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Abstract

Optogenetics has become an important tool for perturbing neural circuitry with unparalleled

temporal precision and cell-type specificity. However, direct activation of a specific subpopu-

lation of neurons can rapidly modulate the activity of other neurons within the network and

may lead to unexpected and complex downstream effects. Here, we have developed a bio-

logically-constrained computational model that exploits these non-intuitive network

responses in order to gain insight into underlying properties of the network. We apply this

model to data recorded during optogenetic stimulation in the primary visual cortex of the

alert macaque. In these experiments, we found that optogenetic depolarization of excitatory

neurons often suppressed neuronal responses, consistent with engagement of normaliza-

tion circuitry. Our model suggests that the suppression seen in these responses may be

mediated by slow excitatory and inhibitory conductance channels. Furthermore, the model

predicted that the response of the network to optogenetic perturbation depends critically on

the relationship between inherent temporal properties of the network and the temporal prop-

erties of the opsin. Consistent with model predictions, stimulation of the C1V1TT opsin, an

opsin with a fast time constant (tau = 45 ms), caused faster and stronger suppressive effects

after laser offset, as compared to stimulation of the slower C1V1T opsin (tau = 60ms). This

work illustrates how the non-intuitive network responses that result from optogenetic stimu-

lation can be exploited to gain insight regarding network properties that underlie fundamen-

tal neuronal computations, such as normalization. This novel hybrid opto-theoretical

approach can thus enhance the power of optogenetics to dissect complex neural circuits.

Introduction

Optogenetics has provided neuroscientists with the ability to perturb neural circuits with high

temporal fidelity and cell-type specificity. This has led to substantial progress in understanding

the neural circuit mechanisms underlying memory, perception, cognition and complex behav-

ior [1–6]. Such experiments typically involve stimulating a subset of neurons and measuring

behavioral changes and/or monitoring electrophysiological changes in a single local or down-

stream brain region. Although significant advances have been made using this approach, it is

difficult to characterize the full set of feed-forward and feed-back effects that result from
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stimulating a subset of neurons in a particular area, which complicates the interpretation of

the relationship between optogenetic activation and electrophysiological and behavioral

changes.

We have used optogenetics to investigate the normalization computation in macaque pri-

mary visual cortex (V1) [7]. We found that optogenetic depolarization of excitatory neurons

can lead to a mixture of facilitative and suppressive effects in the network as has been shown

previously [8], as well as a strong suppression of activity immediately following stimulation

offset (Figs 1A, 2A and 2B). These suppressive effects were consistent with a model in which

excitatory neuronal activation recruits a strong inhibitory response via indirect activation of

inhibitory interneurons. These changes in neuronal responses were well captured by a normal-

ization model in which increased excitatory drive is accompanied by divisive inhibition [9].

Optogenetic stimulation of cortical circuits can thus lead to complex changes in neuronal

activity that are governed by feed-forward and feedback connections and local synaptic prop-

erties of the network.

To better understand this optogenetic-mediated suppression, we developed a spiking neural

network that incorporates a biologically-realistic opsin conductance model. We applied this to

better understand the normalization computation [10–13] and to gain insight into the effects

that optogenetic stimulation has on cortical circuits. We found that our model’s response to

optogenetic stimulation was strongly dependent upon synaptic strength and dynamics as well

as properties of the opsin. Specifically, we found that slow synaptic dynamics were important

for suppressive effects seen in the macaque and, therefore, could govern normalization compu-

tations seen in vivo. Our model was also able to correctly predict the suppression profile for a

network expressing an opsin with faster kinetics. We thus conclude that optogenetic stimula-

tion leads to a complex response pattern that is determined by both the temporal properties of

the opsin and intrinsic properties of the circuit and that understanding this relationship can

enhance our ability to use optogenetics to gain insight into the underlying circuit and circuit-

level computations.

