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Abstract

Background: Alteration in epigenetic methylation can affect gene expression and other
processes. In Prokaryota, DNA methyltransferase genes frequently move between genomes and
present a potential threat. A methyl-specific deoxyribonuclease, McrBC, of Escherichia coli cuts
invading methylated DNAs. Here we examined whether McrBC competes with genome
methylation systems through host killing by chromosome cleavage.

Results: McrBC inhibited the establishment of a plasmid carrying a Pvull methyltransferase gene
but lacking its recognition sites, likely through the lethal cleavage of chromosomes that became
methylated. Indeed, its phage-mediated transfer caused McrBC-dependent chromosome cleavage.
Its induction led to cell death accompanied by chromosome methylation, cleavage and degradation.
RecA/RecBCD functions affect chromosome processing and, together with the SOS response,
reduce lethality. Our evolutionary/genomic analyses of McrBC homologs revealed: a wide
distribution in Prokaryota; frequent distant horizontal transfer and linkage with mobility-related
genes; and diversification in the DNA binding domain. In these features, McrBCs resemble type I
restriction-modification systems, which behave as selfish mobile elements, maintaining their
frequency by host killing. McrBCs are frequently found linked with a methyltransferase homolog,
which suggests a functional association.

Conclusions: Our experiments indicate McrBC can respond to genome methylation systems by
host killing. Combined with our evolutionary/genomic analyses, they support our hypothesis that
McrBCs have evolved as mobile elements competing with specific ggnome methylation systems
through host killing. To our knowledge, this represents the first report of a defense system against
epigenetic systems through cell death.

Genome Biology 2008, 9:R163


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19025584
http://genomebiology.com/2008/9/11/R163
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/

http://genomebiology.com/2008/9/1 I/R163

Background

Recent studies have revealed that epigenetic genome methyl-
ation is associated with many aspects of life processes
through effects on gene expression and other steps [1-3].
Especially, epigenetic methylation is involved in silencing of
selfish genetic elements and other aspects of intragenomic
conflicts. Experimental alteration of epigenetic DNA methyl-
ation systems can cause a wide variety of changes [4-8]; for
example, in Prokaryota, DNA methyltransferase action can
change the transcriptome [7]. Horizontal gene transfer con-
tributes considerably to the building up of prokaryotic
genomes [9,10]. In particular, the DNA methyltransferase
genes frequently move between genomes [11-15] and could,
therefore, present potential threats to prokaryotic genomes,
although they can also be beneficial to bacteria in many ways,
including in cell cycle regulation and cell differentiation [3,8].

Prokaryotic DNA methyltransferases often form a restriction-
modification (RM) system together with a restriction enzyme
[16,17]. Some RM systems behave as mobile elements, as sug-
gested by their amplification, mobility, and involvement in
genome rearrangements, as well as their mutual competition
and regulation of gene expression [13-15,18-21]. Some type II
RM systems cleave chromosomes of their host cells when
their genes are eliminated by a competitor genetic element
[20,22,23], asillustrated in Figure 1a. Such host killing, called
'post-segregational killing' or 'genetic addiction', has been
recognized to be involved in stable maintenance in many
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Host killing by RM systems and by methyl-specific DNases (McrBC) in
competition. (a) When a resident RM gene complex is replaced by a
competitor genetic element, a decrease in the modification enzyme level
results in exposure of newly replicated chromosomal restriction sites to
lethal cleavage by the remaining restriction enzyme molecules. The intact
genome copies will survive in uninfected neighboring clonal cells. (b)
When a DNA methylation system enters a cell and begins to methylate
chromosomal recognition sites, McrBC senses the change and triggers cell
death by chromosomal cleavage. The intact genome copies will survive in
uninfected neighboring clonal cells.
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plasmids [24]. The RM systems have evolved regulatory sys-
tems to suppress their potential to kill the host. When they
enter a new host, they prevent host cell killing by expressing
their methyltransferase first and delaying expression of their
restriction enzyme [19,25-27].

