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A new tool for visualization and analysis of system dynamics is introduced: the

phasegram. Its application is illustrated with both classical nonlinear systems

(logistic map and Lorenz system) and with biological voice signals. Phasegrams

combine the advantages of sliding-window analysis (such as the spectrogram)

with well-established visualization techniques from the domain of nonlinear

dynamics. In a phasegram, time is mapped onto the x-axis, and various vibra-

tory regimes, such as periodic oscillation, subharmonics or chaos, are identified

within the generated graph by the number and stability of horizontal lines. A

phasegram can be interpreted as a bifurcation diagram in time. In contrast to

other analysis techniques, it can be automatically constructed from time-

series data alone: no additional system parameter needs to be known. Phase-

grams show great potential for signal classification and can act as the

quantitative basis for further analysis of oscillating systems in many scientific

fields, such as physics (particularly acoustics), biology or medicine.
1. Introduction
Oscillating systems, either forced or self-sustaining, are found in many branches

of physical or biological science. They range from simple harmonic oscillators to

complex nonlinear systems. Particularly in signals (i.e. time-series data) from

biological systems, three principal modes of operation are frequently observed:

periodic oscillation, subharmonics and chaos [1–4].1

In order to assess the complexity of a dynamic system, several analysis para-

meters have been developed, such as the correlation dimension [5] or the

Lyapunov exponent [6]. These measures work well on stationary signals2

(where system parameters are not varying in time), but are less well equipped

to deal with signals where system parameters change—as for most (bio)physi-

cal data [7,8]. To cater for these needs, analysis can be performed with sliding

windows (i.e. the progressional analysis of shorter portions of the signal,

extracted at consecutive time instants).

In many applications, the spectrogram is the de facto standard for continuous

windowed analysis of periodicity and/or the dynamic evolution of (bio)physical

time-series data. A spectrogram is a type of sliding power spectral analysis.

When created with a narrow-band setting (resulting in a high-frequency resol-

ution), the (dis)appearance of spectral peaks in time, owing to bifurcations

occurring in the underlying system, provides certain important insights into

the system’s dynamics [8,9].

While the spectrogram is an analysis tool that is easily accessible to a broad

range of researchers, it does not provide direct information on the system’s

dynamics in phase space, i.e. a mathematical space where all possible states

of a system are represented (see Nolte [10] for an essay on the history of
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Figure 1. Illustration of limitations of both spectrograms and phase space diagrams. Left column: I. deterministic chaos, created by a logistic map; middle column:
II. stochastic signal created by additive synthesis with randomized phases; right column: III. signal created by a logistic map where the parameter a was gradually
varied from 3.5375 to 3.6. (a) All 1000 data points of each time series. (b) Amplitude spectrum. (c) Spectrogram. (d ) Phase space embedding. Note that both signals
I. and II. look identical when analysed by Fourier series (b) and (c), whereas their different nature becomes apparent in phase space (d ). The additional complexity of
signal III. ( period doubling cascade to chaos) is not apparent in the phase space diagram (d ).
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phase space). In phase space, each possible state of the system

corresponds to one unique point. Temporal developments of

the system are delineated by the so-called trajectories within

the phase space. For mechanical systems, each degree of

freedom (d.f.) of the system is mapped onto an individual

dimension in n-dimensional phase space.

In the following paragraphs, we will show the advantages

and disadvantages of the discussed visualization methods,

i.e. sliding-window analysis (represented by the spectrogram)

and phase space diagrams.

The spectrogram’s inability to distinguish deterministic chaos

from a random process is illustrated in figure 1. A synthesized

signal was generated from a logistic map with parameter a set

to a value of 3.6 (please refer to case 1, later in the text, for a defi-

nition of the logistic map) at a sampling rate of 1000 Hz. The

resulting irregular time-series data are shown in the left column

of figure 1a (signal I). The signal’s spectrum is displayed in

figure 1b, and a spectrogram is shown in figure 1c. The phase

space diagram3 (figure 1d ) reveals that the system’s trajectory

is aligned along a parabola [4, p. 357].

The middle panel (II) of figure 1 shows raw and analysis

data of a series of superimposed sine waves with randomized

phase offsets, whose amplitudes are derived from the spec-

tral analysis of the logistic map signal (I). Although signals

I and II are virtually indistinguishable by spectral analysis

(figure 1b,c, left and middle column), the phase space for
signal II contains no pronounced attractor but a random

distribution, revealing the stochastic nature of signal II.

In order to illustrate the limitation of phase space dia-

grams, a signal exhibiting a series of bifurcations has been

created from the logistic map, by gradually varying parameter

a from 3.5375 to 3.6 (signal III in figure 1, right column). The

development of the period doubling cascade is clearly visible

in the spectrogram (being a sliding-window analysis that is

capable of visualizing temporal developments), but the fact

is obscured in the phase space diagram (figure 1d, right

column), where all of the different regimes are superimposed.

