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Bacterial quorum sensing (QS) is a cell-to-cell communication in which specific signals are activated to coordinate pathogenic
behaviors and help bacteria acclimatize to the disadvantages. The QS signals in the bacteria mainly consist of acyl-homoserine
lactone, autoinducing peptide, and autoinducer-2.QS signaling activation and biofilm formation lead to the antimicrobial resistance
of the pathogens, thus increasing the therapy difficulty of bacterial diseases. Anti-QS agents can abolish theQS signaling andprevent
the biofilm formation, therefore reducing bacterial virulence without causing drug-resistant to the pathogens, suggesting that anti-
QS agents are potential alternatives for antibiotics. This review focuses on the anti-QS agents and their mediated signals in the
pathogens and conveys the potential of QS targeted therapy for bacterial diseases.

1. Introduction

Antibiotics have been commonly used to prevent bacterial
infection and diseases for many decades since their discovery
at the beginning of the 20th century. However, emerging
evidence [1–6] indicates that traditional antibiotic treatments
tend to be ineffective for the patients, due to the emergence of
drug-resistant pathogens resulting from antibiotics overuse
[7, 8]. The fact that bacterial infection annually deprives
about 16 million human lives prompts us to develop novel
approaches fighting against the drug-resistant pathogens and
related diseases [9].

Bacterial quorum sensing (QS) signaling can be acti-
vated by the self-produced extracellular chemical signals
in the milieu. The QS signals mainly consist of acyl-
homoserine lactones (AHLs), autoinducing peptides (AIPs)
and autoinducer-2 (AI-2), all of which play key roles in the
regulation of bacterial pathogenesis. For instance, studies
[10–12] reported that QS signals participate in the synthesis
of virulence factors such as lectin, exotoxin A, pyocyanin,
and elastase in the Pseudomonas aeruginosa during bacte-
rial growth and infection. The synthesis and secretion of

hemolysins, protein A, enterotoxins, lipases, and fibronectin
protein are regulated by the QS signals in the Staphylococcus
aureus [13, 14]. These virulence factors regulated by QS help
bacteria evade the host immune and obtain nutrition from
the hosts.

The anti-QS agents, which are considered as alternatives
to antibiotics due to its capacity in reducing bacterial vir-
ulence and promoting clearance of pathogens in different
animal model, have been verified to prevent the bacterial
infection. The clinical application of anti-QS agents is still
not mature. This review builds on the increasing discoveries
and applications of the anti-QS agents from the studies in
the past two decades. Our goal is to illustrate the potential
of exploiting the QS signals-based drugs and methods for
preventing the bacterial infection without resulting in any
drug-resistance of pathogens.

2. Quorum Sensing Signals

The bacterial QS signals mainly consist of acyl-homoserine
lactones (AHLs), autoinducing peptides (AIPs), and
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autoinducer-2 (AI-2) and participate in the various physio-
logical processes of bacteria including biofilm formation,
plasmid conjugation, motility, and antibiotic resistance by
which bacteria can adapt to and survive from disadvantages
[15]. The Gram-negative and Gram-positive bacteria have
different QS signals for cell-to-cell communications. The
AHL signaling molecules are mainly produced by Gram-
negative bacteria [16], and AIP signaling molecules are
produced by the Gram-positive bacteria [17]. Both Gram-
negative and Gram-positive bacteria produce and sense
the AI-2 signals [18]. These three families of QS signals are
gaining more and more attention due to their regulatory
roles in bacterial growth and infection.

Lux-I type AHL synthase circuit has been considered
as the QS signals producer in the Gram-negative bacte-
ria [19]. Once the AHLs accumulate in the extracellular
environment and exceed the threshold level, these signal
molecules will diffuse across the cell membrane [20] and
then bind to specific QS transcriptional regulators, thereby
promoting target gene expression [21]. The signal molecules
AIPs are synthesized in Gram-positive bacteria and secreted
by membrane transporters [17]. When an environmental
concentration of AIPs exceeds the threshold, these AIPs bind
to a bicomponent histidine kinase sensor, whose phospho-
rylation, in turn, alters target gene expression and triggers
related physiological process [22]. For instance, QS signals in
Staphylococcus aureus are strictly regulated by the accessory
gene regulator (ARG) which associated with AIPs secretion
[23, 24]. ARG genes are involved in the production of many
toxins and degradable exoenzymes [25], which are mainly
controlled by P2 and P3 promoters [26, 27]. The AGR genes
also participate in the encoding of AIPs and the signaling
transduction of histidine kinase [28]. Bacteria can sense and
translate the signals from other strains in the environment
known as AI-2 interspecific signals. AI-2 signaling in most
bacterial strains is catalyzed by LuxS synthase [29, 30]. LuxS
is involved not only in the regulation of the AI-2 signals but
also in the activated methyl cycle and has been revealed to
control the expressions of 400more genes associated with the
bacterial processes of surface adhesion, movement, and toxin
production [31].