Host chromosome cleavage by RM systems is not trivial. In
general, cleavage of chromosomes by cellular DNases is pre-
vented in various ways: inhibitor binding, compartmentaliza-
tion, proteolysis, DNA modification and DNA structure
specificity. Indeed, host killing by RM systems after loss of
their genes is not always obvious because hosts have appar-
ently adapted to counteract it in various ways. Recombination
repair of chromosomal breakage can reduce the lethal effects
of chromosome cleavage [28]. Host killing by an RM gene
complex is suppressed by a solitary methyltransferase recog-
nizing the same sequence [29,30]. Proteolytic digestion of
restriction enzymes suppresses chromosome cleavage by
EcoKI, a type I RM system, even in the absence of the cognate
methyltransferase [31]. These host defense systems against
RM systems cannot, however, avoid host genome methyla-
tion and its potentially deleterious effects.

In the present work, we provide evidence for the existence of
a group of genetic elements that compete with epigenetic
DNA methylation systems (for example, with DNA methyl-
transferases from RM systems) through host cell killing.
These anti-methylation elements are methyl-specific endode-
oxyribonuclease McrBC of Escherichia coli [32] and its
homologs. McrBC cleaves DNA between two separate RmC (R
= A or G, mC = m4C or m5C) sites in vitro [33], which are mod-
ified by many DNA methyltransferases from different RM
systems [16,17]. This activity was first recognized for restric-
tion of incoming bacteriophage genomes carrying
hydroxymethylcytosine instead of cytosine [34,35]. McrBC
may also protect cells against infection by methylated DNA
elements, such as viral genomes and plasmids, through such
direct cleavage. However, such methylated DNAs are not usu-
ally strongly restricted by McrBC [36,37]; therefore, we
hypothesized that McrBC may mediate suicidal defense in
response to epigenetic genome methylation systems, such as
RM systems, as illustrated in Figure 1b. When such a system
enters the cell and begins to methylate the host genome,
MecrBC would sense these epigenetic changes and trigger cell
death through chromosomal cleavage. Intact (unmethylated)
genomes with merBC genes would survive in the neighboring
clonal cells.

Defense against invasion of genetic elements through cell
death, as illustrated in Figure 1a,b, has been reported for mul-
ticellular eukaryotic cells, such as virus-infected mammalian
cells and plant cells [38]. Similar phenomena against virus
infection have been known for bacteria under the name of
‘phage exclusion' or 'phage abortion' [39]. Bacteriophage
reproduction is aborted by the action of a cell death gene. As
a result, this gene would survive within the clonal cells that
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would, otherwise, all die by secondary infection. For example,
the prr gene in some Escherichia coli strains senses bacteri-
ophage T4 infection and triggers cell death by cleaving host
tRNALs [40].

We first asked whether McrBC-mediated cell death through
cleavage of methylated chromosomes takes place upon entry/
induction of a methyltransferase gene and aborts its estab-
lishment/activation. After obtaining positive experimental
results, we asked how important this role has been in the
spread and maintenance of McrBC genes. Our analyses of
their molecular evolution and genomic contexts support the
hypothesis that, during evolution, they have behaved as
mobile elements. Taken together, these results support our
hypothesis that McrBCs have evolved as mobile elements that
compete with specific genome methylation systems through
host killing.

Results

In the first half of the Results section, we address the first
question of whether McrBC-mediated cell death through
cleavage of methylated chromosomes takes place upon entry/
induction of an epigenetic methyltransferase gene and causes
this gene's establishment/activation to be aborted.

McrBC-mediated inhibition of establishment of a DNA
methyltransferase gene

We first asked about the biological consequences of McrBC,
that is, whether or not establishment of a transferred methyl-
transferase gene is aborted through the action of McrBC. As
the methyltransferase, we chose Pvull methyltransferase
(M.Pvull) of the Pvull RM system. It recognizes CAGCTG and
generates CAGM4CTG [37,41], a target sequence of McrBC

[33].

Several reports have indicated that phages or plasmids carry-
ing a DNA methyltransferase gene could not be propagated in
an mcrBC+ strain of E. coli [42]. Whether the block to propa-
gation is due to repeated methylation of the introduced DNA
and subsequent cleavage [42] or due to host genome methyl-
ation and cleavage, as we have hypothesized in this work, has
not been addressed.

