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Contributions of common genetic 
variants to specific languages 
and to when a language is learned
Patrick C. M. Wong  1,2,3*, Xin Kang  1,2,4,5*, Hon‑Cheong So2,6 & Kwong Wai Choy7

Research over the past two decades has identified a group of common genetic variants explaining a 
portion of variance in native language ability. The present study investigates whether the same group 
of genetic variants are associated with different languages and languages learned at different times in 
life. We recruited 940 young adults who spoke from childhood Chinese and English as their first (native) 
(L1) and second (L2) language, respectively, who were learners of a new, third (L3) language. For 
the variants examined, we found a general decrease of contribution of genes to language functions 
from native to foreign (L2 and L3) languages, with variance in foreign languages explained largely 
by non-genetic factors such as musical training and motivation. Furthermore, genetic variants that 
were found to contribute to traits specific to Chinese and English respectively exerted the strongest 
effects on L1 and L2. These results seem to speak against the hypothesis of a language- and time-
universal genetic core of linguistic functions. Instead, they provide preliminary evidence that genetic 
contribution to language may depend at least partly on the intricate language-specific features. 
Future research including a larger sample size, more languages and more genetic variants is required 
to further explore these hypotheses.

Even before the publication of the first studies on the molecular genetics of a speech disorder1, 2, researchers have 
hypothesized that developmental speech and language disorders were inherited (see Ludlow and Cooper3 for an 
early review). In the two decades since the first studies concerning FOXP2 and apraxia of speech were made1, 2, a 
series of studies (e.g., see Newbury and Monaco4 for a review) have identified new genes that explained a small 
portion of variation in spoken and written language functions and disorders5, 6. These latter studies often focused 
on common genetic variants and their associations with language-related traits (e.g., non-word repetition). 
Though the effect sizes are small, the study of common variants offers an important opportunity to investigate 
variation of language functions on a continuum. Subtle differences in language functions (e.g., lower proficiency 
in using a particular set of grammatical forms in language rather than a severe breakdown in communication) 
are more likely to be associated with primary language impairment and variations in success in acquiring foreign 
languages. These subtle differences differ from severe forms of speech and language impairment (e.g., childhood 
of apraxia of speech) that are more likely to be associated with rarer genetic mutations (e.g., Thevenon et al.7). 
The focus of the present study is on common variants and subtle differences in language.

In addition to investigating the molecular pathways that give rise to the neurological functions of genes asso-
ciated with language functions and disorders8–10 and to identifying more new genes, we argue that the genetic 
studies of language should consider two additional questions concerning variation on a continuum. First, what 
can the genetics of language inform us about how languages are learned? Second, if an ultimate translational 
goal of the study of genetics of language is to develop a screening tool for primary language impairment, how 
can it be used for the more than 7000 languages that are currently spoken and languages that are learned at dif-
ferent times in life?

In both native11, 12 and foreign13, 14 language learning, a large degree of individual variability in learning suc-
cess has been observed (see Kidd et al.15 for a review). Many factors have been attributed to individual variability, 
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including socioeconomic background for native languages16, and memory17, music experience18–20 and subtle 
neuroanatomical differences21 for foreign languages. At the lower end of individual variability is primary lan-
guage impairment, which includes Developmental Language Disorder (formerly known as Specific Language 
Impairment) and dyslexia, which concerns impairment of language in the written modality. The vast majority 
of the studies were conducted to examine individual variability in native language, and more specifically English 
and other European languages as a native language.

To obtain a more comprehensive understanding of the genetic basis of language, research must consider not 
only genetic associations with native language on a continuum of proficiency level, but also foreign languages 
learned at different time points in life. Such an understanding would give us a clearer idea of whether the genetic 
effects on language functions are subject to developmental and learning factors. Languages that are learned 
later in life may require a different set of cognitive resources than languages learned in infancy, which may have 
been contributory sources of individual variability in L2 attainment22. If that is the case, the genes that explain 
individual differences in native language would not be the same as those in foreign languages. In fact, it may be 
the case that the genetic effects on native language would be larger than the effects on foreign languages. A better 
understanding would address long-standing debates in language learning about whether the learning of native 
and foreign languages is fundamentally different23. As far as we are aware, with the exception of Waye et al.24, 
who examined Chinese and English literacy in bilingual children and one gene, no genetic studies of language 
have yet investigated foreign language learning. Rimfeld et al.25 examined the genetic contributions to foreign 
language learning using a twins sample and did not examine the molecule genetics of such contributions.

A more comprehensive understanding of the genetic basis of language must also investigate languages other 
than European languages. More than 7000 languages are spoken worldwide26. The genes that have been attrib-
uted to language could be those that subserve language functions independent of language features (e.g., lexical 
retrieval, which is required for all languages) or functions that are specific to a linguistic feature (e.g., inflectional 
morphology, which occurs only in some languages). A real-world implication for understanding the language 
universal or specific nature of genetic association concerns whether the same genetic diagnosis of language 
impairment can be made only for a specific language or for any language. In recent years, genetic research has 
been extended to the examination of non-European languages such as Chinese27, 28. However, with the notable 
exception of the work of Waye et al.24, these studies of non-European languages did not examine the genetic 
associations of two languages within the same population. This makes it difficult to tease apart language and 
population specific effects, because these two factors often co-vary.

The present study covers young adult participants whose L1 and L2 are Chinese and English, respectively, 
who were students learning French, German, or Spanish as L3 at college level. The study aims to further our 
understanding of how common genetic variants are associated with language in three ways. First, while most 
studies to date on the genetic basis of language have focused on English-speaking individuals (see Devanna 
et al.29 for a review), we asked whether the same genetic variants collectively demonstrate an extended effect on 
language ability that is measured in early adulthood in speakers of Chinese. To answer this question, we surveyed 
the literature on the genetic basis of language and identified a group of 28 genetic variants (Table 1). We then 
simultaneously examined their effects on the participants’ native, first language (L1) as measured by the Chinese 
subject test of the college entrance examination in Hong Kong. Table 2 summarizes the participant characteristics.