Results

Modeling the mean responses of optogenetic stimulation in macaque V1

Optogenetic depolarization of excitatory neurons in macaque V1 leads to modulation of base-

line firing rates amongst a mix of directly and indirectly activated neurons in the local net-

work. Interestingly, we observed facilitation and suppression of neuronal responses during

stimulation, followed by a period of suppression after laser offset (Figs 1A, 2A and 2B), despite

the fact that we were only stimulating excitatory neurons. We hypothesized that this suppres-

sion seen during laser stimulation was mediated by strong feedback inhibition in the network

and that the after-suppression is mediated by the dynamics of receptors in the synapse.

To determine how feedback inhibition and synaptic dynamics influence the mean

responses during and following optogenetic stimulation, we developed neural network models

that incorporated opsin into excitatory neurons, included strong feedback inhibition, and had

either fast or slow synaptic dynamics (Fig 1B and 1C, Methods). Each network was tuned to

match the facilitative and suppressive mean response effects seen in vivo during laser stimula-

tion (Fig 2A) and immediately following stimulation (Fig 2B). We classified model neurons as

facilitated or suppressed using the same metrics as we used for the neuronal data set.

A network with strong feedback inhibition mediated by strong exc->inh and inh->exc

connection weights was sufficient to produce a mixture of facilitative and suppressive

responses at the population level regardless of synaptic dynamics during simulated laser stimu-

lation (Fig 2C and 2E). However, as discussed below, the proportion of the population
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exhibiting facilitation during stimulation vs post-stimulation suppression did depend on the

dynamics at the synapse.

In the network with fast synaptic dynamics (τc = 5-10ms) we found that 593 of the 1250

units (47%) were significantly facilitated (55% facilitated in vivo) and 303 of the units (24%)

were significantly suppressed (10% suppressed in vivo) during optogenetic stimulation. Of

these 896 facilitated and suppressed units, 171 units (19%) were suppressed (39% suppressed

in vivo) for the 10–210 milliseconds following laser offset (Fig 2F).

A network with slow synaptic dynamics (τc = 100–200 ms), however, was better able to

account for the suppressive effect observed immediately following laser stimulation (Fig 2D

and 2F). Of the 1250 neurons in the network that incorporated slow synapses, 420 of the units

(34%) were significantly facilitated (55% facilitated in vivo) and 250 of the units (25%) were

suppressed (10% suppressed in vivo) during optogenetic stimulation. Of these 670 facilitated

and suppressed units, 350 units (52%) were also significantly suppressed (39% suppressed in

Fig 1. Recorded data from macaque V1 and model details. A) During laser stimulation, facilitated neurons had a fast onset response followed by a transient to

sustained response profile similar to that seen following visual stimulus presentation. Immediately following laser offset, facilitated neurons in macaque V1 were quickly

suppressed beyond their baseline firing rate for>100ms (left). The temporal response profile of suppressed neurons (right) reached peak suppression at ~100 ms after

stimulation. After laser offset, the modeled and recorded neurons remained suppressed for ~200 ms and slowly returned to baseline. B) The modeled network is a

recurrent neural network of 1000 excitatory and 250 inhibitory neurons and contains excitatory-excitatory, excitatory-inhibitory, inhibitory-excitatory, and inhibitory-

inhibitory connections. Of the excitatory neurons, 200 contained the modeled opsin. C) The opsin conductance was modeled using a 3-state model, which includes an

open, desensitized, and closed state. Increasing the number of photons (simulating different light levels) opens conductance channels (transient state) after which they

become desensitized (sustained stated). When the light is turned off, conductance channels move to a closed state and the conductance decays to zero (left). A single

simulated neuron and opsin conductance (right). As the opsin conductance increases, it drives the cell to fire at higher rates.

https://doi.org/10.1371/journal.pone.0205386.g001
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vivo) for the 10–210 milliseconds following laser offset (Fig 2F). We believe that the number of

suppressed units in the model was greater than what was found in the macaque due to the dif-

ficulty in identifying neurons with a high baseline firing rate that show suppression due to the

laser.

