood.V98.12.3192
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	T Cells With Activated STAT4 Drive the High-Risk Rejection State to Renal Allograft Failure After Kidney Transplantation
	Introduction
	Materials and Methods
	Data Collection
	Microarray Data Preprocessing
	Single-Cell Transcriptomic Sequencing Data Preprocessing
	Reclassification Based on Dimensionality Reduction and Clustering Algorithm
	Identification of Rejection State Associated Cells
	Prediction of the Proportion of Cell Types and Capture of Important Cell Types
	Co-Expression Network Construction
	Upstream Network Analysis in T Cells
	Establishment and Assessment of Predictive Models

	Results
	Unsupervised Clustering Reveals a High-Risk Status Prone to Renal Allograft Failure
	T Cells Are Recruited in Triggering HR Rejection
	STAT4 Is Essential in Mediating T-Cell Immune Responses in HR Rejection
	PTPN6 Is a Novel Signaling Molecular Inducing STAT4 Signaling in T Cells
	External Data Re-Confirm the Power of Our New Classification Strategy and STAT4-Mediated Allograft Loss in HR Rejection

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


