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Abstract: Circulating adiponectin concentrations are reduced in obese individuals, and this reduction
has been proposed to have a crucial role in the pathogenesis of atherosclerosis and cardiovascular
diseases associated with obesity and the metabolic syndrome. We focus on the effects of adiponectin
on glucose and lipid metabolism and on the molecular anti-atherosclerotic properties of adiponectin
and also discuss the factors that increase the circulating levels of adiponectin. Adiponectin reduces
inflammatory cytokines and oxidative stress, which leads to an improvement of insulin resistance.
Adiponectin-induced improvement of insulin resistance and adiponectin itself reduce hepatic glucose
production and increase the utilization of glucose and fatty acids by skeletal muscles, lowering blood
glucose levels. Adiponectin has also β cell protective effects and may prevent the development of
diabetes. Adiponectin concentration has been found to be correlated with lipoprotein metabolism;
especially, it is associated with the metabolism of high-density lipoprotein (HDL) and triglyceride
(TG). Adiponectin appears to increase HDL and decrease TG. Adiponectin increases ATP-binding
cassette transporter A1 and lipoprotein lipase (LPL) and decreases hepatic lipase, which may elevate
HDL. Increased LPL mass/activity and very low density lipoprotein (VLDL) receptor and reduced
apo-CIII may increase VLDL catabolism and result in the reduction of serum TG. Further, adiponectin
has various molecular anti-atherosclerotic properties, such as reduction of scavenger receptors in
macrophages and increase of cholesterol efflux. These findings suggest that high levels of circulating
adiponectin can protect against atherosclerosis. Weight loss, exercise, nutritional factors, anti-diabetic
drugs, lipid-lowering drugs, and anti-hypertensive drugs have been associated with an increase of
serum adiponectin level.
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1. Introduction

Previously, the adipose tissue was considered a generally passive repository for stored
triglycerides (TG). With the discovery of adiponectin, it has become clear that the adipose tissue carries
out a large number of intricate metabolic, paracrine, and endocrine functions. The adiponectin gene
was found to be the most abundantly expressed gene in the adipose tissue. It encodes a 244-amino-acid
protein with a predicted size of 30 kDa [1]. Adiponectin contains a putative N-terminal signal
sequence and a collagen-like domain and structurally belongs to the complement 1q (C1q) family,
being characterized by a carboxyl-terminal globular domain and an amino-terminal collagenous
domain highly homologous to collagen X, VIII, and C1q. Adiponectin is exclusively expressed and
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secreted into the circulation by the adipose tissue and appears to act as a hormone which could reduce
inflammatory responses in vitro [2,3].

Circulating adiponectin can exist as a trimer, hexamer, or higher-order multimer with 12–18
subunits [4,5]. Adiponectin receptors include two similar transmembrane receptors which are known
as AdipoR1 and AdipoR2, and another type of receptor without a transmembrane domain which
may act as a co-receptor for the high-molecular weight (HMW) form of adiponectin on endothelial
and smooth muscle cells [6,7]. Recent data indicate that the HMW form has the predominant action
in metabolic tissues [8]. Adiponectin accounts for about 0.01% of all plasma proteins (5–10 µg/mL),
and its plasma concentration was reported to be higher in women than in men [9,10].

Circulating adiponectin concentrations are reduced in obese individuals [10], and this reduction
was proposed to have a crucial role in the pathogenesis of atherosclerosis and cardiovascular diseases
associated with obesity and the metabolic syndrome [11,12]. Furthermore, this idea is supported by
reports that adiponectin has effects considered to be protective against cardiovascular diseases [13,14].

Here, we focus on the effects of adiponectin on glucose and lipid metabolism and on its
anti-atherosclerotic properties. Furthermore, we discuss the factors which increase circulating
adiponectin levels.

2. Effects of Adiponectin on Glucose Metabolism

2.1. Possible Mechnisms for the Improvement of Glucose Metabolism by Adiponectin

2.1.1. Reduction of Inflammation and Oxidative Stress and Improvement of Insulin Resistance
by Adiponectin

The adipose tissue is an active endocrine organ that secretes a variety of hormones known
as adipokines. Adipokines are secreted into the circulation and participate in the regulation of
insulin sensitivity and glucose and lipid metabolism [15]. In obesity and metabolic syndrome,
a highly inflammatory status is induced by the infiltration of inflammatory cells into the adipose
tissue, especially activated macrophages. Under these conditions, the adipose tissue produces
proinflammatory adipokines, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, monocyte
chemoattractant protein-1 (MCP-1), lipocalin-2, and resistin, which induce atherosclerosis [16]. In these
circumstances, the production of adiponectin is markedly reduced.

Chronically elevated levels of inflammatory cytokines could directly enhance insulin resistance
and lead to disrupted insulin sensitivity, in turn impairing glucose and lipid metabolism.
Epidemiological studies have reported that levels of pro-inflammatory and inflammatory cytokines
such as C-reactive protein (CRP), TNF-α, IL-1β, and IL-6 were elevated in patients with type 2 diabetes
and were associated with the development of type 2 diabetes [3,17–25].

Adiponectin could reduce inflammatory reactions [2,3], which may be associated with
an improvement of insulin resistance. The anti-inflammatory properties of adiponectin are likely to be
the major component of its beneficial effects for alleviating insulin resistance and vascular diseases [26].
Adiponectin has been reported to decrease CRP mRNA and protein [27] and inhibit the stimulation
of nuclear factor-κB (NF-κB) signaling and TNF-α secretion from macrophages [28]. Adiponectin
suppresses TNF-α-induced monocyte adhesion to human aortic endothelial cells and the expression
of certain adhesion molecules [29]. Further, adiponectin reduces the expression of cell adhesion
molecules and the activation of IL-8 and NFκB by decreasing TNF-α in endothelial cells [27,30].
Adiponectin also modulates macrophage function and phenotype [31]. IL-10 stimulation and IL-1
receptor antagonists are associated with the anti-inflammatory actions of adiponectin in human
monocytes, monocyte-derived macrophages, and dendritic cells [32].