3. Biofilm Formation and Virulence Factors

Bacteria widely exist in the natural environment, on the
surface of hospital devices, and in the pathological tissues
[32]. Biofilm formation is one of the necessary requirements
for bacterial adhesion and growth [33]. The biofilm for-
mation is accompanied by the production of extracellular
polymer and adhesion matrix [34, 35] and leads to funda-
mental changes in the bacterial growth and gene expression
[36]. The formation of biofilm significantly reduces the
sensitivity of bacteria to antibacterial agents [37, 38] and
radiations [39] and seriously affects public health. Some
formidable infections are associated with the formation of
bacterial biofilms on the pathological tissues, andmost infec-
tions induced by hospital-acquired bloodstream and urinary
tract are caused by biofilms-coated pathogens on hospital

medical devices. A large number of studies [33, 40, 41] have
shown that bacterial quorum sensing (QS) signaling plays
important roles in biofilm formation. Specific QS signaling
blockage is considered an effective means to prevent the
biofilms formation of most pathogens, thereby increasing the
sensitivity of pathogens to antibacterial agents and improving
the bactericidal effect of antibiotics [42, 43].

The production of virulence factors, which could help
bacteria evade the host's immune response and cause patho-
logical damage, is crucial for the pathogenesis of infections
[44–46]. The virulence factors produced by different strains
are different. For example, Gram-negative Pseudomonas
aeruginosa produces virulence factors, such as pyocyanin,
elastase, lectin, and exotoxin A [47, 48], and Gram-positive
Staphylococcus aureus produces virulence factors such as
fibronectin binding protein, hemolysin, protein A, lipase, and
enterotoxin [49, 50]. Studies have shown that the production
of these virulence factors is regulated by the bacterial QS
signaling systems [51, 52]. Disruption of QS to control the
production of virulence factors seems to be an attractive
broad-spectrum therapeutic strategy.

4. Strategies for QS Disruption

The fact pathogens colonized in the host must active the
QS signaling to form biofilm and produce virulence factors
suggests that breaking this bacterial ”conversation” by anti-
QS agents makes pathogens more susceptible to host immune
responses and antibiotics. In this section, we discuss the QS
disruption strategies including receptor inactivation, signals
synthesis inhibition, signals degradation, signaling blockage
by antibody, and combining use with antibiotics and convey
the potential of QS as the therapeutic target for bacterial
diseases.

4.1. QS Receptor Inactivation. Inactivation of receptors in
QS signaling is an effective strategy for reducing bacte-
rial virulence and infection (Table 1). Studies [53] have
demonstrated that flavonoids can bind to QS receptors
and significantly reduce the virulence gene expression in
Pseudomonas aeruginosa. N-decanoyl-L-homoserine benzyl
ester, a structural analog of AHL signals, has been revealed
to reduce the production of virulence factors, such as elastase
and rhamnolipid, by blocking the homologous receptors in
Pseudomonas aeruginosa [54, 55]. Receptor antagonists have
been revealed to enhance the antibacterial activity of various
antibiotics and minimize the therapeutic dose of antibi-
otics for Pseudomonas aeruginosa infection [56]. The meta-
bromo-thiolactone was reported to prevent Pseudomonas
aeruginosa infection by decreasing the pyocyanin production
and inhibiting the biofilm formation [57]. Geske et al. have
developed AHLs analogs that can bind with the LuxR,
TraR, and LasR receptors in Vibrio fischeri, Agrobacterium
tumefaciens, and Pseudomonas aeruginosa, respectively [58].
However, the application of receptor inhibitors for treating
bacterial diseases is lagging behind due to the properties
of instability and degradability within alkaline conditions.
Further studies are warranted to improve the stability of these
effective anti-QS agents.
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4.2. QS Signals Synthesis Inhibition. The acyl-homoserine
lactone molecules (AHLs) not only participate in bacterial
communication but also play roles in conversations with
eukaryotic cells. AHLs can regulate the signaling pathways
in epithelial cells and affect the behavior of innate immune
cells [59, 60]. Inhibiting the synthesis of AHLs is a direct
strategy to reduce AHL-mediated virulence factors and
prevent pathological damage (Table 2). For example, studies
have revealed that the sinefungin, butyryl-SAM, and S-
adenosylhomocysteine can attenuate the secretion of QS-
mediated virulence factors and prevent the bacterial infection
by inhibiting the AHLs synthesis in Pseudomonas aeruginosa
[61–63]. Singh et al. reported that immucillin A and its
derivatives can reduce the AHLs synthesis by inhibiting the
5-MTAN/S-adenosylhomocysteine nucleosidase [64]. The
triclosan has been verified to reduce AHL synthesis by
inhibiting the production of enoyl-ACP reductase precursors
[65, 66]. However, these agents for AHLs synthesis inhibition
also block the metabolism of amino acid and fatty acid
that play key roles in bacterial basic nutrition [67]. The
fact that triclosan increased the antibiotic-resistance of Pseu-
domonas aeruginosa implies selective pressure on bacteria
were triggered by the blocking effects of triclosan on the
metabolism of amino acid and fatty acid in the bacteria
[68]. The triclosan is considered as bioindicator pollution
due to its potential in causing the drug-resistance of the
pathogens and increasing human health risks [69]. Thus,
the drugs specifically targeting AHLs synthesis inhibition
without blocking nutritional metabolisms of bacteria should
be developed and identified by sufficient in vitro experiments
before their clinical application.