The network with slow synapses, therefore, more accurately accounted for the after sup-

pression following laser offset whereas the network with fast synapses more accurately

accounted for the number of facilitated neurons seen during stimulation. The differences that

Fig 2. Modeling changes in mean responses. A,B) Mean responses from the data and simulation during optogenetic stimulation (Fig 2A; 0-200ms following laser

onset) and immediately following stimulation (Fig 2B; 10–210 milliseconds following laser offset). (top) From the macaque data, a total of 249 units were recorded from

two animals (142 from Monkey A, 107 from monkey M). Of these, 137 units were facilitated (55 single units, and 82 multi-units) and 23 units were suppressed (22 single

units, 1 multi-unit) during optogenetic stimulation. Of these 160 units, 62 (42 single units, 20 multi-units) were also suppressed for the 10–210 milliseconds following

laser offset (right). B-E) We developed two models, one that included fast excitatory and inhibitory synapses with τc = 5–10 ms, and one that included slow synapses,

with τc = 100–200 ms. We tuned these models to capture the mixture of facilitative and suppressive effects seen during optogenetic stimulation as well as the suppressive

effect across the population seen following optogenetic stimulation.

https://doi.org/10.1371/journal.pone.0205386.g002
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were seen in the mean responses between networks with fast and slow synapses led us to more

closely investigate how synaptic dynamics influence the full temporal response profiles of neu-

rons to optogenetic stimulation as discussed in the following section.

Modeling the temporal dynamics of optogenetic stimulation in macaque

V1

In order to gain insight into how synaptic dynamics influence the full temporal response profile

of the network to optogenetic stimulation, we compared the full temporal response profile of facil-

itated and suppressed neurons recorded in macaque V1 with our simulated data. During laser

stimulation, facilitated neurons in macaque V1 had a fast onset response (mean = 10.4 ms) fol-

lowed by a transition from this transient onset to a sustained response profile, similar to that seen

following visual stimulus presentation with high contrast stimuli (Fig 3A).

We saw this same response profile in facilitated neurons in the simulated data (Fig 3C and

3E) including a quick response onset (mean = 15.4 ms for fast synapses and mean = 25.4 ms

for slow synapses) and a transient to sustained response profile. This result was found despite

the simplicity of the model and the fact that we did not tune the model to explicitly match the

onset time distribution. Interestingly, the response onset latency of the data was a closer match

with the onset latency of the model that incorporated fast synaptic dynamics (τc = 5–10 ms)

when compared with the model that incorporated slow synaptic dynamics. The transient-to-

sustained ratio of the data, however, matched closer with the transient-to-sustained ratio of

the model that incorporated slow synaptic dynamics. The mean transient to sustained ratio for

the network with fast synapses was approximately 1.0, indicating that there was no transient to

sustained response. The transient to sustained ratio for the network with slow synapses, how-

ever, was 1.6. Together, these results suggest that slow synaptic feedback mediates the shape of

the transient to sustained response profile and fast, feedforward inhibition mediates the onset

response latency.

Immediately following laser offset, facilitated neurons in macaque V1 were quickly sup-

pressed (median τnetwork = 34.1 ms) beyond their baseline firing rate for>100ms (Fig 3A). We

quantified the magnitude of this suppression as the normalized distance between the mean

baseline rate and post stimulation rate. Facilitated neurons in the model with fast synapses

showed a slower return to baseline (median τnetwork = 65.2 ms) and no suppression following

laser offset (Fig 3C). Facilitated neurons in the model with slow synapses, however, showed

fast suppression (median τnetwork = 34.5 ms) following laser offset (Fig 3E) and strong suppres-

sion with a mean normalized magnitude of suppression equal to 0.06.

The temporal response profile of suppressed neurons seen in the macaque during laser

stimulation (Fig 3B) was also found in the simulated data (Fig 3D and 3F). For neurons show-

ing suppression during stimulation, both the model and data had a smoother response profile,

lacking the transient peak seen in facilitated neurons. After laser offset, recorded neurons

remained suppressed and then slowly returned to baseline after 200–300 ms (Fig 3B). We see

in comparing Fig 3D and 3F that the slow synaptic time constants were critical for replicating

the slow return to baseline seen in the data at laser offset in suppressed neurons. To quantify

this, we compared the mean normalized magnitude of suppression in the two networks from

100–200 ms following laser offset and found the network with fast synapses to have signifi-

cantly weaker suppression than the network with slow synapses (mean suppression (fast) =