We introduced a plasmid carrying the Pvull methyltrans-
ferase (M. Pvull, CAG™4CTG) gene but lacking Pvull recogni-
tion sites (pEF43 in Table 1) in a quantitative transformation
assay (Figure 2a). The transformation efficiency decreased by
four orders of magnitude in an mcrBC-dependent manner
(Figure 2b). The decrease did not occur in the case of genes
for three other cytosine methyltransferases, M.EcoRII
(Cm5CWGG), M.Ssoll  (Cm5CNGG), and M.BamHI
(GGAT™M4CC), consistent with the sequence specificity of
McrBC [33]. We found that a plasmid carrying a Pvull meth-
yltransferase gene and two Pvull recognition sites was also
inhibited in its establishment by the same order of magnitude
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(date not shown). Our results indicate that methylated sites
on the transferred DNA were not required for the McrBC-
dependent inhibition of its establishment and propagation.
These results demonstrate that McrBC can abort establish-
ment of the transferred element with the methyltransferase
gene and, furthermore, suggest that this is through McrBC-
mediated cleavage of methylated chromosomal DNA, as
opposed to that on the transferred DNA.

The Pvull RM gene complex was found on pPvui, a low-copy
plasmid from Proteus vulgaris [37] that can also replicate in
E. coli [43]. Proteus vulgaris and E. coli both belong to the
Enterobacteriaceae family and also share an ecological niche,
the intestine of humans and related animals. Therefore, these
experiments are intended to reproduce events that are likely
to take place in the natural environment, although they
involved the use of multicopy (ColEi-derived) plasmids.
Transformation of a pPvu1i derivative plasmid carrying
M.Pvull and a drug-resistance gene as a selective marker and
lacking Pvull sites (pEF65 in Table 1) was blocked by McrBC
as strongly as the above multi-copy plasmid (Figure 2b). This
suggests that the strong inhibition is biologically relevant.

McrBC-mediated chromosome cleavage after phage-
mediated transfer of the DNA methyltransferase gene
The above inhibition of establishment of the methyltrans-
ferase gene is likely caused by lethal cleavage of chromosomes
that become methylated. Next, we asked whether McrBC
indeed cleaves host chromosomes in order to abort the prop-
agation of a transfered epigenetic genome methylation gene.
In order to examine this issue, we introduced the M.Pvull
gene into E. coli by a A phage vector.

We first prepared the A phage strain LIK891 with 15 Pvull
sites (Materials and methods) in a host carrying Pvull meth-
yltransferase (Materials and methods). Its modification sta-
tus was confirmed by its resistance to Pvull restriction both in
vitro and in vivo as follows. When the phage genome DNA
prepared from the purified A preparation was reacted with
Pvull, no change was observed in its gel electrophoresis pat-
tern under a condition where unmodified phage genome DNA
was completely cleaved. The Pvull-modified phage prepara-
tion did not show detectable decreases in plaque formation
efficiency in a host carrying the Pvull RM system. In an E. coli
merBC+ strain, the Pvull-modified A phage preparation
showed only a 10-fold decrease in plaque formation efficiency
(Figure 3a). Consistent with previous reports [36,37], this
observation indicates that McrBC cannot efficiently restrict a
methylated phage genome.

However, A phage strain LEF1, which carries the Pvull meth-
yltransferase gene, was restricted 10,000-fold (Figure 3a).
This result agrees with earlier reports indicating that phages
carrying a DNA methyltransferase gene could not be propa-
gated in an mcrBC+ strain of E. coli [43]. As we noted in the
previous section, whether the block to propagation is due to
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Table |

Plasmids

Plasmids Prototype Relevant characteristics Drug resistance Source, reference

pBR322 pBR322 Ap, Tc Laboratory collection [107]
puUCI9 puUCI9 Ap Laboratory collection [108]
PACYCI184 pACYCI84 Cm, Tc Laboratory collection [109]
pSClol pSCIlol Tc National Institute of Genetics [110]
pBADI8 pBR322 Peap Ap National Institute of Genetics [51]
plK8004 pBR322 Notl linker (GCGGCCGC) in Dral site Ap M. Kawai (our laboratory)
PYNEC302 puUCI9 pvullRMC Ap Y Nakayama [19]

PYNEC313 pBR322 pvullRMC Ap Y Nakayama [19]