4.3. QS Signals Degradation. Degradation of QS signals by
enzymes can effectively disrupt the “communication” among
the bacteria without causing any selective pressure to the
bacteria. The enzymes consist of lactonase, acylase, oxidore-
ductases, and 3-Hydroxy-2-methyl-4(1H)-quinolone 2, 4-
dioxygenase, all of which are derived from different bacterial
strains and have been applied for QS signals degradation
(Tables 3 and 4).

The AHL lactonase, a member of Metallo-𝛽-lactamase
superfamily, was able to prevent bacterial infection by de-
grading AHLs with different length of side chain [70, 71].The
AHL lactonases were reported to increase bacterial sensitivity
to antibiotics without affecting the growth of Pseudomonas
aeruginosa [72, 73] and Acinetobacter baumannii [74]. The
AHL lactonase also has been applied to block the biofilm
formation of Pseudomonas aeruginosa [75–77]. The AHL
lactonase AiiK produced by the engineered Escherichia coli
was revealed to inhibit extracellular proteolytic activity and
pyocyanin production of Pseudomonas aeruginosa PAO1
[78]. In addition, synergistic action of AHL lactonase and
antibiotics was observed in the mice model infected with
Pseudomonas aeruginosa; that is, the drugs containing AHL
lactonase can effectively inhibit the spread of skin pathogens
while minimizing the effective dose of antibiotics. The AHL
lactonase has also been applied in the fishery industry, for
instance, Liu et al. reported the lactonaseAIO6 supplemented
to tilapia was able to prevent the Aeromonas hydrophila

infection [79]. Studies reported the lactonase AiiA can
decrease the virulence and inhibit biofilm formation ofVibrio
parahaemolyticus in shrimps [80, 81].

The acylase, which was initially found in Variovorax
paradoxus and Ralstonia, can block the QS signaling by
hydrolyzing the amide bond of AHLs [82–84]. The acylase
was revealed to decrease the growth of Pseudomonas aerug-
inosa ATCC 10145 and PAO1 by 60% [85, 86] and has been
widely applied in humanhealth care; for example, the acylase-
coated device showed a well antibacterial property due to the
QS signaling disruption by the acylase [87]. The acylase is
also chemically immobilized on some nanomaterials to act as
an antifouling agent [88]. Undoubtedly, these applications of
acylase will greatly reduce the health care cost caused by the
spread and colonization of pathogenic bacteria on medical
devices.

Oxidoreductases are enzymes that can affect the AHLs
specificity of homologous intracellular receptors by modi-
fying acyl side chains, thus interfering with the expression
of QS related virulence genes [89]. Previous studies have
demonstrated the secretion of oxidoreductases by bacteria
as a protective mechanism instead of a pathogenic sig-
naling [90]. The BpiB09 oxidoreductase was reported to
inhibit the activation of N-3-oxo-dodecanoyl homoserine
lactone (3-oxo-C12-HSL) in the Pseudomonas aeruginosa
PAO1 and decrease bacterial motility, biofilms formation, and
pyocyanin secretion [91]. Immobilization of oxidoreductases
on the glass surface can inhibit the bacterial biofilm forma-
tion and decrease the growth rate of Klebsiella oxytoca and
Klebsiella pneumoniae [92, 93].

The dioxygenase has been revealed to block the quin-
olone signals in the QS system of Pseudomonas aerugi-
nosa [94]. Dioxygenase can degrade 2-heptyl-3-hydroxy-
4 (1H)-quinolone mediated signals and decreases signaling
molecules accumulation in the bacterial milieu, therefore
reducing the secretion of pyocyanin, rhamnolipid, and lectin
A toxin, which protects the host from infective damage [95,
96].