0.07, mean suppression (slow) = 0.1; p< 0.05). We thus conclude that the fast and slow net-

works differentially responded to laser offset and that the network with slow synaptic dynam-

ics was able to better capture the laser offset response of both facilitated and suppressed

neurons when comparing with data from the macaque.
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Temporal dynamics of neuronal responses to laser offset depend on

properties of the network

The temporal profile of suppression following laser offset appears to be influenced by synaptic

dynamics as discussed above. In order to more systematically investigate this, we simulta-

neously varied the texc and tinh parameters in the model and measured their effects on the

opsin-expressing neurons in the network (Fig 4). Specifically, we measured how fast opsin-

expressing model neurons decayed to baseline firing rates when the laser was extinguished and

how strongly they were suppressed below the baseline response. The decay to baseline time

constant (τnetwork) was modeled using an exponential function and the magnitude of

Fig 3. Model comparison with the full temporal response profile seen in the data. A,B) Temporal response profile during optogenetic stimulation for facilitated (Fig

3A) and suppressed (Fig 3B) neurons in macaque V1. B-E) The full response profile of the models developed in Fig 2A, including a model with fast synapses (Fig 3B and

3C) and a model with slow synapses (Fig 3D and 3E).

https://doi.org/10.1371/journal.pone.0205386.g003
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suppression was taken as the distance between the baseline and suppressed response in nor-

malized firing rates.

We found that τnetwork is inversely correlated with texc and tinh in the model. As the excit-

atory and inhibitory time constants increase, the opsin-containing neurons decayed to baseline

at a faster rate. In particular, as texc and tinh increase (> 100 ms), τnetwork decreases to 30 ms

(Fig 4, left). As texc and tinh decrease (< 20 ms), however, τnetwork increases to 65 ms, which is

close to the time constant of the opsin (Fig 4). This suggests that τnetwork is determined by the

opsin only if the excitatory and inhibitory time constants are less than the opsin off time con-

stant. Therefore, the τnetwork response of the opsin containing neurons is not determined by

the opsin, excitatory, or inhibitory time constants alone, but, rather, a relation between all

three of these time constants.

The magnitude of suppression was also dependent upon the excitatory and inhibitory syn-

aptic time constants of the network. We found that as excitatory and inhibitory time constants

increase, the magnitude of suppression also increases (Fig 4). In particular, as texc and tinh

Fig 4. After-suppression depends on local network properties. A) Shown is an example response profile of facilitated neurons to optogenetic stimulation. We

modeled the decay to baseline with an exponential function and computed the absolute magnitude of suppression relative to baseline and used these values for Fig 4B

and 4C. B) We found that the decay to baseline was faster when excitatory and inhibitory time constants increased (upper right) and slower when excitatory and

inhibitory time constants decreased (lower left). C) The magnitude of suppression was also greater for larger excitatory and inhibitory time constants (upper right)

compared to small excitatory and inhibitory time constants (lower left).

https://doi.org/10.1371/journal.pone.0205386.g004
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increase (> 100 ms), the normalized magnitude of suppression increases to 0.3 (Fig 4, right).

This is due to the strong inhibitory conductances that have built up on excitatory neurons

combined with their slow decay to baseline relative to the opsin and excitatory conductances.

As texc and tinh decrease (< 20 ms), however, the magnitude of suppression approaches zero as

there is no longer an after-suppressive effect. The trend shown in Fig 4 suggests that slow syn-

aptic dynamics are critical for after-suppression, emphasizing the fact that slow receptors likely

played a significant role in regulating the suppressive effects that were seen in macaque V1.

Temporal dynamics of neuronal responses to laser onset and sustained

laser stimulation depend on properties of the network

Optogenetic stimulation of macaque V1 produced intensity-dependent responses that mimic

changes seen during visual stimulation. In particular, with increased laser intensity, as with

visual contrast, V1 responses exhibited a decrease in response onset latency and increase in the

ratio of the transient onset response to the sustained response (transient-to-sustained ratio Fig

5A). The kinetics of the opsin, however, also show intensity dependent changes in the transient

and sustained opsin currents, making it difficult to know whether these effects resulted from a

property of the opsin or a property of the network. Given the established relationship between

synaptic time constants and the magnitude and length of post-stimulation suppression shown

in the previous sections, we hypothesized that intensity-dependent response changes seen with

optogenetic stimulation are also dependent upon network properties and not simply proper-

ties of the opsin alone.