PYNEC404 pUCI9 bamHIR-MC Ap Y Nakayama [19]

pNY43 pBR322 ecoRIIRM Ap Y Naito [111]

pNY44 pBR322 ssollRM Ap Y Naito [111]

pEFI pBR322 Pgaps pvuliM Ap This work

pEF23 pBR322 Pgaps pvuliM Ap This work

pEF24 pSCI0l Paap> pvullM Ap This work

pEF30 pBR322 bamHIR-MC Ap This work

pEF33 pBR322 No Pvull site Ap, Tc This work

pEF43 pBR322 pwullRMC, no Pvull site Ap This work

pKDI3 OriRy Ap, Km E. coli Genetic Stock Center [90]
pKD46 pSCI101(Ts) ori, araC-Pgap-reda Ap E. coli Genetic Stock Center [90]
pCP20 pSCI10I(Ts) ori, P.-FLP Ap E. coli Genetic Stock Center [112]
pBAD30 pACYCI84 Peap Cm National Institute of genetics [51]
pSl4 pUCI9 sinlRM Ap C. Karreman [113]
pNWI106RM2-3 pBR322 mspIRM Ap New England Biolabs [ 1 14]
pEF46 Paap-mcrBC Cm This work

pUC4K pBR322 Ap, Km Laboratory collection [115]
pEF60 pBR322 Km This work

pPvuCatlé pPvul pPvul ori, pvullM Cm Robert Blumenthal [43]
pPvuCatl|7 pPvul pPvul ori Cm Robert Blumenthal [43]

pEF65 pPvul pPvul ori, pvullM Km This work

pEF67 pPvul pPvul ori Km This work

Ap, ampicillin-resistance; Cm, chloramphenicol-resistance; Km, kanamycin-resistance; Tc, tetracycline-resistance; Ts, temperature-sensitive.

repeated methylation of the introduced DNA and subsequent
McrBC-mediated cleavage [43] or due to host genome meth-
ylation and its McrBC-mediated lethal cleavage has not been
addressed.

When we examined chromosomes of the infected cells by
pulsed-field gel electrophoresis, we observed accumulation of
huge linear DNA corresponding to broken chromosomes
(indicated in Figure 3b in the lanes at 30 and 45 minutes after
infection) and of smaller DNAs of variable size (smear in Fig-
ure 3b in the lane at 45 minutes after infection), which likely
reflect chromosome degradation. Their appearance was
merBC+-dependent (imcrBi lanes in Figure 3b). This observa-
tion strongly suggests that M.Pvull-mediated chromosome
methylation triggered chromosome cleavage by McrBC,
which was followed by chromosome degradation. This, in

turn, indicates that the inhibition of their multiplication (Fig-
ure 3a) is caused by host death.

Parenthetically, we noticed a band deriving from both the
merB- and mcerBC+ strains in the middle of the same gel and
another species at the lowest position from the merBC+ cells
(data not shown). From their mobility, we inferred that these
bands represent the excised circular form and the cleaved lin-
ear form of e14, a defective lambdoid phage [44,45]. Because
e14 has one Pvull site, its linear form is expected to appear
after McrBC-mediated cleavage [46]. Because the lambdoid
phages have similar gene organization [47-49] and regulation
[50], it would not be very surprising if gene expression from
the incoming A somehow led to the expression of the excision
function of e14.

Genome Biology 2008, 9:R163
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Figure 2

McrBC-mediated blocking of establishment of an epigenetic genome
methylation system. (a) Quantitative transformation. Varying amounts of
pUCI9 (2 pg, 20 pg, 200 pg, 2 ng, 20 ng, and 200 ng) were used to
transform E. coli DH5a. by electroporation. Experiments were conducted
in triplicate. (b) Transformation of plasmids carrying the Pvull
methyltransferase gene. Plasmids (100 ng) carrying one of several
modification methyltransferase genes were used to transform E. coli
ER1562 (mcrBl) and ER1563 (mcrBC*). The relative transformation
efficiency was calculated as the ratio of the transformation efficiency of the
test plasmid to that of the empty vector. M.Pvull (ColEl) indicates pEF43,
while M.Pvull (pPvul) indicates pEF65 (Table ). The empty vector for the
latter is pEF67, while that for the former is pEF33. The vector for the
remaining plasmids is pBR322. The measurements from two separate
experiments conducted in duplicate are shown. All (20/20) of the rare
transformants of merBC* by pEF43 examined were found to have lost
McrBC activity.