Second, we examined whether this same group of common variants, whose effects were studied for native 
language (cf Vaughn and Hernandez52, and Waye et al.24 for bilingual speakers), would exert similar effects on a 
foreign, second language (L2) that was learned since early childhood with a relatively high proficiency. Foreign 
language proficiency was measured by the English subject test of the same college entrance examination in Hong 
Kong from the same group of participants. Third, we investigated whether the same genetic variants contribute to 
the learning of a new, third language (L3) in adulthood. We used the same group of participants, namely students 
at college-level modern language courses whose L3 ability was measured comprehensively by a composite series 
of classroom and laboratory tests (see SI for more information).

Our study tests two sets of hypotheses. The first hypothesizes that a group of genetic variants contributes to 
a set of core language functions that are universal across languages and independent of when learning occurs 
(whether the learned language is native or foreign). This group of genetic variants would contribute to the learn-
ing of L1, L2 and L3. Alternatively, we argue that different languages and languages learned at different times have 
different genetic underpinnings. As different language features are associated with different brain functions (e.g., 
the middle frontal gyrus is specific for Chinese reading)53, 54, these functions would have different underlying 
neurogenetic processes. Differences may also be due to the possibility that languages that are learned at differ-
ent times in life are subject to the influence of different sets of non-genetic factors55. For example, the learning 
of new languages is subject to social factors such as motivation56 that may not have the same influence on L1.

Results
We conducted two types of analyses to evaluate our hypotheses (see “Methods and materials” for details). First, 
we used stepwise regression to evaluate genetic (all 28 SNPs) and non-genetic (e.g., gender) contributions to 
each language (L1, L2 or L3) in three models. This method allows us to determine unique variance explained 
by genetic and non-genetic factors for each language. However, a weakness of this approach is that we cannot 
simultaneously examine quantitatively whether the same genes or non-genetic factors also account for variance 
in the other two languages. Thus, followed by stepwise regression, we constructed a structural equation model 
(SEM) that included genetic variants that we found to contribute to any of the three languages we found in the 
regression models. These variants were entered into the SEM and their contribution to all three languages were 
tested simultaneously, along with non-genetic factors (Fig. 1). Because not all participants had all measures 
collected (genetic and non-genetic), we used listwise deletion to exclude those without complete data use in the 
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Table 1.   SNPs of language-related genes hypothesized to be associated with language proficiency that we 
examined in the present study. Major and minor allele frequencies are those in our sample. Examples of 
relevant studies for each gene are listed under References.

Gene SNP Population Phenotype Major allele Minor allele References Total N of cases

ATP2C2 rs11860694 Majority European (UK) Non-word repetition in English in SLI individuals G = 0.76 C = 0.24 30 879

CEP63 rs7619451 European (Swedish) Reading comprehension in dyslexic individuals G = 0.82 T = 0.18 31 801

CMIP rs6564903 Majority European (UK) Non-word repetition in English in SLI individuals C = 0.80 T = 0.20 30 876

CNTNAP2 rs2538976
Majority European (UK) SLI diagnosis in English T = 0.54 C = 0.46 5

881
European (Australian) Early communicative behaviour scores in English 

in SLI individuals
32

CNTNAP2 rs2538991 European (UK) SLI diagnosis in English C = 0.64 A = 0.36 5 880

COMT rs4680 East Asian (Han Chinese) Immediate memory, visuospatial and language 
scores in Chinese G = 0.72 A = 0.28 33 871

DCDC2 rs1087266 Asian (Uyghur) Dyslexia diagnosis in Uyghur A = 0.59 G = 0.41 34 739

DCDC2 rs2274305 Asian (Uyghur) Dyslexia diagnosis in Uyghur C = 0.81 T = 0.19 34 791

DCDC2 rs3765502 Asian (Uyghur) Dyslexia diagnosis in Uyghur T = 0.58 C = 0.42 34 765

DCDC2 rs4599626 Asian (Uyghur) Dyslexia diagnosis in Uyghur C = 0.83 A = 0.17 34 750

DCDC2 rs6456593 Asian (Uyghur) Dyslexia diagnosis in Uyghur C = 0.63 G = 0.37 34 738

DCDC2 rs6940827 East Asian (Han Chinese) Dyslexia diagnosis in Chinese G = 0.82 A = 0.18 35 766

DCDC2 rs807724

Asian (Uyghur) Dyslexia diagnosis in Uyghur T = 0.96 C = 0.04 34

763
East Asian (Han Chinese) Reading fluency, character reading, morphologi-

cal production and tone deletion in Chinese
36

Majority European (UK) Dyslexia diagnosis in English 37

European (UK) Single word reading and non-word repetition in 
English

6

KIAA0319 rs9461045

Asian (Uyghur) Dyslexia diagnosis in Uyghur T = 0.62 C = 0.38 27

807

Majority European (UK)
Forced word choice test, irregular word coding, 
and single-word spelling in English in dyslexic 
individuals

37

European (UK) Single word reading and non-word repetition in 
English

6

Majority European (UK)
Forced word choice test, irregular word coding, 
single-word reading and single-word spelling in 
English

38

DGKI rs889869 European (German) Dyslexia diagnosis in German G = 0.84 A = 0.16 39 809

DIP2A rs2255526 East Asian (Han Chinese) Dyslexia diagnosis in Chinese A = 0.78 G = 0.22 40 755

DYX1C1 rs3743205 East Asian (Han Chinese) One minute reading, digit rapid naming, non-
word repetition and left–right reversal in Chinese C = 0.97 T = 0.03 24, 41 813

DYX1C1 rs57809907 Majority European (UK) Forced word choice test in English in SLI 
individuals C = 0.99 A = 0.01 37 811

DRD2 rs1800497 European (US) Artificial grammar learning G = 0.60 A = 0.41 42 816