Adiponectin suppresses the generation of oxidative and nitrative stress by inhibiting inducible
nitric oxide synthase (iNOS) and suppressing the expression of a nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase subunit [33], which improves insulin resistance. Further, adiponectin
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improves insulin resistance in the liver and skeletal muscle via adenosine monophosphate-activated
protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α) activation [34].

2.1.2. Pancreatic β Cell Protective Effect of Adiponectin

Adiponectin prevents ceramide- or inflammatory cytokine-induced apoptosis in cultured β

cells [35,36] and maintains β cell mass and glucose homeostasis in ob/ob mice and in a mice model
of type 1 diabetes [35,37]. Adiponectin-null mice are more susceptible to caspase-8-induced β

cell apoptosis [36]. Via adiponectin receptors AdipoR1 and AdipoR2, adiponectin stimulates the
de-acylation of ceramide, yielding sphingosine after conversion to sphingosine 1-phosphate (S1P) by
sphingosine kinase. The resulting conversion from ceramide to S1P promotes the survival of functional
β-cell mass [38].

2.1.3. Increase of Glucose Utilization and Fatty Acid Oxidation in Skeletal Muscles by Adiponectin

Adiponectin has been reported to improve glucose utilization and fatty acid (FA) oxidation in
myocytes [39]. In addition, in mice fed with high fat/sucrose diet, adiponectin showed to increase
energy expenditure by increasing FA oxidation and to increase glucose uptake in skeletal muscle [40].
Adiponectin increased glucose transporter-4 (GLUT-4) translocation and glucose uptake by rat skeletal
muscle cells [41]. These beneficial effects of adiponectin on glucose metabolism were mainly via
the activation of AMPK in skeletal muscles [42]. In addition, it has been suggested that adiponectin
decreases insulin resistance by decreasing the muscular lipid content in obese mice [43].

2.1.4. Adiponectin Reduces Hepatic Glucose Production

In the liver, adiponectin improves hepatic and systemic insulin resistance through the activation
of AMPK and PPAR-α pathways [34]. Adiponectin has been reported to suppress both glycogenolysis
and gluconeogenesis [42] by reducing the rate-limiting enzymes for hepatic glucose production,
such as glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxy kinase (PEPCK) [39,44–47].
Besides the suppression of G6Pase and PEPCK, adiponectin can suppress glucose production by
reducing the availability of gluconeogenic substrates [47]. Adiponectin stimulates FA oxidation, which
reduces gluconeogenic availability.

2.1.5. Adiponectin Increases Insulin-Stimulated Glucose Uptake by Adipocytes

Adiponectin treatment enhances insulin-stimulated glucose uptake via activation of AMPK in
primary rat adipocytes [48]. Adiponectin directly targets insulin receptor substrate-1 (IRS-1) rather
than the insulin receptor (IR) [49]. IRS-1 plays a crucial role in insulin mediation of glucose uptake in
adipocytes [50]. Decreased levels of IRS-1 are significantly associated with insulin resistance and type
2 diabetes [51,52].

2.1.6. Summary of Anti-Diabetic Effects of Adiponectin

Possible mechanisms for the improvement of glucose metabolism by adiponectin are shown
in Figure 1.

2.2. Adiponectin and Development of Type 2 Diabetes

In a case–control series which was performed in the Pima Indian population [53], at baseline, the
serum adiponectin level was significantly lower in the cases (n = 70) than in the controls (n = 70), and
individuals who showed high serum adiponectin levels were less likely to develop type 2 diabetes
than individuals with low serum adiponectin levels (incidence rate ratio 0.63 (95% confidence intervals
(CI) 0.43–0.92); p = 0.02) [54]. In the population-based Monitoring of Trends and Determinants in
Cardiovascular Disease (MONICA)/Cooperative Health Research in the Region of Augsburg (KORA)
cohort study between 1984 and 1995 with follow-up until 2002 (mean follow-up 10.9 ± 4.7 years) [55],
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low levels of adiponectin were associated with an increased type 2 diabetes risk. The multivariable
adjusted hazard ratio (HR) with 95% CI comparing tertile extremes was 2.65 (1.88-3.76) for adiponectin
(bottom vs. top tertile), respectively [54]. A systematic review and meta-analysis of prospective
studies was conducted to assess the association of serum adiponectin level with risk of type 2 diabetes.
This meta-analysis included 19 studies, comprising a total of 39,136 participants and 7924 cases,
and showed that type 2 diabetes risk was strongly associated with low levels of adiponectin [55].
Furthermore, other observational studies showed that low levels of adiponectin are significantly
associated with the development of type 2 diabetes [23,25,56–58].Int. J. Mol. Sci. 2019, 20, x 4 of 24 
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Figure 1. Possible mechanisms for the improvement of glucose metabolism by adiponectin. AMPK,
adenosine monophosphate-activated protein kinase; IL-6, interleukin-6; iNOS, inducible nitric
oxide synthase; NADPH, nicotinamide adenine dinucleotide phosphate; PPAR-α, peroxisome
proliferator-activated receptor-α, TNF-α, tumor necrosis factor-α.