McrBC-mediated cell death and chromosome
degradation following induction of the DNA
methyltransferase

The above two sets of experiments strongly suggested that
McrBC mediates inhibition of propagation of the Pvull DNA
methyltransferase gene through lethal cleavage of methylated
chromosomes. We next asked whether induction of the Pvull
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Figure 3

McrBC-mediated inhibition of phage growth and chromosome cleavage.
(a) Phage A titer on ER1563 (mcrBC*) divided by its titer on ER1562
(mcrBl) is plotted for two independent experiments. (I) A A strain with |5
Pvull sites (LIK891; see Materials and methods); (Il) the same A strain but
modified by Pvull methyltransferase; (Ill) the same A strain with insertion
of Pvull methyltransferase gene (LEFI). (b) Chromosome degradation in
ER1562 (mcrBl) and ER1563 (mcrBC*). 5 x 108 cells were infected with
LEFI at a multiplicity of infection of 5. At the indicated time intervals (in
minutes) after infection of phage carrying the Pvull methyltransferase gene
(LEFI), chromosomal DNA was prepared and subjected to pulsed-field
agarose gel electrophoresis. M, A DNA ladder.

methyltransferase leads to chromosome methylation fol-
lowed by its McrBC-mediated cleavage and cell death. Fur-
thermore, we asked whether we could find a close correlation
between these three processes: methylation, cleavage and
death.

First, we cloned the pvulIM gene downstream of the arab-
inose-inducible BAD promoter [51]. We prepared host strains
for this experiment based on the work of Khlebnikov et al.
[52]. These authors succeeded in achieving homogeneous
expression from the BAD promoter and obtained a linear
increase in the expression level in response to arabinose con-
centration by deleting araBAD and araFGH operons and
substituting the araE promoter with a constitutive promoter
[52]. We introduced these mutations to construct isogenic
mcerBC+/- strains (BIK18260 and BIK18261 in Table 2). At
three concentrations of arabinose (0%, 0.0002%, and
0.002%) we were able to demonstrate correlation between
genome methylation, genome breakage and cell death (Figure
4) as detailed below.

Progress in genome methylation was measured, in the
mcrBC-negative strain, by resistance to Pvull cleavage in
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Bacteria

E. coli strains

Genotype

Source and/or reference

ER1562
ERI563
BIK 18046
BIK 18051
BIKI8I16

BIK18118
BIK18120
BIK18125
BIK18142

BW27269

BW27535

BIK 18244
BIK 18246
BIK 18248
BIK 18249
BIK 18250
BIK 18252
BIK 18254
BIK 18255
BIK 18256

BIK 18258

BIK 18260
BIK18261
BIK 18282
BIK 18284
BIK 18286
BIK 18288
BIK 18290
BIK18291
BIK 18292
BIK 18293
DH5a

DH5a MCR
DHI10B

JWK1944_2

BIK 18308
BMH71-18 mutS

F-A-endAl thi-| supE44 hsdR2 mcrBI mcrA1272:Tnl0
F-A-endAl thi-| supE44 hsdR2 mcrA1272:Tnl0
ER1562 but Tcs

ER1563 but Tcs

ER 1562 A(recB-recC)::kan

ER1563 A(recB-recC)::kan
ER1562 ArecA::kan
ER1563 ArecA::kan

ER 1562 AaraBAD::kan

laclarrB3 AlacZ4787 hsdR5 14 A(araBAD)567
A(rhaBAD)568A(araFGH)::kan903

laclarrB3 AlacZ4787 hsdR514 A(araBAD)567
A(rhaBAD) 568 g(AaraEp kan P,
BIK 18046 AaraBAD::kan

BIK 18051 AaraBAD::kan

BIK 18046 AaraBAD

BIK 18051 AaraBAD

BIK18046 AaraBAD ¢(AaraEp kan P, ;-araE)
BIK18051 AaraBAD ¢(AaraEp kan P, ;-araE)
BIK18046 AaraBAD ¢(AaraEp P, ;-araE)
BIK18051 AaraBAD ¢(AaraEp P,

BIK 18046 AaraBAD ¢(AaraEp P,
A(araFGH)::kan903

BIK18051 AaraBAD ¢(AaraEp P
A(araFGH)::kan903

BIK 18046 AaraBAD ¢(AaraEp P, 3-araE) A(araFGH)
BIK18051 AaraBAD ¢(AaraEp P, ;-araE) A(araFGH)
BIK 18260 ArecA::kan

BIK18261 ArecA::kan

BIK18260 A(recB-recC)::kan

BIK18261 A(recB-recC)::kan

BIK 18260 ArecA

BIK 18261 ArecA

BIK 18260 A(recB-recC)