DYX1C1 rs11629841 East Asian (Han Chinese) Character dictation and orthographic judgment 
in Chinese T = 0.96 G = 0.05 43 764

FOXP2 rs1852469 East Asian (Han Chinese) Diagnosis of speech sound disorder in Chinese A = 0.69 T = 0.31 44 756

FOXP2 rs2396722 East Asian (Han Chinese) Diagnosis of speech sound disorder in Chinese T = 0.51 C = 0.49 44 739

FOXP2 rs6980093 European (Italian) Semantic fluency and single-word reading in Ital-
ian in dyslexic individuals A = 0.62 G = 0.38 45 865

KIAA0319 rs3756821

East Asian (Uyghur) Dyslexia diagnosis in Uyghur C = 0.77 T = 0.23 27

798East Asian (Han Chinese) Dyslexia diagnosis in Chinese 28

Majority European (US) General reading skills and text reading in English 
in SLI individuals

46

KIAA0319 rs4504469

East Asian (Han Chinese) Dyslexia diagnosis in Chinese C = 0.87 T = 0.13 47

804
Asian (Indians) Dyslexia diagnosis in Hindi 48

Majority European (US) General reading skills in English 46

Majority European (UK) Dyslexia diagnosis in English 49

KIAA0319 rs807507 East Asian (Han Chinese) Onset detection test in Chinese in dyslexic 
individuals G = 0.80 C = 0.20 28 809

ROBO1 rs6803202 Majority European (Australian) Non-word repetition in English C = 0.59 T = 0.41 50 784

S100B rs9722 European (German) Spelling test in German G = 0.68 A = 0.32 51 797
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regression analyses57 which resulted in fewer participants than the entire set (Tables 3, 4, 5, and 6 showed the 
number of participants included for each type of analysis).

Stepwise regression models.  Stepwise procedure in both directions was implemented to determine 
which hypothesized SNPs (if any) significantly explained the variation in language proficiency. In the first step, 
all 28 hypothesized SNPs were included as predictors of language proficiency, along with non-genetic variables. 
The final model had the best combination of independent variables for predicting the language proficiency. 
Gender (∆R2 = 0.02, FDR corrected p = 0.012), family SES (∆R2 = 0.01, FDR corrected P = 0.028), two SNPs of 
DCDC2 (rs6456593, rs6940827) (∆R2 = 0.01, FDR corrected P = 0.033; ∆R2 = 0.01, FDR corrected P = 0.049), 
and one SNP of DRD2 (rs1800497) (∆R2 = 0.02, FDR corrected P = 0.025) were significantly predicting L1 pro-
ficiency (Table 3). Music training (∆R2 = 0.03, FDR corrected P = 0.002), family SES (∆R2 = 0.05, FDR corrected 
P < 0.001), two SNPs of FOXP2 (rs1852469, rs6980093) (∆R2 = 0.02, FDR corrected P = 0.009; ∆R2 = 0.01, FDR 
corrected P = 0.036) and one SNP of CATNAP2 (rs2538991) (∆R2 = 0.01, FDR corrected P = 0.046) were signifi-
cant predictors of L2 proficiency (Table 4). Internal motivation (∆R2 = 0.05, FDR corrected P < 0.001) and S100B 
(rs9722) (∆R2 = 0.01, FDR corrected P = 0.046) were significant predictors of L3 proficiency (Table 5). Thus, for 
L1, the combined unique variances explained by common variants and non-genetic factors were 3.7% and 3.6%, 
respectively. For L2, they were 3.5% and 7.6%, respectively; and for L3, they were 0.9% and 5.4%, respectively.

Structural equation modelling (SEM).  The stepwise regression approach reported above provided 
information about which ones of the 28 hypothesized genetic variants as well as non-genetic factors contributed 
to each language individually. In order to examine the contribution of genetic and non-genetic factors simul-

Table 2.   Demographic information and phenotype scores of participants. L1 and L2 proficiency were 
represented by the composite grades of the Chinese and English subjects in the HKDSE exam. Gender 
(F/M) = female/male. Music training (Y/N) = have/have not received at least 1 year of musical training.

Variables Mean (SD) Range Total N of cases

Gender(F/M) 696/244 940

Musical training (Y/N) 760/172 932

Nonverbal IQ 108.00 85–132 920

Family SES 37.00 1–66 877

L3 age (years old) 19.98 18–25 940

L1 4.94 3–7 640

L2 5.18 3–7 640

L3 − 0.031 − 3.16 to 5.00 857

L3 external motivation 0.016 − 2.61 to 2.89 929

L3 internal motivation 0.001 − 3.41 to 0.65 929

L3 attitude 0.020 − 4.94 to 2.33 926

L3 anxiety − 0.002 − 3.05 to 1.98 926

Figure 1.   Metamodel of the structural equation model (SEM). Language proficiency of L1, L2, and L3 
was added as latent variables with HKDSE Chinese and English scores and L3 Global scores as indicators, 
respectively. The significant SNPs in the final models of the stepwise regression and all non-genetic factors were 
entered into the SEM.
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Table 3.   The final model of bi-directional stepwise regression analyses for L1 proficiency using the original 
dataset. Gender, family SES, and three SNPs (rs1800497, rs6940827, rs6456593) are independently associated 
with L1 HKDSE grades. The original model included gender (Female = 1; Male = 0), music training (Yes = 1; 
No = 0), family SES, and the 28 hypothesized SNPs. * indicates p < 0.05 (uncorrected); ‡represents significant 
associations after FDR corrections for multiple comparisons. Observations: 421. R2/R2 adjusted: 0.119/0.096, 
p = 2.215e−07. Significant values are in bold.