Non-stationary signals, potentially exhibiting multiple

bifurcations over the course of a recorded time series, occur

frequently in the (bio)physical domain, and they are particu-

larly common in acoustical data. Here, we address the need

for an intuitive visualization tool that displays the time-

varying dynamics of these systems. We introduce a method

that combines the advantages of both sliding-window analy-

sis (i.e. the sensitivity to temporal developments in a signal)

and phase space diagrams (i.e. their close relation to the

system’s underlying dynamics). This new tool, termed the

‘phasegram’, is able to visualize system dynamics over time

in a single two-dimensional graph. The usefulness of this

method will be exemplified for the specific field of voice

science using a series of examples with different levels of

complexity and control over the underlying system.
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2. Methods
2.1. Phasegram generation
The phasegram generation process is analogous to creating

electroglottographic (EGG) wavegrams, a method previously

developed by Herbst et al. [11]. Phasegram generation is outlined

below (see also figure 2), and will be described in more detail in

the following paragraphs.

— Generation of two-dimensional phase portraits, extracted

from consecutive windows in time (optional: creation of a

so-called phase portrait movie).

— Creation of Poincaré sections through the two-dimensional

phase portraits.

— Conversion of Poincaré section crossings into trajectory

histograms.

— Conversion of trajectory histograms into ‘trajectory strips’ by

colour-coding.

— Combination of rotated ‘trajectory strips’ into the final

phasegram.

2.2. Step 1: generation of phase portraits, extracted at
consecutive points in time

A phase portrait is the geometrical representation of the trajec-

tories of a dynamical system, providing a description of the

system’s evolution in time [9]. If the governing differential

equations of a dynamical system are not known (the typical

case when analysing a biological system), then the dynamics of

the phase space can be analysed via attractor reconstruction

[12,13]: the attractor is defined as a set on the phase plane to

which all neighbouring trajectories converge [4]. In attractor

reconstruction, a two-dimensional vector

xðtÞ ¼ ðBðtÞ;Bðtþ tÞÞ; where t . 0; ð2:1Þ

is defined, based on the analysed signal. The time series B(t)
appears as a trajectory x(t) in a two-dimensional phase space [4,

p. 438]; in other words, the signal is projected against a delayed ver-

sion of itself (see the electronic supplementary material, figure S1).

This time delay t should typically be in the range of one-tenth to

one-half the mean orbital period around the attractor [4, p. 440].

A suitable value for t is typically found when the analysed signal’s

autocorrelation function first passes through zero.

An alternative method for determining the ideal value for t

has been proposed by Frazer & Swinney [14], who suggest con-

sidering the first minimum in the mutual information function of

the attractor as the proper time delay t. This approach should

ensure the minimized redundancy of information between the

embedding axes.

As a third option, the analysed time-series data can be converted

into an analytic signal by means of a Hilbert transformation. The

Hilbert transform shifts the phase of each negative frequency com-

ponent of the analysed signal by þ908 (p/2 radians) and the phase

of the positive frequency components by 2908 (2p/2 radians). For

a purely sinusoidal signal that contains only one frequency com-

ponent, for instance, applying the Hilbert transform for phase

portrait generation would have the same effect as using a lag of

one quarter of the sine wave’s period. In order to create a phase por-

trait from Hilbert-transformed data, the real values of the analytic

signal are plotted against the imaginary values [15]. This approach

is particularly useful for longer signals with either highly variable

cycles or without apparent fundamental frequency.

While attractor reconstruction can theoretically be performed in

an unlimited number of dimensions, two dimensions are chosen

for practical reasons for the purpose of phasegram generation.

In a discrete-time (i.e. sampled) signal, equation (2.1) becomes

y½i� ¼ ðx½i�; x½iþ n�Þ; n . 0; ð2:2Þ
where i is the sample index and n is the number of samples delay

between the two versions of the signal. The process of phase por-

trait generation is further detailed in the electronic supplementary

material.

For the creation of a phasegram, a series of phase portraits is

required. These are constructed for consecutive portions of the

analysed signal, centred at constantly progressing time instants.

These portions are rectangular windows of the signal, defined

as [x[i 2 m] . . . x[i þ m]], where m is half the window length,

and i is the sample index around which the window is centred.

For the consecutive generation of multiple phase portraits, i is

advanced by steps of fSt, where fS is the sampling frequency

and t is the time step (usually in the range of 0.01–0.02 s).

For optimal phasegram output, any DC offset should be

removed from the analysed time-series data before phase portrait

generation.4 In extreme cases where longer signals exhibit a

considerable baseline drift, a phase-preserving high-pass

filter with a cut-off frequency of 1 or 2 Hz can be applied.
As an optional visualization tool, a ‘phase portrait movie’

may be created, by converting the phase portraits (extracted at

time instants increasing by 0.04 s, which corresponds to the

default video frame rate of 25 fps) to a video file. The original

signal can be included as an audio channel, by converting the

signal to an audio file (WAV file type) with a sampling frequency

of FS ¼ 1/dt (Hz), where dt (given in seconds) is the time inter-

val at which the original time-series data were sampled. The

synchronous playback of both the auditory stimulus and time-

varying phase portraits provides valuable insights into the

analysed sequence. It can also serve as the basis upon which

the manual rotation of Poincaré sections (see below) can be per-

formed, if so desired. The phase portrait movies for the examples

discussed in this manuscript are available as electronic

supplementary material.
2.3. Step 2: creation of Poincaré sections through the
two-dimensional phase portraits

A Poincaré section is the intersection of a dynamic system’s tra-

jectory in the phase space with a certain lower dimensional

subspace [9, p. 64]. In a system with n-dimensions, the Poincaré

section is an (n21)-dimensional surface of section [4, p. 278].

Hence, the Poincaré section of a two-dimensional phase

portrait, as created by means of attractor reconstruction, is a

(one-dimensional) line.