3. Effects of Adiponectin on Lipid Metabolism

3.1. Possible Mechanisms for the Improvement of Lipid Metabolism by Adiponectin

Adiponectin has been found to be correlated with various parameters of lipoprotein metabolism
and, especially, it is associated with the metabolism of high-density lipoprotein (HDL) and TG.
Adiponectin appears to induce an increase in serum HDL and, in addition, it lowers serum TG through
the enhanced catabolism of TG-rich lipoproteins [59].

3.1.1. Possible Mechanism for the Increase of HDL by Adiponectin

Almost all of the previous studies reported that serum adiponectin is positively correlated with
serum HDL-C level [60–66]. Especially, HDL-C has been shown to be positively correlated with
HMW adiponectin, which is considered the most biologically active form of adiponectin [60,64,65],
independently of adiposity and of insulin sensitivity [61,63–65,67–69]. We also found that adiponectin
was independently and positively correlated with HDL-C in 174 subjects without diabetes [70].

Adiponectin has been shown to increase HDL-C via an increase in the hepatic production
of apo-AI, which is the major apolipoprotein of HDL, and through an increase in the production
of ATP-binding cassette transporter A1 (ABCA1), which induces HDL assembly through reverse
cholesterol transport [71–76]. Adiponectin has been shown to enhance ABCA1 expression through the
activation of nuclear receptors including liver X receptor α and PPAR-γ [75].
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Adiponectin-induced increase in HDL-C involves the down-regulation of hepatic lipase (HL)
activity, given the reported inverse association of serum adiponectin with HL activity, which appears
to be independent of measures of adiposity and insulin resistance [77,78].

Another possible mechanism underlying the adiponectin-induced up-regulation of HDL-C is the
activation of lipoprotein lipase (LPL) by adiponectin and/or the improvement of insulin resistance,
which can also reduce TG.

3.1.2. Possible Mechanisms for TG reduction by Adiponectin

The majority of previous studies have demonstrated a negative association between circulating
adiponectin and serum TG [60,61,63–69,78]. Very low density lipoprotein (VLDL), one of TG-rich
lipoproteins, has been found to be correlated with serum HMW adiponectin [66,79–81]. We also found
that VLDL-C levels were inversely correlated with adiponectin levels independently of age, body
mass index (BMI), gender, and glycemic control in patients with type 2 diabetes [82] The reported
association of circulating adiponectin with VLDL apoB100 fractional catabolic rate suggests that the
regulation of serum VLDL-C by adiponectin may involve VLDL catabolism [79,83,84]. A plausible
explanation for the adiponectin-induced increase in TG catabolism is the regulation of LPL activity
by adiponectin. It is well known that LPL, which is translocated to the endothelial cell surface of
the vessels of heart, muscles, and adipose tissue, hydrolyses TG in TG-rich lipoproteins including
chylomicrons and VLDL [85]. Serum adiponectin has been reported to be positively correlated with
post-heparin LPL concentration and activity in the fasting state, apparently independently of insulin
resistance and inflammation [86,87]. As mice over-expressing adiponectin display increased LPL gene
expression and LPL activity in skeletal muscle during fasting and in adipose tissue mainly during the
well-fed state [74,88], adiponectin may have a direct role in inducing LPL expression and activation in
both skeletal muscle and adipose tissue.

Another possible mechanism for TG reduction by adiponectin would be attributable to
adiponectin-induced decrease in serum apo-CIII, a well-known inhibitor of LPL, as indicated
by the reported negative association between circulating adiponectin and serum apo-CIII [89,90],
and the down-regulation of apo-CIII-mRNA levels in adiponectin-treated human HepG2
hepatocytes [87]. In addition, the other mechanism of the adiponectin-induced up-regulation of
VLDL catabolism involves the increased expression of VLDL receptor (VLDL-R) in skeletal muscle.
Using adenovirus-mediated gene transduction, an increase of VLDL-R expression has been observed in
adiponectin-treated myotubes, with an acute elevation of plasma adiponectin leading to the increased
VLDL catabolism [87].

Insulin resistance increases activity and expression of hormone-sensitive lipase (HSL) in adipose
tissue, which catalyzes the breakdown of TG, releasing free fatty acids (FFA) [91]. Increased FFA enter
the liver and enhance the production of VLDL. Therefore, an improvement of insulin resistance by
adiponectin may reduce HSL activity and result in a reduction of VLDL production.

Adiponectin has been also shown to be associated with apo-B48, which is an apolipoprotein
of chylomicrons from the small intestine [89,90]. A plausible explanation for this relationship is the
up-regulation of postprandial TG catabolism by adiponectin, as indicated by the reported association of
circulating adiponectin with heparin-releasable LPL activity in subcutaneous adipose tissue, observed
after a meal [77].

3.1.3. Effects of Adiponectin on LDL and Other Atherogenic Lipids

With regard to possible relationship between circulating adiponectin and low-density lipoprotein
cholesterol (LDL-C), the majority of studies have shown no association [64,65,70,92–94]. Small dense
LDL (sd-LDL) is considered an emerging risk factor for cardiovascular diseases (CVD). High sd-LDL
levels have been reported to be associated with elevated TG levels and low HDL-C levels and constitute
a common feature of type 2 diabetes and metabolic syndrome [95,96]. Oxidative modifications of LDL
represent an early stage of atherosclerosis, and sd-LDL are more susceptible to oxidation than larger,
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more buoyant particles [96]. Adiponectin-mediated improvement of TG and HDL may reduce the
atherogenic lipoprotein sd-LDL. Remnant lipoproteins, derived from VLDL and chylomicrons, have
been considered to be atherogenic [97]. In patients with hypertriglyceridemia, TG-rich lipoproteins
mainly increase during fasting and the postprandial state. Remnant lipoproteins directly and indirectly
correlate to the enhancement of atherogenicity [98]. Therefore, the reduction of remnant lipoproteins
due to the decrease of TG by adiponectin may contribute to the anti-atherogenic effects of adiponectin.