Predictor Gene Major allele Estimate
Confidence 
intervals Uncorrected p FDR corrected p

Partial eta 
squared ∆R2

(Intercept) 7.49 4.51–10.47 1.13e−06

Gender 0.38 0.15–0.61 0.001*‡ 0.012*‡ 0.026 0.022

Family SES − 0.01 − 0.01 to − 0.00 0.008*‡ 0.028*‡ 0.017 0.014

rs6980093 FOXP2 A 0.12 − 0.03 to 0.26 0.110 0.121 0.006 0.003

rs1800497 DRD2 G 0.21 0.06–0.35 0.005*‡ 0.025*‡ 0.020 0.016

rs3765502 DCDC2 T − 0.65 − 1.38 to 0.08 0.082 0.121 0.007 0.004

rs6940827 DCDC2 G − 0.87 − 1.62 to − 0.13 0.022*‡ 0.049*‡ 0.013 0.009

rs2255526 DIP2A A 0.15 − 0.03 to 0.34 0.106 0.121 0.006 0.004

rs6803202 ROBO1 C − 0.11 − 0.25 to 0.04 0.162 0.162 0.005 0.002

rs9722 S100B G 0.15 − 0.01 to 0.31 0.074 0.121 0.008 0.005

rs1087266 DCDC2 A − 0.63 − 1.38 to 0.11 0.094 0.121 0.007 0.004

rs6456593 DCDC2 C − 0.20 − 0.36 to − 0.04 0.012*‡ 0.033*‡ 0.015 0.012

Table 4.   The final model of bi-directional stepwise regression analyses for L2 proficiency. Music training, 
family SES, and three SNPs on CNTNAP2 (rs2538991) and FOXP2 (rs6980093, rs1852469) are independently 
associated with L2 HKDSE grades. The original model included gender (Female = 1; Male = 0), music (Yes = 1; 
No = 0), family SES, and the 28 hypothesized SNPs. * indicates p < 0.05 (uncorrected); ‡represents significant 
associations after FDR corrections for multiple comparisons. Observations: 421. R2/R2 adjusted: 0.138/0.119, 
p = 6.72e−10. Significant values are in bold.

Predictor Gene Major allele Estimate
Confidence 
intervals Uncorrected p

FDR corrected 
p

Partial eta 
squared ∆R2

(Intercept) 4.22 3.60–4.83  < 2e−16

Gender 0.21 0.01–0.40 0.040* 0.060 0.010 0.007

Music 0.43 0.19–0.66 0.0003*‡ 0.002*‡ 0.031 0.026

Family SES 0.01 0.01–0.02 1.27e−06 *‡ 1.11e−05*‡ 0.056 0.050

rs2538976 CNTNAP2 T 0.13 − 0.04 to 0.29 0.125 0.153 0.006 0.003

rs2538991 CNTNAP2 C 0.20 0.02–0.38 0.026*‡ 0.046*‡ 0.012 0.008

rs6980093 FOXP2 A 0.27 0.05–0.49 0.016*‡ 0.036*‡ 0.014 0.010

rs1852469 FOXP2 A − 0.34 − 0.57 to 0.12 0.003*‡ 0.009*‡ 0.021 0.017

rs4599626 DCDC2 C − 0.12 − 0.28 to 0.05 0.155 0.155 0.005 0.002

rs9461045 KIAA0319 T − 0.10 − 0.24 to 0.03 0.136 0.153 0.005 0.003

Table 5.   The final model of bi-directional stepwise regression analyses for L3 proficiency with motivation 
variables included as additional predictors. Internal motivation and S100B (rs9722) are independently 
associated with L3 Global Scores. The original model included gender (Female = 1; Male = 0), music training 
(Yes = 1; No = 0), family SES, external motivation, internal motivation, attitude, and anxiety, and 28 SNPs. 
* indicates p < 0.05 (uncorrected); ‡represents significant associations after FDR corrections for multiple 
comparisons. Observations: 510. R2/R2 adjusted: 0.088/0.077, p = 2.614e−08. Significant values are in bold.

Predictor Gene Major allele Estimate
Confidence 
intervals Uncorrected p FDR corrected p

Partial eta 
squared ∆R2

(Intercept) − 0.01 − 0.35 to 0.32 0.939

External − 0.06 − 0.14 to 0.02 0.133 0.154 0.004 0.002

Internal 0.22 0.14–0.30 6.07e−08*‡ 3.642e−07*‡ 0.057 0.054

rs2538991 CNTNAP2 C 0.09 − 0.03 to 0.21 0.141 0.154 0.004 0.002

rs4680 COMT G − 0.09 − 0.22 to 0.04 0.154 0.154 0.004 0.002

rs6456593 DCDC2 C − 0.14 − 0.26 to − 0.02 0.026* 0.052 0.010 0.007

rs9722 S100B G 0.15 0.03 to − 0.27 0.015*‡ 0.036*‡ 0.011 0.009
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taneously for the three languages, we used SEM58 (see Fig. 1 for the metamodel). The SEM provided a statisti-
cally good fit, as indicated by the root mean square error of approximation (RMSEA) = 0.000 [CI 0.000–0.045], 
the standardized root mean square residual (SRMR) = 0.011, the robust Comparative Fit Index (CFI) = 1.000, 
the robust Tucker-Lewis Index (TLI) = 1.040, and the Yuan–Bentler scaling correction factor = 1.024. Table 6 
presents path coefficients that represent the estimates of the connection strengthen between a unit change in 
genetic and non-genetic factors and the latent language proficiency variables. A positive coefficient means a unit 
increase in these factors leads to a direct and proportional increase in language proficiency, while a negative coef-
ficient means that an increase in these factors leads to a direct and proportional decrease in language proficiency. 
We found that L1 proficiency was positively associated with Gender (standardized path coefficient 0.146) and 
DRD2 (rs1800497) (standardized path coefficient 0.110), but negatively associated with Family SES (standard-
ized path coefficient − 0.122) and DCDC2 (rs6940827) (standardized path coefficient − 0.123). L2 proficiency 
was positively associated with L1 proficiency (standardized path coefficient 0.253), Family SES (standardized 
path coefficient 0.256), music (standardized path coefficient 0.150), CNTNAP2 (rs2538991) (standardized path 

Table 6.   Path coefficients of structural equation models (SEMs) for L1, L2, and L3. Gender and Music were 
coded as dummy variables with 1 = Female, 0 = Male; 1 = Have received at least 1 year of musical training, 
0 = Have received less than 1 year of musical training or have not received any musical training at all. Both 
unstandardized and standardized beta coefficients between the two variables indicated by the path were 
reported. L1, L2, and L3 are latent variables of language proficiency with Chinese HKDSE grades, English 
HKDSE grades, and L3 Global scores as their indicators, respectively. In total, 609 participants were included 
in the SEM. Significant values are in bold.