To determine whether or not the fast and slow networks can match changes in responses

we saw with varying laser intensity in vivo, we varied the n parameter in Eq 6, which controls

the number of photons that activated the simulated opsin. We, indeed, show that by varying

this parameter, the simulated network that incorporated slow synaptic dynamics qualitatively

matched the intensity-dependent responses seen in the macaque. Without any additional tun-

ing, Fig 5B shows that with increasing intensity, there is a decrease in response latency and an

increase in the transient-to-sustained ratio in the network with slow synapses. This is consis-

tent with results we saw in the macaque as well as results found in a recent paper that measured

the change in peak and steady-state current into a cell as a function of stimulation intensity

[14]. The network with fast synapses, however, did not show a transient-to-sustained ratio >1

as was seen in vivo, but demonstrated a fast onset latency (12.4 ms) with the highest intensity,

which better matched the 10.4 ms latency seen in the macaque at highest laser intensity.

We varied network parameters governing synaptic dynamics to test whether or not the

transient to sustained ratio and latency vary systematically with synaptic parameters as we

found earlier with the after-suppressive effect following laser offset. We found that the

response latency and transient-to-sustained ratio do, in fact, depend on the excitatory and

inhibitory synaptic time constants of the network. Response latency is directly dependent

upon the time constant of inhibition, so that a faster time constant leads to shorter response

latencies (~14 ms) and a slower time constant of inhibition leads to longer latencies (~20 ms),

when stimulating at the highest simulated laser intensity (Fig 5C, right). The transient-to-sus-

tained ratio, on the other hand, directly depends on the time constant of excitation (Fig 5C,

left. The transient to sustained ratio becomes larger and more apparent as the time constant of

excitation increases. The model therefore suggests that the observed response latencies and

transient-to-sustained ratios, which are built-in properties of the opsin itself, may, in fact, also

depend on local network properties. Moreover, it suggests that the fast onset response seen in

the macaque is dependent upon fast inhibition, but slow excitation, which leads to slow
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Fig 5. Intensity and synaptic-dependent changes in latencies and transient-to-sustained ratios. A) In the macaque, the ratio of the transient peak to sustained

response increased as a function of laser intensity (left) and latency of neuronal responses decreased (right). B) The model that incorporated slow synapses also

showed an increase in the transient to sustained ratio as a function of stimulation intensity (left), consistent with the results in the macaque. The model with fast

synapses, however, could not faithfully reproduce the transient to sustained ratio found in the macaque, but more accurately accounted for the decrease in latency

seen with laser intensity (right). C) The model suggests that the transient-to-sustained ratio and latency are dependent upon synaptic time constants. In particular,

the transient-to-sustained ratio increases as a function of the excitatory time constant (left) and the latency increases as a function of the inhibitory time constant

(right). These simulations were performed at the highest simulated intensity level.

https://doi.org/10.1371/journal.pone.0205386.g005
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feedback inhibition, is important for driving responses during the sustained period of laser

stimulation.

Properties of opsin provide insight into network properties

Our simulations suggest that the temporal response of a network of neurons to optogenetic

stimulation depends on local network properties. These simulations assumed the kinetics of

the simulated opsin matched the C1V1 T opsin used in the experimental recordings in the

macaque. We hypothesized that the time constant of the opsin relative to the network was crit-

ical in determining the temporal response profile. To test this, we changed the time constant of

the opsin in the model to be larger (τc = 80 ms) or smaller (τc = 40 ms) than the C1V1T opsin

and measured τnetwork and post-stimulation suppression magnitude as a function of texc and

tinh. We were interested to know whether or not changes in the opsin time constant would pro-

duce different suppression profiles.