The Poincaré section generation process is illustrated in

figure 2d: a line is drawn at a certain angle (horizontal in the case

of figure 2d) through the two-dimensional phase portrait. The

number and location of intersections of the phase space trajectory

and the line (the red dots in figure 2d) are determined and stored

for further analysis. For the purpose of phasegram generation, the

Poincaré section is made through the entire phase portrait (see

the electronic supplementary material, movie S1 and the audio

track contained therein for an illustration of the principle).

The default orientation of the Poincaré sections through the

phase portraits is either horizontal or vertical. In some cases,

these angles cannot capture crucial aspects of the emerging

attractor. In such cases, the angle of the Poincaré sections (i.e.

the lines drawn across the phase portraits) needs to be adjusted.

An optimal angle can be determined visually by inspection of the

phase portrait movies. Alternatively, a fully automated auto-

nomous algorithm to determine the rotation angle of the

Poincaré section can be used, which is described in the electronic

supplementary material. This algorithm aims to find the Poincaré

sections that are best suited to reveal the full complexity of

the analysed signal’s attractor. The phase portrait angles of

the examples shown in the subsequent case studies were all

determined with the suggested algorithm.
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The effect of the Poincaré section angle in phasegram gener-

ation is exemplified in figure 3 by a signal generated with a

Lorenz system [16, equations 25–27]—for details see below.
Poincaré sections were created at 08 (left panel) and 458 (right

panel). The effect of the angle variation is seen in the histograms,

the trajectory strips and the resulting phasegrams (figure 3f–h).



(a)

(c)

(b)

(d)

(e)

(f)

(g)

(h)

sum trajectory intersections: 12 sum trajectory intersections: 36

200

100

400

0.5
0

–0.5

9.00 9.05 9.10

rotate 90° CCW rotate 90° CCW

9.15

0.5
0

–0.5

0.5

5
4
3
2
1

0.5

x 
(i

+
11

0)

x(i) x(i)

0

0

–0.5

–0.5 0.50–0.5

0.50–0.5 0.50–0.5

0.5

0.5

ph
as

eg
ra

m

0 2 4 6
time (s)

8 10 0 2 4 6
time (s)period doubling

8 10

0

0

–0.5

–0.5

0.50–0.5

fr
eq

ue
nc

y 
(H

z)
B

300
200
100

0

0 2 4 6 8

2 4 6 8

0 2 4

time (s)

6 8

10
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Note that the phasegram created with the algorithmic angle

selection (right panel in figure 3h) reveals a subharmonic

sequence around t ¼ 3.4–3.8 s, which is not apparent in the

phasegram created with an arbitrary angle of 0 radians (left

panel in figure 3h)—see also electronic supplementary material,

movie S2.
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2.4. Step 3: conversion of Poincaré sections into
trajectory histograms

For each phase portrait, a histogram of the trajectory intersection

points is generated (figure 2e). The histogram bin width is depen-

dent on the overall signal amplitude, and on the graph height of

the resulting phasegram. For the phasegrams presented in this

manuscript, values in the range of 0.001–0.01 were used for

signals that were normalized to [21 . . . 1].
 e
10:20130288
2.5. Step 4: conversion of trajectory histograms into
‘trajectory strips’ by colour-coding

The maximum number of trajectory intersection points (histmax)

within one single histogram bin from the Poincaré section histo-

grams is determined for all analysed phase portraits. All Poincaré

section histograms are then converted (flattened) to ‘trajectory

strips’, i.e. they are colour-coded by

col½k� ¼ 1

2
log10 99

h½k�
histmax

þ 1

� �
; ð2:3Þ

where col[k] is the colour intensity (ranging from 0 to 1) and h[k]

is the number of trajectories found in the kth histogram bin (see

figure 2f for examples).
2.6. Step 5: concatenation of rotated ‘trajectory strips’
into a phasegram

All resulting colour-coded ‘trajectory strips’ are rotated anti-

clockwise by 908, and concatenated in sequence to form the

phasegram (see figure 2g, where the process is exemplified

by three out of 500 total trajectory strips). In the phasegram,

time is displayed on the x-axis, representing the instants in

time at which the individual phase portraits have been created

(algorithm step 1). The y-axis corresponds to the bin index of

the Poincaré section histogram. The colour intensity shows

the frequency of occurrence of phase portrait trajectory inter-

sections with the Poincaré section, as seen in the respective

histograms.

For the purpose of this manuscript, phasegram generation

was performed using custom software5 written by author

C.T.H. in PYTHON using the matplotlib library [17], and the

phase portrait movies were created from successive still

images with the free software ffmepg [18].
2.7. Analysed scenarios
In order to illustrate their applications for yielding insights into

time-varying biological signals, phasegrams have been gener-

ated for five scenarios of increasing complexity. The first two

cases are general systems with well-known dynamics. The

third case is a computational simulation of vocal fold vibration.