Language Path Major allele Gene Unstandardized Standardized z value P value 95% CI

L1

Gender 0.365 0.146 3.072 0.002 [0.132–0.599]

Family SES − 0.008 − 0.122 − 2.500 0.012 [− 0.015 to − 0.002]

Music 0.067 0.024 0.431 0.666 [− 0.238 to 0.372]

rs9722 G S100B 0.068 0.041 0.924 0.355 [− 0.076 to 0.213]

rs2538991 C CNTNAP2 0.024 0.015 0.290 0.772 [− 0.136 to 0.183]

rs6980093 A FOXP2 0.023 0.014 0.173 0.862 [− 0.234 to 0.28]

rs1852469 A FOXP2 0.085 0.052 0.627 0.531 [− 0.182 to 0.352]

rs1800497 G DRD2 0.171 0.110 2.273 0.023 [0.023–0.318]

rs6940827 G DCDC2 − 0.252 − 0.123 − 2.659 0.008 [− 0.438 to − 0.066]

rs6456593 C DCDC2 0.093 0.057 1.172 0.241 [− 0.063 to 0.249]

L2

L1 0.224 0.253 5.411 6.258e−8 [0.143–0.306]

Gender 0.160 0.072 1.648 0.099 [− 0.030 to 0.350]

Family SES 0.015 0.256 5.477 4.326e−8 [0.010–0.021]

Music 0.370 0.150 2.807 0.005 [0.112–0.629]

rs9722 G S100B − 0.064 − 0.043 − 1.052 0.293 [− 0.184 to 0.056]

rs2538991 C CNTNAP2 0.133 0.094 1.996 0.046 [0.002–0.265]

rs6980093 A FOXP2 0.157 0.113 1.548 0.122 [− 0.042 to 0.356]

rs1852469 A FOXP2 − 0.246 − 0.169 − 2.224 0.026 [− 0.463 to − 0.029]

rs1800497 G DRD2 − 0.047 − 0.034 − 0.784 0.433 [− 0.164 to 0.070]

rs6940827 G DCDC2 − 0.043 − 0.023 − 0.516 0.606 [− 0.205 to 0.120]

rs6456593 C DCDC2 − 0.085 − 0.059 − 1.396 0.163 [− 0.205 to 0.035]

L3

L1 0.008 0.009 0.164 0.870 [− 0.084 to 0.099]

L2 0.289 0.295 5.259 1.447e−7 [0.181–0.397]

Gender − 0.103 − 0.048 − 1.19 0.234 [− 0.273 to 0.067]

Family SES − 0.005 − 0.085 − 1.907 0.056 [− 0.010 to 0.000]

Music − 0.108 − 0.045 − 1.14 0.254 [− 0.295 to 0.078]

Attitude − 0.018 − 0.02 − 0.498 0.619 [− 0.091 to 0.054]

Anxiety 0.026 0.029 0.748 0.455 [− 0.043 to 0.095]

External − 0.033 − 0.034 − 0.858 0.391 [− 0.108 to 0.042]

Internal 0.229 0.243 5.755 8.653e−9 [0.151–0.307]

rs9722 G S100B 0.163 0.112 2.871 0.004 [0.052–0.274]

rs2538991 C CNTNAP2 0.044 0.032 0.78 0.435 [− 0.066 to 0.154]

rs6980093 A FOXP2 − 0.185 − 0.135 − 1.908 0.056 [− 0.376 to 0.005]

rs1852469 A FOXP2 0.145 0.102 1.434 0.152 [− 0.053 to 0.343]

rs1800497 G DRD2 − 0.079 − 0.058 − 1.376 0.169 [− 0.191 to 0.033]

rs6940827 G DCDC2 0.062 0.035 0.913 0.361 [− 0.071 to 0.194]

rs6456593 C DCDC2 0.150 0.106 2.412 0.016 [0.028–0.271]
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coefficient 0.094), but negatively associate with FOXP2 (rs1852469) (standardized path coefficient − 0.169). L3 
proficiency was positively associated with L2 proficiency (standardized path coefficient 0.295), internal motiva-
tion (standardized path coefficient 0.243), S100B (rs9722) (standardized path coefficient 0.112), and DCDC2 
(rs6456593) (standardized path coefficient 0.106). Generally speaking, the SEM results converged with the step-
wise regression results, even when proficiency levels for all three languages were considered together.

Discussion
We found little overlap in the genetic associations among the three languages that our participants learned at 
different times in life. This pattern of results can be seen when the three languages were examined individually 
or simultaneously. Instead, we found that different common genetic variants contribute to explaining variance 
of the three languages. The effects of genes on language seem to be language specific and are stronger for native 
than foreign languages. By contrast, the effects of non-genetic factors seem to be stronger for foreign than native 
languages.