BIK 18261 A(recB-recC)

F- A~ ¢ 80 dlacZ AMI5A(lacZYA-argF)U169 deoR
recAl endAl hsdR17 phoA supE44 thi-1 gyrA96 relAl
DH5a Ao(mrr-hsdRMS-mcrBC)

F-araDJ39 A(ara, leu)7697 AlacX74 galU galK rpsL
deoR ¢ 80 dlacZAMI5 endAl nupG recAl mcrA
Ao(mrr-hsdRMS-mcrBC)

laclarrB3 AlacZ4787 hsdR5 14 A(araBAD)567
A(rhaBAD)568 Adcm::kan

DHI10B Adcm::kan

A(lac-proAB) supE thi-I mutS215::Tnl0/F' [traD36
proAB* lacld lacZAM 1 5]

el 3-arakE)

el 3-araE)

el 3-araE)

el s-araE)

New England Biolabs [89]
New England Biolabs [89]
Tcs with fusaric acid
Tcs with fusaric acid

KmR with pKD46-mediated transformation with PCR product from
deletion allele primers and pKD |3 template

KmR with pKD46-mediated transformation with PCR product from
deletion allele primers and pKD 13 template

KmR with pKD46-mediated transformation with PCR product from
deletion allele primers and pKD |3 template

KmR with pKD46-mediated transformation with PCR product from
deletion allele primers and pKD |13 template

KmR with pKD46-mediated transformation with PCR product from
deletion allele primers and pKD 13 template

E. coli Genetic Stock Center [52]

E. coli Genetic Stock Center [52]

Pl from BIKI8116 to ER1562
Pl from BIKI8116 to ERI563
BIK 18244 Kms with pCP20

BIK 18246 Kms with pCP20

Pl from BW27535 to BIK18248
Pl from BW27535 to BIK18249
BIK 18250 Kms with pCP20

BIK 18252 Kms with pCP20

Pl from BW27269 to BIK18254

Pl from BW27269 to BIK 18255

BIK18256 Kms with pCP20
BIK 18258 Kms with pCP20
Pl from BIK 18120 to BIK 18260
Pl from BIK18120 to BIK 18261
Pl from BIKI8116 to BIK18260
Pl from BIKI8116 to BIK18260
BIK 18282 Kms with pCP20
BIK 18284 Kms with pCP20
BIK 18286 Kms with pCP20
BIK 18288 Kms with pCP20

Laboratory collection [91]

S Ohta [92]
Laboratory collection [92]

National Institute of Genetics [I16]

Pl from JW1944-2 to DHI0B
TaKaRa Bio
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Table 2 (Continued)
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Bacteria
JC8679 F-A-supE44 thr-1 ara-14 leuBé A(gpt-proA)62 lacY| AJ Clark [117]
tsx-33 galK2 hisG4 rfbD | mgl-51 rpsL3 1 kdgK5 1 xyl-5
mtl-1 argE3 thi-| recB2 | recC22 sbcA23
BIK 1421 JC8679 mutS215:Tnl0 Pl from BMH71-18 mutS to JC8679
GW2730 thr-1 leu-6 his-4 argE-3 galK2 strA3 [ ilvts tif-1 sfiAl | GC Walker [118]
AlacU169 lexA71::Tn5
BIKI0I6 MCI1060 (pCHR38) C Sasakawa [119]
BIK 1185 GW?2730 but lexA71:Tn5-Gm Central part of Tn5 in GW2730 was replaced by Gm
BIKI016 x GW2730
GC2597 sfiA:Tn5 pyrD thr leu his lac gal malB srl=Tn10 National Institute of Genetics [120]
sfiC str
BIKI1218 JC8679 lexA3(Ind-) malF::Tn10 N Takahashi [121]
BIK 18262 BIK18260 mutS215:Tnl0 Pl from BIK 1421 to BIK18260
BIK 18264 BIK18261 mutS215:Tnl0 Pl from BIK142] to BIK 18261
BIK18270 BIK18260 malF:Tnl0 Pl fromBIK 1218 to BIK 18260
BIK18271 BIK 18260 lexA3(Ind") malF::Tn10 Pl fromBIK 1218 to BIK 18260
BIK 18275 BIK18261 malF:: Tnl10 Pl fromBIK 1218 to BIK 18261
BIK18276 BIK18261 lexA3(Ind”) malF::Tn10 Pl fromBIK 1218 to BIK 18261
BIK 18266 BIK 18260 sulA::Tn5 Pl from GC2597 to BIK 18260
BIK 18268 BIK18261 sulA:Tn5 Pl from GC2597 to BIK 18261
BIK18278 BIK 18260 sulA::Tn5 lexA7 1:Tn5-Gm Pl fromBIK 1185 to BIK18266
BIK 18280 BIK18261 sulA:Tn5 lexA71:Tn5-Gm Pl fromBIK 1185 to BIK 18268