The last two cases were generated from real signals: the first of

these was created with an excised larynx set-up in which all the

crucial underlying parameters are experimentally controlled. In

the other example, a human singing signal, the oscillating

system is only controlled in a subjective arbitrary manner by

the singer (‘increasing and decreasing the intensity, trying to

avoid abrupt changes in sound colour’).
3. Results
3.1. Case 1: logistic map. Period doubling cascade
A synthetic signal was created from the logistic map:

x½iþ 1� ¼ ax½i�ð1� x½i�Þ: ð3:1Þ

Equation (3.1) was evaluated for values of a in the range of

[3.4 . . . 3.65], and the change of the parameter a was mapped

linearly onto a time interval of 10 s with a sampling frequency

of 1000 Hz. The resulting signal was then up-sampled to

44 100 Hz with the software PRAAT [19]. This processing step

introduced additional data points into the time series by

means of band-limited interpolation using a sinc function

kernel (sinc(x)¼ sin(p x)/(p x); see [20]), thus allowing display

of the logistic map time series as limit cycles in the phase por-

traits (see step 1 and figure 2c,d). The DC offset was removed

from the resulting time series data by simple subtraction of

the mean, and the signal was normalized to [21 . . . 1].

The relationship between a portion of the time-domain

signal, its phase portrait and its visual appearance in the

phasegram is clearly seen in figure 2c,d and g.

— For a sine wave, i.e. the simplest form of periodic vibration,

the phase portrait is a simple limit cycle, having the form of

a circle or ellipse—left panel in figure 2d. Because the signal

is perfectly periodic (figure 2c), only two intersection

points are seen in the phase portrait, even though the Poin-

caré section is intersected by the trajectory 12 times in each

direction. This is reflected in the histogram (figure 2e),

where a total of 24 intersections are distributed over only

two histogram bins. Consequently, only two horizontal

lines are seen in the phasegram in the case of periodic oscil-

lation/the limit cycle (figure 2g, t ¼ 0–2.66 s).

— In the period doubling case (centre column of panels in

figure 2), the phase portrait trajectory must complete two

revolutions in the limit cycle before repeating itself. Because

there are a total of four intersection points along the Poin-

caré section, the intersections (a total of 23) are distributed

over four histogram bins (middle panel in figure 1e). Conse-

quently, four horizontal lines are seen in the phasegram in

the interval of t¼ 2.6–6.23 s in figure 2g.

— The third column of panels in figure 2 exemplifies the case

of a non-periodic signal: a complex pattern is seen in the

phase portrait. A total of 24 intersection points along the

Poincaré section are distributed over a large number (20)

of histogram bins. Because the signal is non-periodic at

t ¼ 6.9–9.1 s and t ¼ 9.4–10 s, the histogram bin maxima

vary greatly over time, and the phasegram obtains a

‘rugged’ appearance at these time intervals in figure 2g.

The resulting phasegram in figure 2g has a striking similarity

to the standard bifurcation diagram of the logistic map. The

difference is that the phasegram is derived from real data, with-

out knowledge of the underlying time-varying parameter.

3.2. Case 2: Lorenz attractor. Chaos
The Lorenz system [16, equations 25–27] is defined as:

_X ¼ �sX þ sY;

_Y ¼ �XZþ rX � Y

and _Z ¼ XY� bZ:

9>>>=
>>>;

ð3:2Þ
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This system was transformed into a set of difference

equations:

x½iþ 1� ¼ sðy½i� � x½i�Þ;
y½iþ 1� ¼ x½i�ðr� z½i�Þ � y½i�

and z½iþ 1� ¼ x½i�y½i� � bz½i�;

9>=
>; ð3:3Þ

and evaluated for a duration of 10 s. The simulation was

run with a time step of 1/882 s, and a sped-up version of the

resulting time-series data was then saved with a sampling rate

of 44 100 Hz. The parameter r was varied gradually from 250 to

28 over an interval of 7 s, and then kept stable at a value of 28

for another 3 s (figure 3a). The initial values were set to x¼ 0,

y¼ 20, z¼ 25. The vector x[i], i¼ [0 . . . 441 000] was further

analysed.

When simulating the Lorenz system (see equations (3.2) and

(3.3)), parameter s is usually fixed at 10, and b is defined to be

8/3 [16]. Setting r to a value of 28 results in the well-known

‘strange attractor’ of the Lorenz system. A higher value of r
(above 30) can lead to both stable oscillatory regimes and

some areas of period doubling bifurcations. This is reflected

in the phasegram in the right panel of figure 3h: periodic and

stable from t � 0 to 2 s; period doubling from t � 3.5 to 4 s;

chaotic from t � 4 to 10 s. The chaotic nature of the system

for a stable value of r (t¼ 7–10 s) is revealed by the phasegram

in figure 3h (right panel): the intersection points of the phase

portraits extracted at various instants within this interval vary

unpredictably, but stay within the regions defined by the

strange attractor emerging in the phase portrait (see figure 3e).
3.3. Case 3: self-oscillating two-mass model of the
vocal folds

In most mammals (including humans), voice signals are gener-

ated by the flow-induced, self-sustaining vibration of laryngeal

tissue [21]. The steady air stream coming from the lungs is

converted into a time-varying airflow by the oscillation of

the laryngeal tissue (mainly the vocal folds). The pressure

variations caused by the time-varying airflow are then propa-

gated through, and acoustically filtered by, the vocal tract.

Finally, the result of this process is radiated from the

mouth (and/or nose) as an acoustical signal [22]. Voice is a

widely researched physical system that can exhibit a great

variety of oscillatory behaviour, such as periodic vibration,
subharmonics, chaos and bifurcations between any of these

phenomena [3,23–27].