3.1.4. Summary of Mechanisms for the Improvement of Lipid Metabolism by Adiponectin.

Possible mechanisms for the improvement of lipid metabolism by adiponectin are shown
in Figure 2.
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Figure 2. Possible mechanisms for the improvement of lipid metabolism by adiponectin. Red
and blue arrows indicate direct and indirect lipid metabolism improving effects of adiponectin,
respectively. ABCA1, ATP-binding cassette transporter A1; FFA, free fatty acids; HDL, high-density
lipoprotein; HL, hepatic lipase; HSL, hormone-sensitive lipase; IDL, intermediate-density lipoprotein;
LDL, low-density lipoprotein; TG, triglyceride; VLDL, very low density lipoprotein; VLDL-R, very low
density lipoprotein-receptor.

Adiponectin increases HDL-C via an increase in the hepatic production of apo-AI, through
an increase in the expression of ABCA1 in peripheral tissues. Down-regulation of HL activity by
adiponectin may also increase HDL-C. Increased LPL expression and activity in skeletal muscle
and adipose tissue contribute to the reduction of TG-rich lipoproteins and the elevation of HDL.
Adiponectin-induced decrease of hepatic apo-CIII production and adiponectin-induced up-regulation
of VLDL-R in skeletal muscle also lead to the decrease of TG. An improvement of insulin resistance
by adiponectin may reduce HSL activity and result in the reduction of VLDL production due to
a decreased release of FFA from the adipose tissue to the liver.

4. Anti-Atherosclerotic Effects of Adiponectin

4.1. Improvement of Endothelial Function and Interaction Between Monocyte and Endothelium by Adiponectin

There is a close relationship between hypoadiponectinemia and peripheral arterial
dysfunction [99–101]. Adiponectin knockout mice showed significantly increased neointimal
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hyperplasia, disordered endothelium-dependent vasodilation, and increased blood pressure, compared
with wild-type mice [99,102,103]. Flow-mediated dilation of the brachial artery has a significant
relationship with plasma HMW adiponectin levels in young healthy men [104]. The biosynthesis of
nitric oxide (NO) is performed by AMPK and is mediated by adiponectin-induced phosphorylation
of endothelial nitric oxide synthase (eNOS). Adiponectin inhibits the interaction between leukocytes
and endothelial cells by reducing E-selectin and vascular cell adhesion molecule-1 induced by TNF-α,
resistin, and IL-8, and by increasing endothelial NO [105], which results in the attenuation of monocyte
attachment to endothelial cells [31]. Serum adiponectin concentration also showed a significant
negative correlation with serum MCP-1 concentration (r = −0.244, p = 0.05) in postmenopausal
women [106]. Adiponectin also reduces irregular high glucose-induced apoptosis and oxidative stress
in human umbilical vein endothelial cells [105,107].

Elevated serum TG levels are an independent predictor of endothelial dysfunction. Lowering
circulating TG levels by adiponectin may improve the endothelial function [108]. The increase of
TG and decrease of HDL reduce the activity and expression of eNOS and disrupt the integrity of
the vascular endothelium due to oxidative stress [109]. Diabetes-induced endothelial dysfunction
is a critical and initiating factor in the genesis of diabetic vascular complications [110]. Therefore,
reduction of TG, elevation of HDL, and improvement of glucose metabolism may ameliorate the
endothelial function.

4.2. Inhibition of Smooth Muscle Proliferation by Adiponectin

Rapid proliferation and migration of vascular smooth muscle cells (SMCs) toward the intima
contribute to intimal thickening of arteries and atherosclerosis development. Adiponectin blocks the
proliferation and migration of human aortic SMCs by inhibiting several atherogenic growth factors,
including platelet-derived growth factor, basic fibroblast growth factor, and heparin-binding epidermal
growth factor [111,112].

4.3. Increase of Macrophage Cholesterol Efflux and Suppression of Foam Cell Formation

Serum HDL-C levels are inversely correlated to the risk of atherosclerotic cardiovascular diseases.
The reverse cholesterol transport is one of the major protective systems against atherosclerosis, in
which HDL particles play a crucial role, carrying cholesterol derived from peripheral tissues to the liver.
ABCA1 receptors has been identified as important membrane receptors to generate HDL by cholesterol
efflux from foam cells. Adiponectin has been reported to up-regulate the expression of ABCA1
in human macrophages and enhance apo-AI-mediated cholesterol efflux from macrophages [75].
Recently, Marsche et al. investigated the association between cholesterol efflux capacity and metabolic
parameters in 683 participants (281 youths, of whom 227 were overweight/obese; 402 adults, of
whom 197 were overweight/obese). They found that hypoadiponectinemia is a robust predictor of
reduced cholesterol efflux capacity in adults, irrespective of BMI and fat distribution [113]. Adiponectin
markedly suppressed foam cell formation in oxidized LDL-treated macrophages from diabetic subjects,
which was mainly attributed to an increase in cholesterol efflux [114]. In addition, a deletion of
adipoR1 in macrophages from diabetic patients accelerated foam cell formation induced by oxidized
LDL [114]. A strong positive correlation was noted between decreased serum adiponectin and impaired
cholesterol efflux capacity, both before and after adjustment for HDL-C and apo-AI in diabetic patients
(both p < 0.001) [114]. The adiponectin-treated macrophages contained fewer lipid droplets stained by
oil red O [3]. The adipocyte-derived plasma protein adiponectin suppressed macrophage-to-foam cell
transformation by reducing the expression of class A macrophage scavenger receptor at both mRNA
and protein levels [3].