We found two genes that contributed to explaining variance in L1 ability in our stepwise regression, DCDC2 
and DRD2. Importantly, the significant DCDC2 variants were those found in other studies of Chinese, includ-
ing rs645659334, and rs694082735, each contributing to about 1% of the variance in L1. DRD2 (rs1800497) was 
found to contribute significantly to about 1.6% of variance in our study. In a previous study, the same variant was 
found to explain variance in bilingual proficiency52, which confirmed the results of a previous artificial language 
learning study where young adults learned a morpho-phonological grammar42. We found two different genes 
associated with L2, namely CNTNAP2 and FOXP2, which combined explained about 3.5% of variance. CNT-
NAP2 (rs2538991), which is downregulated by FOXP2, is associated with non-word repetition in English5. Non-
word repetition is a predictor of language impairment in English-speaking children59. Interestingly, in Chinese, 
non-word repetition did not predict language impairment60. Thus, the association of CNTNAP2 (rs2538991) 
with English only may support the language-specific hypothesis. The specific genetic variants of FOXP2 that 
we found to be associated with L2 included rs6980093, which was associated with verbal fluency (naming as 
many words as possible in a semantic category within 60 s) in two Italian samples45, and rs1852469, which has 
been associated with speech sound disorders in a Chinese population44. Compared to L1, the genetic effects on 
L3 is much weaker. For the common variants examined, S100B (rs9722) was the only significant contributor 
to L3 proficiency in the stepwise regression analysis, which explained about 1% of variance. S100B are highly 
expressed in the hippocampus61. Its association with the learning of a new language is consistent with the role 
of declarative memory in early stages of language learning62. The pattern of results of the SEM converged with 
those of the stepwise regression, except that rs6456593 was also found to be associated with L3 but not L1. This 
difference does not change the preliminary conclusions of the study.

Table 7 summarizes the SNPs that we found to be significantly associated with language phenotypes in the 
present study. The risk alleles we found in the present study and other relevant studies are also listed. For the 
most part, our findings are consistent with those reported in the literature with two exceptions. For rs1852469 
and rs2538991, the allele which we found to be associated with weaker language ability was opposite of what 
was found in Zhao et al.44 and Vernes et al.5, respectively. In both cases, the allele frequencies in our sample 
were different from what was reported in those studies. While the allele frequencies we found for rs1852469 
was consistent with what was reported in dBSNP (https://​www.​ncbi.​nlm.​nih.​gov/​snp/) (A>T), the opposite was 
found in Zhao et al.44 (T>A), even though both samples were East Asian. For rs2538991, the allele frequencies 
were roughly equal for the European population that Vernes et al.5 studied, but for our sample of East Asian, the 
A allele was clearly the minor allele.

The amount of variance explained by any single SNP was about 1 to 2% in this study, which is seemingly large 
when compared to those effects found in GWAS studies (e.g., Okbay et al.63). Only 28 SNPs were examined in 

Table 7.   Risk alleles of SNPs that were reported to be linked with language abilities in the present and in the 
literature.

SNPs Gene Risk allele in our study
Risk allele in the 
literature Phenotypes Population Sample size References

rs1800497 DRD2 A A Grammatical rule 
learning European (USA) 22 adults 42

rs1852469 FOXP2 A T Speech sound disorder East Asian (Han Chinese)
150 patients with speech 
sound disorder and 140 
healthy controls

44

rs6980093 FOXP2 G G Expressive language , 
fluency European (Italian)

699 population-based 
cohort and 572 children 
with developmental 
dyslexia

45

rs2538991 CNTNAP2 A C Specific Language Impair-
ment (SLI) European (USA) 847 members of 184 

families
5

rs6456593 DCDC2 C C Developmental dyslexia 
(DD) Asian (Uyghur) 392 Uyghur children aged 

8–12 years old
34

rs6940827 DCDC2 G G Developmental dyslexia 
(DD) Asian (Han Chinese) 54 trios aged between 5 

and 16 year
35

rs9722 S100B A A Developmental dyslexia 
(DD)

European (Finland, Ger-
many and Sweden) 100 participants with DD 51

https://www.ncbi.nlm.nih.gov/snp/
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the present study, and it is likely that overlapping variance with other SNPs that we did not investigate would 
be revealed should a GWAS study was conducted. Furthermore, because our candidate SNPs have been studied 
extensively in other studies, they represent those of larger effects and our replication here speaks to that. In 
addition to these explanations, it is important to acknowledge that smaller studies such as this one often results 
in overestimation of effect sizes64 and even false positives.

Taken as a whole, the results may support the hypothesis that genetic associations are strongest for a spe-
cific language. Furthermore, genetic effects seem to be strongest for native than foreign languages. For L1, the 
amount of variance explained by genetic factors combined (3.7%) was much stronger than that of any one of the 
significant non-genetic factors, including gender65 (2.2% of variance explained) and family SES16 (1.4%). For L2, 
the best predictor was family SES66 (5%), followed by music training18–20 (2.6%). For L3, the best predictor was 
clearly the non-genetic factor of motivation (5.4%). Again, this finding is consistent with the results of previous 
non-genetic studies55, 67–69, which found motivation to be the best predictor of learning a new language.

It is worth noting that the effect of family SES on L1 is in the negative direction in our sample. This is likely 
a unique finding to learning L1 and L2 in Hong Kong. In a longitudinal study in school children in Hong Kong, 
family income only predicted L2 (English) but not L1 (Chinese) proficiency70. In early adulthood, this trend may 
lead to a negative association between family SES and L1 because of an emphasis on learning English for families 
of higher SES background, as learners from higher SES families are more likely to attend English-medium schools.

An important feature of our study is that we examined the genetic associations of three languages all within 
a single (Han Chinese) population and investigated the contributions of a group of genes that have found to be 
related to language. This design allows us to more clearly study how the same group of genes are associated with 
different languages and languages learned at different times, without contamination by the co-varying factors 
of population and language. As far as we know, Waye et al.24 are the only other researchers who have examined 
L1 and L2 within the same population. However, only the genetic variant rs3743205 of DYX1C1 was studied. 
Vaughn and Hernandez52 also examined two languages but did not report association results for each language 
independently, focusing instead only on bilingual proficiency, a measure of the balance of two languages.