In previous research, a simplified two-mass model of voice

production was created in order to study the effect of asymme-

tries on vocal fold vibration [28]. In this model, each vocal fold

is represented by two coupled oscillators (defined by their

mass, stiffness and damping coefficients; figure 4a). This

model provides 2 d.f. per vocal fold. It allows for the two

masses of each vocal fold to oscillate with a phase difference

(the lower mass typically leading the vibration), thus capturing

the most essential mechanism of self-sustaining vocal fold

vibration: the transfer of aerodynamic energy into tissue

vibrations [29]. The model has the option of simulating the

effect of asymmetrical vocal fold anatomy/configuration,

which is a well-known cause of pathological voice production

and voice nonlinearities [30,31].

The two-mass model was run for 10 s with the standard

parameters used in a previous publication [28], an asymmetry

coefficient of 0.51, and a time-varying simulated air pressure of

the lungs (‘pressure sweep’) ranging from 0 to 2.5 kPa. The

time step was 0.05 ms, resulting in a virtual sampling fre-

quency of 20 kHz. For data analysis, the positions of the

lower, larger masses were considered.

Following Steinecke & Herzel [28], the time-varying displa-

cements of the model’s two lower masses were plotted against

each other (figure 5). Four distinct vibratory regimes were seen

in the right mass and in the glottal flow (not shown here) for

the chosen model parameters: periodic, period doubling and

other subharmonic regimes (see also electronic supplementary

material, movie S3). Owing to the user-defined asymmetry in

the model geometry and mechanical properties, the left mass

had a more complex vibratory pattern than the right

mass. The right and the left masses are synchronized by

ratios of 1 : 1, 5 : 3, 5 : 7 and 4 : 2, respectively, for the four

examples shown in figure 5b–d.

The four vibratory regimes can be clearly distinguished

from each other in the phasegram (figure 5e and table 1).

When relating these four vibratory regimes to the time-

varying simulated lung pressure used in the simulation

(figure 5f ), a typical hysteresis effect is seen (figure 5g): the

model’s behaviour was different for the pressure increase

(t ¼ 0–4 s) versus the decreasing pressure (t ¼ 6–10 s).

The system tended to stay in its current vibratory regime,

and for certain pressure values (1.6–1.68 kPa; 1.71–1.73
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Figure 5. Simulation of vocal fold vibration with a simplified two-mass model (Steinecke/Herzel) during a pressure sweep (0 – 2.5 – 0 kPa; Q ¼ 0.51).
(a) Narrow-band spectrogram of the simulated airflow; (b) and (c) displacement of left (b) and right (c) lower mass of the model as a function of
time, extracted at t ¼ 2, t ¼ 2.76, t ¼ 3.1 and t ¼ 5 s. (d ) Phase portraits from the above signals, created by plotting the time-varying position of
the left lower vocal fold mass against that of the right lower mass. A Poincaré section was created at an angle of 0.375 p radians, yielding intersection
points with the trajectory (red dots). (e) Phasegram: the vertical markers at t ¼ 0.67; 2.7; 2.91; 3.51; 6.72; 7.27; 7.6 and 9.7 s represent bifurcations,
i.e. changes from one distinct oscillatory regime to another (see text). ( f ) Trace of the time-varying simulated lung pressure used to drive the model.
The vertical markers indicate bifurcation events (see above and text). (g) Bifurcation diagram, showing the distinct vibratory patterns in relation to lung pressure.
Note the hysteresis caused by the direction of lung pressure change (increasing versus decreasing—see text for details).
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and 1.82–1.88 kPa) more than one vibratory regime was

possible—see references [31–37] for more detail on hyster-

esis phenomena in voice. The phonation threshold
pressure [38], i.e. the minimum pressure required for the

vocal folds to start and stop the vibration (1.17 and

1.08 kPa, respectively), was higher for phonation onset



Table 1. Oscillatory regimes seen in the time series data from the self-oscillating two-mass model simulation of the vocal folds.

oscillatory regime phasegram features time (s)

static no oscillation—no line seen in the phasegram (caused by a slight DC offset in the

analysed signals)

0 . . . 0.67; 9.7 . . . 10

periodic gradual amplitude variation—two horizontal lines seen in the phasegram 0.67 . . . 2.7; 7.6 . . . 9.7

5 : 3 synchronization complex vibratory pattern—six horizontal lines seen in phasegram 2.7 . . . 2.91; 7.27 . . . 7.6

7 : 5 synchronization complex vibratory pattern—eight horizontal lines seen in phasegram 2.91 . . . 3.51; 6.72 . . . 7.27

4 : 2 synchronization complex vibratory pattern—two horizontal lines in the upper half of the phasegram

(stemming from the period doubling in the right vocal fold mass—figure 5c) and

four horizontal lines in the lower half (caused by the period-quadrupling seen in the

left vocal fold mass—figure 5b)

3.51 . . . 6.72
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than for phonation offset (representing a subcritical Hopf

bifurcation).

3.4. Case 4: excised larynx experiment
Excised larynx experiments allow experimental investigation

of vocal production under controlled conditions [39]. The

larynx (harvested from a freshly deceased individual) is

mounted on a vertical air tube, and the vocal folds are

adducted (approximated to the sagittal midline). Humidified

heated air is blown through the larynx, and the vocal folds

exhibit flow-induced self-sustaining oscillation if boundary

conditions are properly set. In such a set-up [40, ch. 1], one

or more of three basic parameters are usually controlled

and varied: air pressure, vocal fold adduction and longitudinal

stress in the vocal folds (vocal fold elongation).