Kubota et al. carried out serum cholesterol efflux studies in individuals with glucose
intolerance [115]. An inverse correlation was found between the cholesterol efflux capability and the
extent of glucose intolerance in an oral glucose tolerance test. An improvement of glucose metabolism
and insulin resistance may ameliorate cholesterol efflux. Interestingly, enhanced cholesterol efflux
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to HDL through the ABCA1 transporter was observed in hypertriglyceridemic patients with type 2
diabetes [116,117]. Further, enhanced efflux of cholesterol from ABCA1-expressing macrophages to
serum was observed in patients with hypertriglyceridemia [118].

4.4. Putative Molecular Anti-Atherosclerotic Effects of Adiponectin

Possible anti-atherosclerotic effects of adiponectin are shown in Figure 3.
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Figure 3. Possible anti-atherosclerotic effects of adiponectin and improvement of lipid/glucose
metabolism by adiponectin. The red words in the red squares show the anti-arteriosclerotic effects of
adiponectin. HDL, high-density lipoprotein; LDL, low-density lipoprotein; PG, plasma glucose; SR,
scavenger receptor; TG, triglyceride.

5. How can We Increase Adiponectin?

5.1. Weight Loss

A systematic review which assessed the consequences of all types of obesity surgery showed that
adiponectin was significantly increased after bariatric surgery [119]. Sibutramine is an anti-obesity
medication whose effects on weight loss have been widely explored. A systematic review and
meta-analysis of available evidence was conducted in order to calculate the effect size of sibutramine
therapy on adipokines [120]. Random-effect meta-analysis evidenced a significant increase of
adiponectin (weighted mean difference (WMD) 9.86%, 95%CI: 1.76, 17.96, p = 0.017) following
sibutramine therapy. A systematic review and meta-analysis of clinical trials that assessed the effect
of a low-calorie diet on adiponectin concentration showed that a weight-loss diet can substantially
increase the overall adiponectin concentration (Hedges’ g = 0.34, 95% CI:0.17–0.50, p < 0.001) [121].

5.2. Exercise

We examined the effects of supervised aerobic exercise on serum adiponectin and lipids in
patients with moderate dyslipidemia. In this study, 25 patients (mean BMI, 24.6 kg/m2; mean age,
39 years; mean total cholesterol, 226 mg/dL; mean TG, 149 mg/dL) without metabolic syndrome,
diabetes, and hypertension underwent a 16-week supervised aerobic exercise program (60 min/day,
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2 to 3 times/week) with moderate exercise intensity [122]. Adiponectin significantly increased by
51% at week 16, although changes in these parameters were not significant at week 8 [123]. Several
meta-analyses have shown that the exercise increased serum adiponectin [124–127], supporting our
study result.

5.3. Nutritional Factors

5.3.1. Vitamins

Vitamin D has been proposed to have anti-inflammatory properties. A meta-analysis was
performed to examine the effect of vitamin D supplementation on adipocytokines in patients with type
2 diabetes [128]. In the meta-analysis of 20 randomized controlled trials (RCTs) (n = 1270 participants),
vitamin D-supplemented groups had lower levels of CRP and TNF α and higher levels of leptin
compared with control groups. However, no differences were observed for adiponectin. Also another
meta-analysis did not indicate a significant effect of vitamin D supplementation on serum adiponectin
levels [123].

A meta-analysis assessed the effects of vitamin K supplementation on a homeostasis model
assessment of insulin resistance (HOMA-IR), fasting plasma glucose and insulin, CRP, adiponectin,
leptin, or IL-6 levels [129]. A total of eight trials involving 1077 participants met the inclusion criteria.
Vitamin K supplementation did not affect insulin sensitivity as measured by HOMA-IR, fasting plasma
glucose and insulin, CRP, adiponectin, leptin, and IL-6 levels.

5.3.2. Polyphenols

Resveratrol is a non-flavonoid polyphenol that naturally occurs as phytoalexin. The shell and
stem of Vitis vinifera L. (Vitaceae) are the richest sources of this compound. A variety of in vitro
and in vivo studies suggested the effectiveness of resveratrol in diabetes [130]. A systematic review
and a meta-analysis of available RCTs to elucidate the role of resveratrol supplementation on
adipokines showed a significant change in serum adiponectin concentrations following resveratrol
supplementation (WMD: 1.10 µg/mL, 95% CI: 0.88, 1.33, p < 0.001) [131].

5.3.3. Carotenoids

Astaxanthin is a naturally occurring red pigmented carotenoid classified as a xanthophyll, found
in microalgae and seafood such as salmon, trout, and shrimp. Astaxanthin as a bioactive compound has
a potential role in the prevention of atherosclerosis and a beneficial effect on adiponectin levels [132].
We performed an RCT of astaxanthin analyzing metabolic parameters. Placebo-controlled astaxanthin
administration at doses of 0, 6, 12, 18 mg/day for 12 weeks was randomly allocated to 61 non-obese
subjects with fasting serum TG of 120-200 mg/dL and without diabetes and hypertension, aged
25–60 years. Serum adiponectin was increased by astaxanthin (12 and 18 mg/day), and changes in
adiponectin correlated positively with HDL-C changes, independent of age and BMI [133].

Carotenoids have been implicated in the regulation of adipocyte metabolism. Canas et al. compared
the effects of mixed-carotenoid supplementation (MCS, which contains β-carotene, α-carotene,
lutein, zeaxanthin, lycopene, astaxanthin, and γ-tocopherol) to those of a placebo on adipokines
in children with obesity [134]. An RCT to evaluate the effects of MCS over 6 months was performed.
Twenty children (6 male and 14 female) with simple obesity (BMI > 90%) and a mean age (± SD) of
10.5 ± 0.4 years, were enrolled. MCS increased total adiponectin and HMW adiponectin compared
with the placebo.