Gm, gentamycin-resistance gene; kan, kanamycin-resistance gene; Kms, kanamycin-sensitive; TcS, tetracycline-sensitive.

vitro (Figure 4a). The cleaved band pattern shows that the
rate of progress of chromosomal DNA methylation after
induction correlates with the concentration of arabinose (Fig-
ure 4a). The lower (0.0002%) concentration resulted in a
delay in methylation of approximately 30 minutes compared
to the higher (0.002%) concentration.

We also followed methylation of a single Pvull site on a multi-
copy plasmid (pEF60 in Table 1) included in the cell. Plas-
mids were extracted from cells (BIK18260) harbouring
PEF60 and pEF24 (inducible M.Pvull gene) and digested in
vitro with Pvull and HindIII, which cuts pEF60 at a single
site. Quantification of the bands showed that the Pvull site
was completely methylated 30 minutes and 60 minutes after
induction with 0.002% and 0.0002% arabinose, respectively
(data not shown). The time to achieve 50% methylation was
about 13 minutes for the higher concentration and about 38
minutes for the lower concentration. They differed by 25 min-
utes. Thus, the methylation observed with the plasmid agreed
well with that observed with the chromosome.

We also observed a low level of Pvull methylation of pEF60
under the repression conditions: 4.1% and 4.3% in one exper-
iment and 5.3% and 6.0% in another; 5% corresponds to 89
sites out of 1,778 Pvull sites in the chromosome of MG1655.
This indicates that Pvull methyltransferase is expressed at a
low level due to slight leakage from the BAD promoter. This is

consistent with earlier reports on this promoter [51,53] and
the difficulty in maintaining restriction enzyme genes under
this promoter in the repressed state in E. coli [54] (M Watan-
abe, F Khan, Y Furuta and I Kobayashi, unpublished observa-
tion).

The induction of Pvull methyltransferase indeed caused
immediate chromosome breakage as detected by pulsed-field
gel electrophoresis in the merBC+ strain (Figure 4b) but not in
the mcrBC- strain (data not shown). With the higher arab-
inose concentration, huge linear DNA molecules (at the mid-
dle point between the well and the 485 kb marker) became
prominent by 15 minutes after the induction, and then they
appeared to gradually shift into smaller fragments. With the
lower arabinose concentration, the huge linear DNA mole-
cules appeared 30 minutes after the induction and decayed in
the same way. The chromosome breakage observed thus cor-
related well with the progress of methylation in the merBC-
strain. Quantification of the DNAs in the well, which likely
represent relatively intact chromosomes, revealed that they
decreased over time after induction (Figure 4c). These
decreases at the different arabinose concentrations correlated
well with the progress of methylation in the merBC- strain.

The chromosome breakage was accompanied by a decrease in
viable cell counts (colony forming units; Figure 4d). The
progress of death was again related to the arabinose concen-
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Expression of Pvull methyltransferase causes chromosome methylation and mcrBC-dependent chromosome breakage and cell death. (a) Confirmation of
chromosome methylation. BIK18260 (mcrB1) cells carrying pEF24 (pvullM under the pBAD promoter; see Table ), were grown in LB broth under
antibiotic selection to the mid-exponential phase, diluted to OD600 = 0.1, and further grown in the presence of 0.002% or 0.002% arabinose (ara) to
induce expression of M.Pvull. At the indicated time intervals (in minutes), chromosomal DNA was prepared, digested with Pvull endonuclease (TaKaRa
Bio), and subjected to pulsed-field agarose gel electrophoresis. M, L. DNA ladder. (b) Chromosome DNA in BIK18261 (mcrBC*) carrying pEF24 after
induction of Pvull methyltransferase. (c) Ethidium-bromide fluorescence in the well was measured for the experiments in (b). (d) Loss of cell viability. The
number of viable cells was monitored in duplicate in two independent experiments. Each value was divided by the value at time zero. (e) Cell shape. The
cells were recovered 60 minutes after addition of a higher (0.002%) concentration of arabinose. They were stained with DAPI to visualize nucleoids and

were observed by phase-contrast (left) and fluorescence (right) microscopy. The scale bar indicates 10 pm.