For the purpose of this study, an excised larynx of a 6.5-

year-old male sika deer (Cervus nippon) was examined

(figure 4b). The experimental set-up has been described in

detail elsewhere [41]. Subglottal air pressure was varied in a

range of 0–4.1 kPa, as measured with a Keller PR-41X pressure

sensor positioned 32 cm upstream from the vocal folds.

Pressure data were captured with a LabJack U6 data acqui-

sition card at a sampling rate of 1 kHz. The acoustic signal

was recorded using a DPA 4061 omnidirectional microphone

positioned 7 cm from the vocal folds.

Vocal fold vibration was monitored by means of EGG, a

non-invasive technique that records a physiological correlate

of vocal fold vibration during phonation [42–44]—see elec-

tronic supplementary material for details concerning the

method and the experimental set-up.

Analysis of the EGG signal from excised sika deer larynx

oscillations (figure 6a,b) revealed five distinct vibratory

regimes: static (no oscillation; not displayed in figure 6b),

periodic (small amplitude, gradual amplitude variation), irre-

gular (complex non-periodic signal), period doubling and

again periodic (stable at larger amplitude). These vibratory

regimes can be readily distinguished from each other in the

phasegram (table 2 and figure 6e).

When relating these vibratory regimes to the time-varying

simulated lung pressure used in the experiment (figure 6e), a

hysteresis effect is seen (figure 6f ), just as in the two-mass

model (recall figure 5): the system’s behaviour was different

during pressure increase (t ¼ 0–9.5 s) when compared with

during pressure decrease (t ¼ 9.5–16.99 s). For certain
pressure values (0.93–1.01; 1.57–1.70; 2.33–2.75 kPa), more

than one vibratory regime was possible. Contrary to the

two-mass model example, the phonation threshold pressure

was lower for phonation onset (0.71 kPa) than for phonation

offset (0.79 kPa), which is a surprising finding.

3.5. Case 5: human voice signal
As for most mammals, human vocalization is created by

flow-induced self-sustaining oscillation of the vocal folds. In

non-pathological phonation, four basic vibratory modes

(called ‘vocal registers’) are observed [21,45]. Of particular

importance for both speech and singing are two of these:

the so-called chest register and the falsetto register. In chest

register, the vocal folds are thickened by the activity of the

thyroarytenoid muscle (situated within the vocal folds [46]),

thus introducing a vertical phase delay in the lower versus

the upper portion of the vocal folds. In general, the duration

of vocal fold contact (i.e. the (partial) cessation of air flow)

within one oscillatory cycle is longer in chest than in falsetto,

resulting in stronger high-frequency harmonics (integer mul-

tiples of the fundamental frequency) in the generated acoustic

output, and thus a ‘brassier’ sound [47,48]. In falsetto, the

thyroarytenoid muscle is relaxed, vertical phase differences

are less pronounced, the duration of vocal fold contact is

shorter and weaker high-frequency partials are generated,

leading to a ‘purer’, more ‘flutey’ sound. In speech, both

males and females mainly use the chest register, which is

generally lower in fundamental frequency compared with

falsetto register. In soft- or high-pitched singing (at a

higher fundamental frequency), the falsetto register is used,

particularly by females [49].

A 52-year-old semi-professional singer (baritone) sang a

sustained note at vowel /a/ near the upper end of his fre-

quency range (pitch of C#4, fundamental frequency ca
277 Hz). He was asked to vary vocal intensity from a mini-

mum to a maximum, and back to a minimum, without

taking a breath during the exercise. The goal was to perform

this manoeuvre on a single musical pitch (i.e. by minimizing

changes of fundamental frequency) without introducing

abrupt audible changes into the ‘sound colour’ of the gener-

ated sound. Please refer to the electronic supplementary

material for details on the experimental set-up.

Human voice production is governed by complex control

parameters, over which the singer has only partial and
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Figure 6. Artificial phonation of an excised sika deer larynx produced during a pressure sweep (0 – 4.1 – 0 kPa). (a) Narrow-band spectrogram of the electroglotto-
graphic (EGG) signal; (b) EGG signal, extracted at t ¼ 0.725, t ¼ 2.3, t ¼ 4 and t ¼ 10 s. (c) Phase portraits from the above signals, created by plotting the real
portion of the Hilbert-transformed EGG signal against its imaginary counterpart. A Poincaré section was created at an angle of 0.575 p radians, yielding intersection
points with the trajectory (red dots). (d ) Phasegram: the vertical markers at t ¼ 0.48, t ¼ 0.98, t ¼ 3.18, t ¼ 6.20, t ¼ 13.14, t ¼ 14.24, t ¼ 15.59 and
t ¼ 16.07 s represent bifurcations, i.e. changes from distinct oscillatory regime to another (see text). (e) Trace of the time-varying air pressure: the vertical markers
indicate bifurcation events (see above and text). ( f ) Bifurcation diagram, showing the distinct vibratory patterns in relation to air pressure. Note the hysteresis
caused by the direction of air pressure change (increasing versus decreasing—see text for details).