Our study contributes to the decades-long debate in language learning about whether native and foreign 
languages are learned primarily with the same mental mechanisms. Our two hypotheses were aligned with the 
Linguistic Coding Differences Hypothesis (LCDH)71 and the Fundamental Difference Hypothesis (FDH)23, 72. 
Under LCDH, a set of identical “core languages functions” such as phonological and syntactic processes are 
required for the successful learning of any languages at any time in life. In terms of genetics, this implies the 
same set of genetic variants for native and foreign languages. FDH hypothesizes an innate language learning 
system that is only accessible at the earliest time in life for learning an infant’s native language. Foreign language 
learning lacks access to this innate system. In genetic terms, it implies a group of genetic variants that are only 
associated with L1.

Wong et al.73 hypothesized that dopamine-related genes are linked to individual differences in language learn-
ing. Vaughn and Hernandez52 tested this hypothesis and found a significant association between the dopamine-
related genes COMT (rs4680) and DRD2 (rs1800497), and individual differences in achieving balanced bilingual 
proficiency. Wong et al.42 who used an artificial language in laboratory conditions rather than an authentic 
language, found a significant association between DRD2 (rs1800497) and the learning of morphophonology. 
Stein et al.74 found a significant association between several SNPs of DRD2 (including rs1800497) and measures 
of native language but only the vocabulary measure reached statistical significance after correction for multiple 
comparisons. Nevertheless, the findings from these previous studies are consistent with those of the present study. 
The dopamine hypothesis concerns a language universal mechanism. Future research will need to explore why 
the present study only found a significant association with native language.

Our study has several limitations. First, although the genetic variants we examined were those that have been 
reported (and sometimes replicated) in research studies during the past two decades and are the most promising 
candidates for language, many more potential genetic variants remain to be examined. It is very likely that those 
genetic variants may show an overlap across three languages. But based on the best available information we 
have about genes and language, we designed our study and found interpretable findings to confirm one of the 
two hypotheses. A GWAS with a very large sample size is needed in the future. Second, although we have found 
differences in genetic associations across languages, it is still unclear whether they occur because of language 
features or because they are languages learned at different points in life. Our evidence provides support for both 
explanations. A much larger-scale study with a much larger sample size in the future would control for the differ-
ent grouping of languages and when they are learned, which would allow for a more precise delineation of these 
two factors. Third, only Han Chinese participants were studied. Future research will need to sample different 
populations (see Carrion-Castillo et al.75 and Becker et al.76 for examples of studies of European samples) who 
may have different, subtle genetic differences which may not occur in such a restricted sample. Fourth, we did 
not collect data on participants’ time on L3, which may explain some of the variance in L3 proficiency.

In a unique sample of Han Chinese participants who have learned three different languages, we found differ-
ences in genetic associations that depend on the specific language and when the language is learned. Individual 
differences in L1 seem to be more highly associated with language-related genes, especially those that have been 
found to be related to impairment of Chinese. L2 seems to be more closely related to both genetic and non-genetic 
factors (musical background and family SES). L3 is most strongly related to the motivation of the learners who 
learn the new language. Our results did not lend support to the hypothesis that a common set of genetic factors 
contribute to all language learning. It is likely that language learning at different times in life requires different 
processing demands77, which are underlined by different neurogenetic factors. It is also likely that different lan-
guage features require different processing demands and, as a result, different neurogenetic factors contribute to 
different languages54. The present study should be viewed as a preliminary step towards exploring the two primary 
hypotheses. Future research of a much larger scale is required to further explore the nature of genes and language.
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Methods and materials
Participants.  We recruited a total of 940 participants (696 females) between 18 to 25  years of age 
(Mean = 19.98, SD = 1.28) for our study through mass emails and advertisements in their language classes, after 
obtaining permission from the class teachers. Written informed consent was obtained from all participants. The 
research protocol was approved by the Joint Chinese University of Hong Kong—New Territories East Cluster 
Clinical Research Ethics Committee and the research was performed in accordance with the Declaration of 
Helsinki. All participants were native speakers of Cantonese of Han Chinese descent without any self-reported 
neurological or psychiatric disorders. They all scored within normal limits (at least 85) of the nonverbal intel-
ligence measured by the Test of Nonverbal Intelligence (4th Ed)78 and passed the hearing screening at the fre-
quencies of 500, 1 k, 2 k and 4 k Hz at 30 dBH. All learned English as L2, and French, German, or Spanish as L3. 
Because these participants enrolled in this study over a 4-year period, not all variables were collected from every 
participant. Some data was also missed due to fatigue, coding errors and genotyping failures. Table 2 presents 
descriptive measures for the different participant variables.

Questionnaires.  We collected demographic information on the participants, including their gender, date 
of birth, language background, family socioeconomic status (SES), and musical experiences. Family SES was 
determined by following the Hollingshead index79 by coding parents’ educational levels and occupational pres-
tige. Participants also completed the Modern Language (ML) Learner Questionnaire80 to indicate their internal 
motivation, external motivation, anxiety, and attitudes to learning the L3. A data reduction process was used to 
derive four metrics related to this questionnaire (see SI).

Proficiency of L1, L2, and L3.  The L1 and L2 proficiency of participants were measured by the composite 
scores of each of the Chinese and English language subjects of the Hong Kong Diploma of Secondary Educa-
tion Examination (HKDSE), the public examination for university entrance in Hong Kong, administered by 
the Hong Kong Examinations and Assessment Authority (HKEAA). HKDSE implements an annual calibration 
exercise to ensure that scores across years reflect the same levels of performance81. For both Chinese and English, 
the composite scores were calculated using subtests on reading, writing, speaking, and listening skills on a scale 
from 1 (lowest) to 7 (highest).