We found that the time constant of the simulated opsin influences the strength and speed

of the suppression following laser offset in our modeled network (Fig 6). A simulated opsin

time constant of 40 ms and slow synaptic time constants resulted in strong after-suppression

(Fig 6, top right) and fast off kinetics (Fig 6, top left). A simulated opsin time constant of 80 ms

abolished after-suppression, regardless of synaptic time constants (Fig 6, bottom right), but

still showed faster off-kinetics with slower synaptic time constants (Fig 6, bottom left). The

model thus predicts that the use of an opsin with faster off kinetics should result in a faster and

stronger suppression and an opsin with slower kinetics would result in little to no after-

suppression.

We were able to test the first prediction by analyzing neuronal responses obtained from

macaque V1 involving optogenetic stimulation of C1V1TT opsin (toff = 45ms, tdes = 75ms) and

comparing it to stimulation of C1V1T opsin (toff = 60ms, tdes = 55 ms). The C1V1TT data set

included 16 facilitated neurons compared to the 249 neurons in the C1V1T data set. As pre-

dicted, the C1V1TT opsin shows a stronger after-suppressive effect than the C1V1T data as well

as a faster offset of response as we quantify below. This data obtained from the macaque (Fig 7,

top) matches well with model predictions (Fig 7, bottom).

As shown in Fig 8, the off responses of the C1V1 TT data from macaque V1 (median = 25.4,

standard error = 7.4) were smaller than the off responses of the C1V1 T data (median = 34.1,

standard error = 5.1) and the distribution of these two data sets was significantly different

(Wilcoxon rank-sum test, p<0.05). As also predicted by the model (Fig 6), the magnitude of

suppression was significantly larger (Wilcoxon rank-sum test, p<0.05) in the C1V1TT data set

(median = 0.09, standard error = 0.01) than the C1V1T data set (median = 0.08, standard

error = 0.005). For these analyses, we compared the full C1V1TT data set with a subset of the

C1V1T data set that matched the baseline and stimulation rates of the C1V1TT data set. This

was done so that a fair comparison could be made between the C1V1 TT data, which had only

16 neurons and high baseline firing rates, and the C1V1 T data, which had 249 neurons and a

much wider variety of baseline and stimulation rates. Given these results, we conclude that

decreasing the time constant of the opsin relative to the network time constants causes a stron-

ger and faster after-suppression following laser offset as predicted by our model.

Discussion

We developed a neural network model that incorporates a simulated opsin conductance in

order to better understand the suppressive effects observed experimentally when excitatory

neurons in macaque V1 were optogenetically depolarized. We found that the synaptic dynam-

ics of the network can strongly influence laser response-onset profiles, including latency and
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transient-to-sustained ratio, and laser-offset profiles, including off kinetics of the network and

post-stimulation suppressive effects. In particular, strong and slow recurrent inhibition seems

to be critical for the post-stimulation suppressive effects observed in macaque V1 as well as the

transient-to-sustained ratio. Moreover, response latency and the transient-to-sustained ratio

are positively correlated with inhibitory and excitatory synaptic time constants, respectively.

Finally, the model predicted that decreasing opsin off kinetics would lead to faster and stronger

suppression and this was verified by comparing data from the C1V1T opsin and C1V1T T

opsin.

Taken together, these results suggest that the fast off response and strong suppression

observed in the macaque are mediated by slow excitatory and inhibitory feedback signals such

as NMDA receptors on GABAergic neurons and GABA-B receptors expressed on glutamater-

gic neurons. This would lead to a slow, sustained inhibition following laser offset. This would

be consistent with non-fast spiking neurons, such as somatostatin neurons, being activated by

Fig 6. After-suppressive effects depend on the time constant of the opsin. These plots from network simulations depict how fast the network falls to baseline

following laser stimulation (left) and the magnitude of suppression (right) as a function of the excitatory and inhibitory time constants. As in Fig 5, the model

demonstrates a faster decay to baseline and stronger magnitude of suppression in networks that have larger excitatory and inhibitory time constants. Here, we show that

the model also predicts that there should be stronger and faster suppression in the network with a faster opsin time constant (τc = 40 ms, top) compared to the slower

opsin time constant (τc = 80 ms, bottom). In fact, when the time constant of the opsin is increased to 80 ms, the after-suppressive effect seen following laser stimulation

is completely eliminated (bottom-right) no matter what the excitatory and inhibitory time constants of the network are.