Together, the anti-QS signaling enzymes are promising
alternatives to antibiotics that can be used not only to control
bacterial infection but also to minimize the risk of causing
antibiotic-resistant strains. However, the stability of enzymes
in vivo is the most difficult problem for their biomedical
applications. It is of great significance to study and develop
the stability of the anti-QS signaling enzymes in vivo. QS
degradation by nonpathogenic bacteria is an effective strategy
for QS disruption. Pectobacterium carotovorum subsp. caro-
tovorum is a preferred and commonly used bacterial strain
forQS degradation [97].This biological strategy for QS signal
degradation has been applied to prevent plant diseases [98]
but has not been applied for human diseases treatment. By
exploring novel QS-degradation strains, it might be possible
to cure the chronic diseases caused by the antibiotic-resistant
pathogens.

4.4. Target Antibodies for QS Blockage. Theactivation of AHL
and AI-2 signaling can induce programmed cell death by
affecting the host's immune system [59, 99]. Kaufmann et
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al. found in their study [100] that the antibody RS2-1G9
can bind to 3-oxo-C12-HSL in the extracellular environment
of Pseudomonas aeruginosa, thereby attenuating the inflam-
matory response of the host. XYD-11G2 antibody has been
shown to catalyze the hydrolysis of 3-oxo-C12-HSL signaling,
thus inhibiting the pyocyanin production by Gram-negative
bacteria [101, 102]. The monoclonal antibody AP4-24H11 was
found to block the QS signal of Gram-positive Staphylococcus
aureus by interfering with AIP IV [103]. Another in vivo study
showed that the antibody AP4-24H11 could significantly
attenuate the tissue necrosis in the infected model [104].
Although these monoclonal antibodies have been identified
to block the QS signaling of pathogenic bacteria (Table 5),
their applications for treating bacterial diseases are still in the
initial stage.

4.5. Combinations of Anti-QS Agents and Antibiotics. Com-
bining use of antibiotic with an anti-QS agent is the most
effective clinical strategy for the treatment of bacterial dis-
eases at present [105, 106]. Many studies have confirmed the
synergistic effect of antibiotics and anti-QS agents (Table 6).
Ajoene, furanone c-30, and horseradish extract have been
revealed to reduce the expression of virulence factors in
Pseudomonas aeruginosa and make Pseudomonas aeruginosa
easier to be cleared by tobramycin [107–111]. Another study
has confirmed the synergistic effects of curcumin, gentam-
icin, and azithromycin on Pseudomonas aeruginosa; that is,
the expressions of virulence genes were significantly down-
regulated by the combining use of curcumin together with
gentamicin or azithromycin, and the therapeutic doses of
gentamicin and azithromycin were minimized by curcumin
supplementation [112]. The anti-QS compounds, such as
gallocatechin 3-gallate and caffeic acid, enhanced therapeutic
effects on Mycoplasma pneumoniae infection by combining
use with tetracycline, ciprofloxacin, or gentamicin [113, 114].
N-(2-pyrimidyl) butylamine was confirmed to enhance the
antibacterial effect of tobramycin, colistin, and ciprofloxacin
on Pseudomonas aeruginosa [115]. Recent studies [116, 117]
have shown that both farnesol and hamamelitannin can
reduce the virulence of Staphylococcus aureus and increase
the sensitivity of Staphylococcus aureus to 𝛽-lactam antibi-
otics. Synergistic effects of hamamelitannin, baicalin, hydrate,
cinnamaldehyde, and antibiotics have been demonstrated in
different infection models [118, 119].These findings imply that
combining use of antibiotics with ant-QS agents has great
therapeutic potential for bacterial diseases.

5. Conclusions

Regulating bacterial QS signaling by QS-targeted agents is
an effective strategy to control the production of bacte-
rial virulence factors and the formation of biofilm. This
novel nonantibiotic therapy can inhibit the expression of
pathogenic genes, prevent infection, and reduce the risk
of drug resistance of bacterial cells and has been widely
exploited in recent years. A large number of studies have
identified many anti-QS agents to control the pathogenic
phenotypes ofmost bacteria and to attenuate the pathological

damage in various animal infection models. However, most
anti-QS agents are still in the preclinical phase and more
human clinical trials are warranted to test their practical
feasibility. The results of several existing clinical studies [120–
122] on anti-QS agents show that, compared with antibiotics,
the anti-QS compounds may have potential toxicity and
their therapeutic effect is not as stable as that of antibiotics,
which limited their extensive application. Combining use of
anti-QS agents with conventional antibiotics can significantly
improve the efficacy of therapeutic drugs and decrease the
cost of human healthcare and is likely to be the main
application method of anti-QS agents for bacterial diseases
treatment in the future.
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