Another study assessed the effects of 280 mL of tomato juice (containing 32.5 mg of lycopene)
consumed daily in addition to a normal diet and an exercise program for 2 months [135]. The tomato
juice supplementation significantly reduced body weight, body fat, waist circumference, and BMI, and
significantly increased serum adiponectin levels. The intervention included 10 weeks of consumption of
a tomato-based diet (≥25 mg lycopene daily) with an intermediate 2-week washout and was performed
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in 70 postmenopausal women with mean age of 57.2 years and mean BMI of 30.0 kg/m2 [136]. After the
tomato intervention, adiponectin concentration increased (ratio 1.09, 95%CI 1.00–1.18), with a stronger
effect observed among nonobese women (ratio 1.13, 95% CI 1.02–1.25).

A positive association between concentrations of β-carotene and adiponectin independent of sex,
age, smoking status, BMI, and waist circumference was observed in non-diabetic obese subjects. [137].
In this cross-sectional study which assessed whether serum carotenoids are associated with HMW
adiponectin in 437 Japanese subjects (116 men and 321 women), serum β-carotene concentrations were
significantly associated with serum HMW adiponectin concentrations in both sexes (standardized β

coefficient = 0.197, p = 0.036 for men; standardized β coefficient = 0.146, p = 0.012 for women) [138].
Serum β-cryptoxanthin levels are lower in overweight subjects than in normal subjects.

An intervention study consisted of a three-week long before-and-after controlled trial, where
β-cryptoxanthin (4.7 mg/day) was given to 17 moderately obese postmenopausal women [139].
Serum HMW adiponectin levels significantly increased after this intervention. An RCT tested the effects
of antioxidant (AOX) supplementation (vitamin E, 800 IU/day; vitamin C, 500 mg/day; β-carotene,
10 mg/day) on insulin sensitivity and adipokines in overweight and normal-weight individuals
(n = 48, aged 18–30 years) [140]. The participants received either AOX or a placebo for 8 weeks.
Adiponectin increased in both AOX groups. In another RCT by the same research group, overweight
(BMI, 33.2 ± 1.9 kg/m2) and comparative normal-weight (BMI, 21.9 ± 0.5 kg/m2) adults, aged 18 to
30 years old (n = 48), were enrolled [141]. Either daily AOX treatment or placebo were administered for
8 weeks to the study subjects who completed a standardized 30-minute cycle exercise bout at baseline
and week 8. Adiponectin was increased in both overweight and normal-weight AOX groups (22.1% vs.
3.1%; p < 0.05) but reduced in placebo groups.

5.3.4. Omega-3 FA

Fish oil, a source of omega-3 FAs, improves insulin sensitivity in animal experiments, but
findings remain inconsistent in humans. A meta-analysis of RCTs determined the effect of omega-3 FA
consumption on circulating adiponectin in humans [142]. Fourteen RCT arms evaluated fish oil (fish oil,
n = 682; placebo, n = 641). Fish oil increased adiponectin by 0.37 µg/mL (95% CI 0.07; 0.67, p = 0.02).
To determine the effects of omega-3 FA supplementation on adipocytokine levels in adult prediabetic
and diabetic individuals, a meta-analysis of RCTs was performed [143]. Fourteen individual studies
(n = 685) were included in the meta-analysis. Omega-3 FA supplementation increased adiponectin by
0.48 µg/mL (95% CI, 0.27 to 0.68; p < 0.00001). In the meta-analysis of RCTs which assessed the effects
of omega-3 FA in women with polycystic ovary syndrome (PCOS), nine trials involving 591 patients
were included. Compared with the control group, omega-3 FA increased adiponectin level (weighted
mean difference (WMD) 1.34; 95% CI 0.51 to 2.17; p = 0. 002) [144]. In the meta-analysis of RCTs
in patients with type 2 diabetes, omega-3 FA increased adiponectin by 0.57µg/mL (95% CI 0.15 to
1.31; p = 0.01) [145]. Another meta-analysis in patients with type 2 diabetes showed a nonsignificant
increase (MD = 0.17 µg/mL (95% CI 0.11 to 0.44)) of adiponectin [146].

5.4. Anti-Diabetic Drugs

5.4.1. Thiazolidinediones

A systematic review which summarizes the evidence of the effect of thiazolidinediones
(pioglitazone and rosiglitazone) on circulating adiponectin levels was performed through a systematic
search in PubMed, Scopus, and Cochrane Library. A significant increase in adiponectin (80-178%) after
thiazolidinediones treatment was observed in all included studies [147]. Our systematic review also
reported that pioglitazone increased serum adiponectin levels [148]. Further, stopping pioglitazone
was associated with a subsequent decrease in adiponectin (from 9.7 ± 9.1 to 5.1 ± 4.5 µg/ml) [149].
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5.4.2. Metformin

To provide high-quality evidence about the effect of metformin on adipocytokines in patients
with PCOS, relevant studies that assessed the levels of adiponectin in patients with PCOS treated with
metformin were reviewed and analyzed [150]. A total of 34 data sets were included, with four different
outcomes, involving 744 women with PCOS. Metformin treatment was associated with significantly
elevated serum adiponectin concentrations [standard mean difference (SMD) −0.43; 95%CI −0.75 to
−0.11]. In a meta-analysis to investigate and determine the role of metformin on serum adiponectin
levels in patients with type 2 diabetes, 18 cohort studies conducted among Asians and Caucasians
from 2004 to 2013 were examined [151]. Post-treatment serum adiponectin levels were higher than
pre-treatment levels in patients with type 2 diabetes (SMD = 0.19, 95% CI 0.09 to 0.30, p < 0.001).