Table 2. Oscillatory regimes observed in the time series data from a excised sika deer larynx.

oscillatory regime phasegram features time (s)

static no oscillation—one horizontal line seen in the phasegram 0 . . . 0.49; 16.08 . . . 16.99

periodic I small amplitude, gradual amplitude variation—two horizontal lines seen in the phasegram 0.49 . . . 1.00; 15.58 . . . 16.08

irregular non-periodic signal—no stable horizontal lines seen in phasegram 1.00 . . . 3.19; 14.30 . . . 15.58

period doubling four horizontal lines seen in phasegram 3.19 . . . 6.3; 13.16 . . . 14.30

periodic II stable large amplitude—two horizontal lines seen in phasegram 6.3 . . . 13.16
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intuitive control. In the example shown in figure 7, the

singer’s intended intensity of voice production was varied,

attempting to keep all other parameters stable. The plotted

intensity is a dimensionless quality, expressed on an arbitrary

nonlinear scale (0, lowest intensity; 1, highest intensity;

figure 7a). The spectrogram in figure 7b reveals several

abrupt transitions, suggesting spontaneous changes in the
underlying voice production mechanism, not intended by

the singer. They represent unwanted, spontaneous system-

level behaviour and violate the traditional aesthetic boundary

conditions of classical singing. The findings, corroborated by

inspection of the time-domain signal (provided as the audio

track in electronic supplementary material, movie S5), are

described in table 3.



Table 3. Observed system state transitions in the case of an inadequately
executed intensity variation manoeuvre in singing.

offset (s) observed phenomenon

0 periodic

1.75 period doubling

4.2 chaos

4.4 periodic

4.59 chaos

4.63 periodic

8.82 period doubling

9 periodic

9.18 subharmonic regime

9.3 periodic
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EGG signals of the most prominent vibratory regimes were

extracted at time instants t ¼ 1.22, t ¼ 2.14 and t ¼ 7, and are

shown in figure 7c. Based on the knowledge gained from pre-

vious research [48,50,51], the sound production mechanisms of

the three extracted samples can be classified as ‘falsetto regis-

ter’, ‘falsetto register with period doubling’ and ‘chest register’,

respectively. Phase portraits of the three extracted signal por-

tions are shown in figure 7d, and the respective positions in

time of their Poincaré sections are marked as vertical lines in

the resulting phasegram in figure 7e. The abrupt transitions

between various vocal fold vibratory regimes as observed in

the spectrogram (figure 7b) are also clearly reflected in the pha-

segram. The arrow in figure 7e marks the position of an abrupt

transition from falsetto to chest register, occurring over an

interval of ca 18 ms (five vibratory cycles). At that instant of

time, the fundamental frequency dropped abruptly from 320

to 242 Hz (as seen in the spectrogram, figure 7b).
4. Discussion
Phasegrams provide a new tool to visualize and gain insights

into system dynamics, particularly for nonlinear dynamical

systems in which the vibratory regime changes over time.

In a phasegram, the intuitiveness and accessibility of the

spectrogram is combined with the more detailed information

on system dynamics provided by phase space analysis. Basi-

cally, a phasegram is an empirically derived bifurcation

diagram in time. However, in contrast to the ‘traditional’

bifurcation map approach, underlying system parameters

do not need to be known for phasegram generation. This is

particularly useful in situations where only an output

signal of the (bio)physical system of interest is available.

The creation of phasegrams was motivated by the goal of

visualizing a system’s dynamics over time in a single two-

dimensional graph. To accomplish this, considerable data

reduction is required: the creation of consecutive time-varying

two-dimensional phase portraits by means of attractor

reconstruction results in three-dimensional data. A further

reduction is achieved by performing Poincaré sections through

the generated phase portraits, thus reducing the data to two

dimensions: in a phasegram, time is displayed on the x-axis,

and the time-varying intersection points through the

Poincaré sections are displayed on the y-axis (as an additional
feature, the frequency of occurrence of the intersections is

reflected as colour intensity along a virtual z-axis). The resulting

two-dimensional graph provides intuitive insights into the ana-

lysed system’s dynamic behaviour. Phasegram figures are, due

to their two-dimensional nature, expected to be particularly

useful in printed publications.

For an ideal Poincaré section orientation (see 2.3), the

dynamics of the analysed system can be assessed via the

number and stability of horizontal lines in the phasegram.

— One single line: static (no oscillation).

— 2n locally stable lines: limit cycle, with optional subhar-

monics if n . 1, i.e. periodic oscillation for two lines,

period doubling for four lines, subharmonic regime with

period tripling [52] for six lines, etc. If the analysed

nearly periodic signal contains substantial spectral

energy above the fundamental (i.e. harmonics), additional

trajectory contours are introduced into the phase por-

traits, their Poincaré sections, and consequently into the

generated phasegrams. In such cases, low-pass filtering

the analysed signal may be considered.

— Multiple, locally unstable lines: irregularity caused by either

changing system parameters; a quasi-periodic signal with

more than two individual sinusoids whose frequencies are

not related to each other by integer ratios; or chaos.

In the range of examples considered here, we have found

the phasegram to be a useful tool for classification of (bio)-

physical signals into three main categories: periodic

oscillation, subharmonic regimes and chaos. This potential

needs to be verified in further studies and other systems.

Just as in other analysis and visualization techniques (e.g.

spectrograms), the appearance of a phasegram (and hence

the information content provided by the technique) depends

on the selection of various parameter values—see electronic

supplementary material. As is the case in any analysis of

experimental time-series data, noise in the measurement may

introduce unwanted effects: when analysing signals with a

low signal-to-noise ratio, the generated phase portraits and

hence the phasegram itself can adapt a ‘noisy’ appearance.