https://doi.org/10.1371/journal.pone.0205386.g006
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stimulated excitatory neurons, which has been shown experimentally [15]. Somatostatin neu-

rons have been shown to act on GABA-B receptors and suppress dendritic activity [16–18]
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Fig 7. Experimental data from macaque primary visual cortex matches model prediction. By analyzing the C1V1 TT (t off = 45 ms) and

C1V1 T (t off = 60 ms) temporal response profiles obtained from macaque V1, we see that the C1V1 TT opsin shows higher magnitude (top) of

suppression following laser offset. This is consistent with the model prediction (bottom).

https://doi.org/10.1371/journal.pone.0205386.g007
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and may play a role in normalization computations [19]. NMDA receptors, on the other hand,

are thought to be involved in the initiation of the up state [20], feedback connections [21],

attention [22], and oscillations [23]. NMDA receptors have also been shown to be localized

presynaptically on excitatory neurons synapsing on somatostatin neurons [24], lending further

support to the idea that NMDA and GABA-B receptors are mediating this feedback suppres-

sive effect we and others have observed in vivo. It is important to note that, given the nature of

the slow inhibitory feedback mediating the suppressive effects in our model, we would expect

less pronounced suppression for shorter duration pulses and more pronounced suppression

for longer duration pulses.

Our model, on the other hand, also demonstrates that short response latencies are realized

through fast excitatory and inhibitory receptors in cortical circuits. This suggests that the ini-

tial response onset may be mediated by fast synaptic dynamics including AMPA and GABA-A

receptors in vivo. The idea that initial responses are mediated by fast excitatory receptors

whereas feedback is mediated by slow excitatory receptors has been shown recently [21].

Fig 8. Magnitude and speed of suppression of neuronal responses to stimulation of C1V1 TT and C1V1 T opsins in macaque V1. Comparing the histograms of the

off response and magnitude of suppression of the C1V1 TT and C1V1 T on a cell-by-cell basis, we see that the faster opsin (C1V1 TT) has a significantly faster off response

(left) and a stronger magnitude of suppression (right) as predicted by the model.

https://doi.org/10.1371/journal.pone.0205386.g008
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Moreover, the model suggests a critical role for fast synapses in regulating response latency,

suggesting these synapses play a role in response reliability as has also been recently found

experimentally [25]. Cognitive processes such as attention, which influence response reliability

and latencies [26–28], may thus act on fast excitatory and inhibitory conductances.

In the macaque, we found that optogenetic stimulation could suppress visually evoked

responses as well. This suppression was well characterized by the normalization model in

which excitatory responses are divisively suppressed by pooled neuronal activity in the net-

work. Several theories exist suggesting that normalization may be achieved through (1) synap-

tic depression [29], (2) increases in excitatory and inhibitory conductances [30], or (3)

inhibition [31]. Normalization-like responses have been shown experimentally to be mediated

by somatostatin neurons [32] as well as cortical feedback [33]. Our model suggests that slow

NMDA and GABA-B conductances are important for optogenetic-induced suppression and

therefore may play a role in the normalization computation.

Given the conclusions that follow from these findings, it will be interesting to more deeply

investigate the role that both fast and slow synaptic receptors play in modulating the dynamics

of the network in spontaneous and stimulus evoked states, what role different neuronal types

may play in this process, and how these receptors and neurons ultimately play a role in cogni-

tive processes such as attention and perception. In the future, we believe that using models to

more deeply understand the influence that optogenetic stimulation has on the brain will be

informative given the non-local changes that are induced in the network.

Methods

Experimental procedures and data

All data used in this study and all experiments were previously published in Nassi et. al. 2015.