5.4.3. α-Glycosidase Inhibitors

Miglitol, one of α-glycosidase inhibitors, has been reported to increase serum adiponectin
levels [152]. Adiponectin levels were significantly increased by miglitol (p < 0.01), and the significant
increase in adiponectin by miglitol was inversely correlated with the ratio between the 60 minute
change in blood glucose at three months and the change at baseline (r = −0.59, p = 0.02), which
was independent of age, sex, changes in hemoglobin A1c and BMI, and the baseline concentration
of adiponectin [153]. Another α-glycosidase inhibitor, acarbose, has been also reported to lead to
a significant increase of adiponectin [154–156].

5.4.4. Dipeptidyl peptidase-4 inhibitors (DPP4i)

The PubMed, Embase, and Cochrane library databases were searched from inception to February
2016. RCTs evaluating DPP4i (sitagliptin and vildagliptin) versus placebo or an active control drug
in type 2 diabetic patients, lasting≥12 weeks, were identified [157]. Weighted mean differences in
adiponectin levels were calculated by using a fixed- or random-effects model. Ten RCTs, including
1495 subjects, were identified. Compared with the placebo, DPP4i (sitagliptin and vildagliptin)
treatment significantly elevated adiponectin levels by 0.74 µg/mL (95%CI, 0.45 to 1.03), whereas,
the difference was 0.00 µg/mL (95% CI, −0.57 to 0.56) when using an active-comparison.

5.4.5. Glucagon-like peptide-1 (GLP-1) analogues

The GLP-1 receptor agonist liraglutide did not change adiponectin levels in women with
PCOS [158]. Liraglutide reduced HbA1c and adiponectin (all p < 0.05) in patients with non-alcoholic
steatohepatitis [159]. An eight-week liraglutide therapy was associated with an increase in the levels
of adiponectin (4480 vs. 6290 pg/mL, p < 0.002) in patients with type 2 diabetes [160]. However,
liraglutide reduced serum adiponectin levels in Japanese patients with type 2 diabetes [161,162].
Exenatide significantly increased adiponectin levels after three months compared with baseline in
patients with obesity and type 2 diabetes (p < 0.05) [163]. The adiponectin level was significantly
increased by the addition of exenatide (0.39 ± 0.32 vs. −1.62 ± 0.97 µg/mL in exenatide and placebo
groups, respectively, p = 0.045) in patients with poorly controlled type 2 diabetes [164].

5.4.6. Sodium–glucose cotransporter 2 inhibitors (SGLT-2i)

The new drugs for type 2 diabetes SGLT-2i are reversible inhibitor of SGLT-2, leading to a
reduction of renal glucose reabsorption and a decrease of plasma glucose, in an insulin-independent
manner. Since SGLT-2i are proved to be significantly associated with weight loss, we have predicted
that SGLT-2 inhibitors may increase adiponectin [165]. Dapagliflozin, ipragliflozin, and canagliflozin
showed a significant increase of adiponectin [166–172].
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5.4.7. Sulfonyl Urea

In RCTs which investigated the effects of new anti-diabetic drugs (pioglitazone, DPP4i, and
SGLT-2i) on adiponectin, glimepiride, a sulfonyl urea, has been used as a comparator [168,173–178].
Glimepiride is less likely to increase adiponectin than other oral anti-diabetic drugs. To observe the
efficacy and safety of adding glimepiride to an established insulin therapy in poorly controlled type
2 diabetes and to assess the resulting changes in the HMW adiponectin serum levels and glycemia
after glimepiride treatment, 56 subjects with poorly controlled insulin-treated type 2 diabetes were
randomly assigned to either the glimepiride-treated group (n = 29) or the insulin-increasing group
(n = 27) [179]. HMW adiponectin serum levels were significantly increased in the glimepiride-treated
group compared with the insulin-increasing group. Changes in HbA1c were inversely correlated with
changes in serum HMW adiponectin in the glimepiride-treated group (r = −0.452, p = 0.02).

5.5. Hypolipidemia Drugs

5.5.1. Statin

A meta-analysis of 12 RCTs with 16 comparisons and 1042 patients showed that serum adiponectin
was not significantly affected by simvastatin (WMD: 0.42 µg/mL; 95% CI, −0.66 to 1.50 µg/mL) [180].
In a systematic review and meta-analysis of 43 studies, a significant increase in plasma adiponectin
levels was observed after statin therapy (WMD: 0.57 µg/mL, 95% CI: 0.18 to 0.95, p = 0.004) [181].
In subgroup analysis, atorvastatin, simvastatin, rosuvastatin, pravastatin, and pitavastatin were found
to change plasma adiponectin concentrations by 0.70 µg/mL (95% CI: −0.26 to 1.65), 0.50 µg/mL
(95% CI: −0.44 to 1.45), −0.70 µg/mL (95% CI: −1.08 to −0.33), 0.62 µg/mL (95% CI: −0.12 to 1.35),
and 0.51 µg/mL (95% CI: 0.30 to 0.72), respectively.

5.5.2. Ezetimibe

A meta-analysis of 23 RCTs did not suggest any significant effect of adding ezetimibe to statin
therapy on plasma concentrations of adiponectin (SMD 0.34, 95% CI −0.28 to 0.96; p = 0.288) [182].