To generate a phasegram, Poincaré sections are needed that

intersect with a significant portion of the trajectories in phase

space, in order to reveal the governing dynamics of the

system. Such an approach cannot guarantee transversality of

all Poincaré sections. In the light of this issue, the applicability

of the phasegram method depends on the global structure of

the dynamics of the analysed time series. However, for many

practical purposes any Poincaré section—regardless of trans-

versality—will produce useful insights into system dynamics.

Oscillatory dynamics, in general, and acoustic and other

voice-related physiological data, in particular, are especially

suited for phasegram analysis: These signals repeatedly cross

zero by construction (e.g. due to pressure fluctuations), and

the origin of the phase space is used as the anchor point for

the Poincaré sections. In other cases, where these zero-crossings

are not present, a simple removal of the DC offset or trend

found in the data may facilitate a phasegram representation.

In the past, several methods for two-dimensional space–

time visualization have been introduced, such as, for example,

phase space diagrams stemming from numerical solutions of

equation systems [16], phase space attractor reconstruction

[12,13], recurrence plots [53] or coarse-grained embeddings of

time series [54–56]. These tools are very helpful in visualizing
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the dynamics of a system over a certain (and typically short)

period of time, by analysing the underlying time-series data

(consisting of a certain number of samples) and generating

one graph for that particular time window. However, such rep-

resentations fail to appropriately illustrate changes of system

state (e.g. from periodic oscillation to period doubling or

chaos). In particular, visualization tools that do not map time

onto either the ordinate or the abscissa are unable to pinpoint

within a single graph the exact points in time at which bifur-

cations occur. This is particularly crucial for signals that are

characterized by frequent changes of oscillatory regime, as is

found frequently in time-series stemming from biosystems or

acoustic data (see figure 7e for an example).

To overcome this limitation, we developed the phase-

gram, based on attractor reconstruction and Poincaré

sections, which are already well-established visualization

techniques. In contrast to conventional sliding-window

analysis, such as the spectrogram [57,58], the Wigner–Ville

distribution [59] or the scaleogram [60], the phasegram

offers direct insights into the dynamics of the analysed

system, because it is generated from the signal’s embedded

attractor. No advance knowledge of periodicity or fundamen-

tal frequency is required for phasegram generation, which

makes the tool superior to previously presented sliding-

window visualization approaches such as the time-varying

sequence of local maxima [24] or EGG wavegrams [11].

Although the phasegram is not equipped to measure the

dimensionality of complex attractors, the examples shown in

this manuscript suggest that the new method is very well

suited to visualize the temporal evolution of a dynamical sys-

tem’s attractors, from very simple to complex. Two embedding

dimensions are sufficient to fully describe (nearly) periodic sig-

nals and to evaluate the signal’s divergence from such a

periodic pattern. In this respect, phasegrams offer an empirical

basis for the decision of whether the signal’s fundamental fre-

quency can be calculated, or whether (computer-aided)

periodicity analysis will give spurious results due to the
occurrence of subharmonics, quasi-periodicity or other forms

of irregularity.

In this paper, the application of phasegrams for system

dynamics visualization has been exemplified for voice pro-

duction. However, the technique is by no means limited to

vocal applications. As our initial logistic map and Lorenz

system examples show, phasegrams can usefully be applied in

any branch of physics, biology, chemistry, economics or other

fields where nonlinear systems are analysed and an intuitive

indication of system dynamics and how they change over time

is desired.
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Endnotes
1To make the contents of this manuscript accessible to researchers
from disciplines other than physics or mathematics, we include
some tutorial-style background information on these signal types
as electronic supplementary material.
2A signal is classified as non-stationary if its probability distributions
are time-dependent. Non-stationarity is given if a time-series data
have a mean, variance or covariance that changes over time. Non-
stationary features manifest themselves as trends, cycles or random
walks. Most biological signals (but also, e.g. economic time-series
or meteorological data) can be approximated as stationary on a
short scale, but are non-stationary when observed over a longer
time span. Non-stationarity in (bio)physical systems arises when
system parameters change, e.g. the neurally controlled tension of
the vocal folds in voice production.
3Alternatively termed ‘phase space plot’.
4The DC offset is the arithmetic mean of a time-series data.
5The phasegram software is available online at the first author’s
website at http://www.christian-herbst.org/phasegrams/.
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33. Švec JG, Schutte HK, Miller DG. 1999 On pitch jumps
between chest and falsetto registers in voice: data
from living and excised human larynges. J. Acoust. Soc.
Am. 106, 1523 – 1531. (doi:10.1121/1.427149)

34. Lucero JC, Koenig LL, Lourenco KG, Ruty N, Pelorson
X. 2011 A lumped mucosal wave model of the vocal
folds revisited: recent extensions and oscillation
hysteresis. J. Acoust. Soc. Am. 129, 1568 – 1579.
(doi:10.1121/1.3531805)
35. Lucero JC. 1999 A theoretical study of the hysteresis
phenomenon at vocal fold oscillation onset-offset.
J. Acoust. Soc. Am. 105, 423 – 431. (doi:10.1121/1.
424572)

36. Tokuda IT, Zemke M, Kob M, Herzel H. 2010
Biomechanical modeling of register transitions and
the role of vocal tract resonators. J. Acoust. Soc. Am.
127, 1528 – 1536. (doi:10.1121/1.3299201)

37. Tokuda IT, Horacek J, Švec JG, Herzel H. 2007
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