Briefly, two macaque monkeys were implanted with a head post and chamber for awake,

behaving primate experiments. A craniotomy and durotomy were made within the chamber

and an artificial dura was implanted to provide visibility for electrode penetrations and allow

for optical stimulation with light. We injected two animals with a lenti-CAMKII-C1V1T virus

at a single location for electrophysiological recordings and in a separate animal assessed the

virus’ specificity for excitatory neurons using immunohistochemistry procedures. In one of

the animals, we made a second injection of AAV5-CAMKII-C1V1TT far from the original len-

tivirus injection, but still within V1. After allowing six weeks for opsin expression, electrophys-

iology and simultaneous optogenetic stimulation experiments commenced. Optogenetic

stimulation was randomly interleaved at various light intensities and the effects of stimulation

were compared with baseline firing rates. Optogenetic stimulation was delivered continuously

for a duration of 200 ms every trial. Continuous depolarization for this time period was chosen

to match visual stimulation, which was also 200 ms on trials that incorporated a visual

stimulus.

Experimental and surgical procedures were approved by the Salk Institute Institutional

Animal Care and Use Committee and conformed to NIH guidelines for the care and use of

laboratory animals.

Network model

The network model (Fig 1B) is comprised of a population of 1000 excitatory (E) neurons and

250 inhibitory (I) neurons, all recurrently connected. Connection strengths between E-E, I-E,

E-I, and I-I neurons were set equal to 2.5x10-1 nA, 4.0x10-1 nA, 4.0x10-1 nA, and 1.0x10-0 nA,

respectively. The probability of connectivity between all neuron groups was set to 10%. As will

be explained below, these parameters were chosen so that the model would match the
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facilitative and suppressive effects that are observed in vivo with optogenetic stimulation. Both

excitatory and inhibitory neurons were modeled using a leaky integrate and fire model:

Cm _vðtÞ ¼ � gleakðvðtÞ � VleakÞ � IðtÞsyn � IðtÞops � IðtÞnoise ð1Þ

IðtÞsyn ¼ gexcðvðtÞ � VexcÞ þ ginhðvðtÞ � VinhÞ ð2Þ

IðtÞops ¼ gopsðvðtÞ � VopsÞ ð3Þ

Where gleak = 0.05 nA, Vleak = 0 mV, Vexc = 0 mV, Vinh = -70mV, and Vops = 0 mV. gops

was governed by the opsin Eqs (6–8). Inoise is the time-varying background noise governed by

the following equation:

tn
_IðtÞ ¼ � ðIðtÞ � I0Þ þ

ffiffiffiffi
tn
p

snZðtÞ ð4Þ

Where τn = 2 ms, I0 = 0.1 nA, σn = 0.003 nA, and η(t) is Gaussian white noise. Excitatory

and inhibitory synapses were conductance based and governed by the following equations:

_g x ¼ �
gx
tx
þ
P

jdðt � tjÞ ð5Þ

where x = excitatory (exc) or inhibitory (inh) and τexc and τinh were picked from a uniform

distribution from 150–160 ms unless otherwise noted.

Opsin Model

Optogenetics involves stimulating an opsin protein that is embedded within a cell membrane

using light of a particular wavelength. We adopted a model (Fig 1C) for channelrhodopsin

developed by [34], which is able to account for the dynamics of membrane depolarization with

light onset. Within the model, stimulation opens the channelrhodopsin protein, causing a

sharp transient depolarization of the cell followed by a less depolarized sustained phase. The

opsin conductance remains in the desensitized state until the light is turned off at which time

it moves to the closed state. This model is governed by the following system of equations:

_gops ¼ nbc �
gops
td

ð6Þ

_ad ¼
gops
td
�
ad
tc

ð7Þ

_bc ¼
ad
tc
� nbc ð8Þ

where gops is the total opsin conductance, which is governed by the desensitization rate αd and

close rate βc of the channels. The time constants governing the desensitization and closing of

the opsin channel are given by τd and τc, respectively. The n parameter is set equal to the stim-

ulation intensity and was drawn from a uniform distribution of 0–1 except when otherwise

indicated. Simulated optogenetic stimulation was delivered to the network for 200 ms as was

done in the macaque experiment. This duration was chosen in the macaque so that it matched

visual stimulation duration for the macaque, for another purpose in that experiment. However,

this aspect of the experiment—visual stimulation—was not incorporated into this model,

whose goal was to gain insight into the dynamics of optogenetic stimulation.
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