5.5.3. Fibrate

Out of 12 RCTs comprising 443 cases and 437 controls met the selection criteria for systematic
review, 9 RCTs (399 cases and 401 controls) were included in the meta-analysis. Quantitative data
synthesis revealed a significant effect of fibrate therapy in increasing circulating adiponectin levels
(WMD: 0.38 µg/mL; 95%CI: 0.13 to 0.63 µg/mL; p = 0.003) [183]. In the head-to-head comparison
of fibrates versus statins for the elevation of circulating adiponectin concentrations by a systematic
review and meta-analysis, monotherapies with either fibrates or statins had comparable effects on
circulating concentrations of adiponectin [184].

5.6. Anti-Hypertensive Drugs

Angiotensin II receptor blocker (ARB)

Telmisartan has been proposed to be a promising cardiometabolic ARB due to its unique
PPAR-γ-inducing property. In a meta-analysis of RCTs, the pooled analysis suggested a significant
increase in % changes of adiponectin (0.75; 95% CI, 0.40 to 1.09; p < 0.0001) among patients with
metabolic syndrome randomized to receive telmisartan or control therapy [185]. The pooled analysis
of the 11 trials (1088 patients) demonstrated a statistically significant increase in the percent changes
of adiponectin levels (MD, 15.74%; 95% CI, 4.95% to 26.52%; p = 0.004) with telmisartan relative to
other ARB therapies [186]. A systematic review of the effect of telmisartan on insulin sensitivity in
hypertensive patients with insulin resistance or diabetes was performed [187]. Eight trials involving
a total of 763 patients met the inclusion criteria. Telmisartan was superior to other ARBs in increasing
adiponectin level (MD, 0.93 µg/dL; 95% CI, 0.28 to 1.59 µg/dL; p = 0.005).
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5.7. Summary of Possible Factors Which Increase Circulating Adiponectin Levels

The summary of possible factors which increase circulating adiponectin levels are shown in
Table 1.

Table 1. Possible factors which increase circulating adiponectin levels.

1. Weight Loss

Bariatric Surgery
Sibutramine
Low Calorie Diet

2. Exercise

3. Nutritional Factors

Resveratrol
Astaxanthin
Mixed-Carotenoid Supplementation (β-carotene, α-carotene,
Lutein, Zeaxanthin, Lycopene, Astaxanthin, γ-tocopherol)
Tomato Juice
β-carotene
β-cryptoxanthin
Antioxidant Supplementation (Vitamin E, Vitamin C, β-carotene)
Omega-3 Fatty Acids

4. Anti-Diabetic Drugs

Thiazolidinediones
Metformin
α-Glycosidase Inhibitors (Miglitol, Acarbose)
Dipeptidyl Peptidase-4 Inhibitors
Glucagon-Like Peptide-1Analugues (Liraglutide < Exenatide)
Sodium-Glucose Cotransporter 2 Inhibitors

5. Hypolipidemia Drugs

Statin
Fibrate

6. Anti-Hypertensive Drugs

Angiotensin II Receptor blockers (Telmisartan)

6. Conclusions

Adiponectin reduces inflammatory cytokines and oxidative stress, which lead to an improvement
of insulin resistance. Adiponectin-induced improvement of insulin resistance and adiponectin itself
reduce hepatic gluconeogenesis and glycogenolysis and increase the utilization of glucose and
FA by skeletal muscles, resulting in lower glucose levels. Adiponectin has also β-cell protective
effect. A great number of previous studies demonstrated that adiponectin increases HDL and
decreases TG. Adiponectin increases ABCA1 and LPL and decreases hepatic lipase, which may
elevate HDL. Increased mass and activity of LPL and VLDL-receptor and reduced apo-CIII may
increase VLDL catabolism and result in the reduction of serum TG. Further, adiponectin has various
anti-atherosclerotic properties such as reduction of scavenger receptor in macrophages and increase of
cholesterol efflux. These findings suggest that high circulating adiponectin levels can protect against
atherosclerosis. Weight loss, exercise, nutritional factors, anti-diabetic drugs, hypolipidemic drugs,
and anti-hypertensive drugs have been associated with an increase of serum adiponectin levels.
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Abbreviations

ABCA1 ATP-binding cassette transporter A1
AMPK adenosine monophosphate-activated protein kinase
AOX antioxidant
ARB angiotensin II receptor blockers
BMI body mass index
CAD coronary artery disease
CI confidence intervals
CRP C-reactive protein
CVD cardiovascular diseases
DPP4i dipeptidyl peptidase-4 inhibitors
GLUT-4 glucose transporter-4
G6Pase glucose-6-phosphatase
eNOS endothelial nitric oxide synthase
FA fatty acid
FFA free fatty acids
GLP-1 glucagon-like peptide-1
HDL high-density lipoprotein
HMW high-molecular weight
HL hepatic lipase
HOMA-IR homeostasis model assessment of insulin resistance
HR hazard ratio
HSL hormone-sensitive lipase
IDL intermediate-density lipoprotein
IL interleukin
iNOS inducible nitric oxide synthase
LDL low-density lipoprotein
LPL lipoprotein lipase
MCS mixed-carotenoid supplementation
NADPH nicotinamide adenine dinucleotide phosphate
NF-κB nuclear factor-κB
NO nitric oxide
PCOS polycystic ovary syndrome
PPAR peroxisome proliferator-activated receptor
PEPCK phosphoenolpyruvate carboxy kinase
RCTs randomized controlled trials
S1P sphingosine 1-phosphate
Sd-LDL small dense LDL
SGLT-2i sodium–glucose cotransporter 2 inhibitors
SMCs smooth muscle cells
SMD standard mean difference
SR scavenger receptor
TNF-α tumor necrosis factor-alpha
TG triglycerides
VLDL very low density lipoprotein
VLDL-R very low density lipoprotein receptor
WMD weighted mean difference
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