To obtain an overall measure of L3 proficiency, we collected laboratory-based and classroom-based data 
which covered reading, writing, speaking, and listening abilities for each third language, similar to L1 and L2. 
Laboratory-based measures included three types of data. First, a sample of passages read aloud from the “Frog, 
Where Are You?” story82 was transcribed, morphosynatically tagged, and analyzed using the CLAN program of 
the TalkBank project83. Second, the pronunciation of speech production was assessed by native speakers based 
on excerpts from the storytelling sample. Third, lexical access was calculated by using the accuracy rates of a 
picture naming task. Classroom-based measures were participants’ z-transformed exam scores of the L3 class. 
The final L3 proficiency index, known as the L3 Global score, was calculated by using the Principal Component 
Analysis based on these measures. Details regarding to data collection, analysis, and reduction procedures for 
L3 proficiency are given in SI Materials and Methods.

Genes and SNP genotyping.  Saliva samples were collected using Oragene (DNA Genotek) and used to 
extract the genomic DNA of participants. A NanoDrop Spectrophotometer was used to quantify Extracted DNA 
samples, and was normalized to 5 ng/μl for use in genotyping. A commercially available Sequenom MassAR-
RAY platform was used to genotype the SNPs. Table 1 presents the allele frequencies of our sample. For the most 
SNPs, the allele frequencies in our sample are consistent with those reported by the dbSNP database published by 
the National Center for Biotechnology Information (US) (https://​www.​ncbi.​nlm.​nih.​gov/​snp/) for East Asians.

In selecting our genetic candidates, our focus was on individual differences of language functions on a 
continuum and their association with common genetic variants, rather than rare forms of neurodevelopmental 
disorders or disorders that lead to language impairment as a secondary condition. SNPs of FOXP2 were included 
so far as they were common variants and were associated with speech44. We conducted a literature search for 
studies that had investigated individual differences in typical language functions or language impairment. For 
genetic variants associated with language impairment, we only considered language impairment as a primary 
condition (Developmental Language Disorder), excluding studies of autism, intellectual disability, and other 
neurodevelopmental disorders where language impairment of any modality is a secondary condition84–90. We also 
excluded studies that examined rare deletions7, along with studies of genetic variants that are linked to stuttering 
without other traits related to abstract linguistic structures91. We only included variants of CNTNAP2 that have 
been associated with primary language conditions5. CNTNAP2 has been associated with language functions in 
Autism Spectrum Disorder (ASD) in children of European backgrounds92. In Chinese children with ASD, there 
are conflicting findings regarding the role of CNTNAP2 polymorphisms93, 94. Given these uncertainties, SNPs that 
were associated with language in ASD but not language as a primary condition were excluded. We also excluded 
SNPs due to linkage disequilibrium with other SNPs in the study. Linkage disequilibrium (LD) among the SNPs 
on the same chromosome was calculated using snpStats95 package of R96 (see Fig. S5 for the LD results). In the 
end, based on the results of previous studies which reported associations with language functions, we composited 
a list of 28 SNPs as our candidates (see Table 1 for the references).

Statistical analysis.  Because each analytic method has its own strengths and limitations, we opted to use 
multiple methods for our data analysis. Based on the practice of previous studies, we chose two methods: step-
wise regression and structural equal modeling (SEM). We began our analysis with stepwise regression. For each 
language of a stepwise regression model, we used the 28 SNPs as predictors, and used family SES, gender, and 

https://www.ncbi.nlm.nih.gov/snp/
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musical training as non-genetic predictors. For L3, we also analyzed the data with motivation measures as addi-
tional predictors. Standard linear additive SNP encoding was used to code the alleles. The major alleles were 
given a value of 2, the heterozygous alleles a value of 1, and the minor alleles a value of 0. Thus, a positive statisti-
cal relationship between SNP and language means a higher load of the major alleles for better language.

Stepwise regression.  We included all 28 SNPs and non-genetic variables (gender, music training, and family 
SES for L1 and L2; these factors and motivational factors for L3) in stepwise regression models for L1, L2, and 
L3 separately. Stepwise regression is a method of fitting regression models in which the choice of predictive vari-
ables is made by an automatic procedure. The final model had the best combination of independent variables for 
predicting the dependent variables. For all models, stepwise procedure in both directions was implemented via 
MASS package97 of R96 to remove and add predictors based on their improvement to the Akaike information cri-
terion (AIC). Final models of stepwise regression included all predictors that showed improvement to the AIC. 
Statistical significance of each variable was also indicated by the false discovery rate (FDR) corrected p values, 
which were calculated using the Benjamini–Hochberg method.

Structural equation modelling.  To quantify the statistical relationships of language proficiency and hypoth-
esized SNPs, we fitted a structural equation model (SEM) using the lavaan package98 of R96. Demographic char-
acteristics, including gender, music training, and family SES, and genetic variants that were associated with each 
language separately from stepwise regression models were considered independent variables in the data analysis. 
Proficiency in each language was treated as a latent variable. In the metamodels, we hypothesized that both non-
genetic (e.g., gender, music training, and family SES) and genetic variables had effects on proficiency of each 
language (Fig. 1). For L3, motivation was additionally associated with proficiency56. As proficiency levels among 
languages might be related as found in our recent study55, those relationships were also accounted in the SEM. 
We used the full information maximum likelihood (FIML) to account for missing data and robust SEs account-
ing for non-normality. The goodness of fit for the tested model was established by the following indices: (i) χ2 
test with an estimated significance level P ≥ 0.05, (ii) χ2/df < 2, (iii) robust root mean square error of approxima-
tion (robust RMSEA) < 0.05 and an upper limit of the 95% confidence interval (CI) for robust RMSEA < 0.08, (iii) 
robust comparative fit index (robust CFI) and robust Tucker–Lewis Index (robust TLI) with values ≥ 0.90, and 
(iv) standardized root mean square residual (SRMR) with a value lower than 0.10. We reported both unstandard-
ized and standardized path coefficients (Table 6).

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or Supplementary Infor-
mation. The numeric data and analysis scripts of this study will be available at Open Science Framework (https://​
osf.​io/​vkgmd/).
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