tration. The stronger induction led to cell death within 15
minutes, while the weaker induction allowed maintenance of
viability for 30 minutes. Many cells appeared as filaments
with multiple nuclei or no nucleus (Figure 4e). Inhibition of
cell growth as measured in OD was also observed in the
merBC+ cells 1-2 h after induction (Figure 5a, lower left), but
not in the repressed state (Figure 5a, upper left).

These results demonstrate a correlation between genome
methylation, chromosome breakage, and cell death upon
induction of Pvull methyltransferase. They strongly suggest
that chromosomal sites methylated by Pvull methyltrans-
ferase are cleaved by McrBC and that this cleavage leads to
cell death.

Effect of mutations in DNA-related genes
If the chromosomal sites methylated by Pvull methyltrans-
ferase are cleaved by McrBC and this cleavage leads to cell

death, mutations in enzymes involved in DNA-related proc-
esses might affect these processes. We examined cell growth
and chromosome changes in several mutants altered in DNA
metabolism in a variety of ways.

RecBCD enzyme is involved in exonucleolytic degradation of
DNA from a double-stranded break and generates a recombi-
nogenic single-stranded DNA end [55]. When bound to this
single-stranded DNA generated by RecBCD or other
enzymes, RecA protein initiates homologous pairing for
recombination repair. RecA bound to single-stranded DNA
also induces SOS genes through cleavage of their LexA
repressor [56]. If RecA and RecBCD are involved in process-
ing and repair of the McrBC-mediated chromosome break-
age, their removal might affect cell survival and chromosome
processing.
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Figure 5 (see previous page)

Effect of recA and recBC mutations on cell growth and chromosome changes. (a) Cell growth. BIK18260 (mcrBl), BIK18261 (mcrBC*), BIK18290 (mcrBI
ArecA), BIK18291 (mcrBC ArecA), BIK 18292 (mcrBI ArecBC) and BIK 18293 (mcrBC* ArecBC), carrying pEF24 (pSCI01::pvullM, see Table I), were grown in
LB broth with 0.2% glucose and selective antibiotics to exponential phase, diluted to OD600 = 0.1 and further grown with or without 0.0002% arabinose.
OD600 was monitored at the indicated time intervals after addition of arabinose. Each value was divided by the value at time zero. (b) Chromosomes in
uninduced cells. BIK18261 (mcrBC*), BIK18291 (mcrBC* ArecA), and BIK 18293 (mcrBC* ArecBC), and their derivatives carrying pEF24 (pSC101::pvullM) were
grown in LB broth with 0.2% glucose and selective antibiotics to exponential phase. Chromosomal DNA was prepared and subjected to pulsed-field
agarose gel electrophoresis. M, A DNA ladder. (c) Chromosomes after induction. Chromosome DNA in BIK 18261 (mcrBC*), BIK18291 (mcrBC* ArecA),
and BIK 18293 (mcrBC* ArecBC), carrying pEF24 (pSC101::pvullM) after induction of Pvull methyltransferase with 0.002% or 0.0002% arabinose. At the
indicated time intervals after induction, chromosomal DNA was prepared and subjected to pulsed-field agarose gel electrophoresis. M1, A DNA ladder;

M2, X DNA cut with HindlIl.

Mutational removal of the host RecBCD/RecA exonuclease/
recombinase machinery affected growth not only in the
induced state but also in the repressed state (Figure 5a). A
likely explanation for the uninduced state is chromosome
methylation by slight expression of Pvull methyltansferase
(see above). We analyzed chromosomes by pulsed-field gel
electrophoresis in strain pairs with and without the Pg,p-
puulIM plasmid in the merBC* background. Our results
shown in Figure 5b clearly indicate plasmid-dependent deg-
radation (smear) in the recBC mutant and plasmid-depend-
ent increase of huge linear DNAs (the thick band in the
midpoint between the well and the 485 kb marker) in the recA
mutant. These results strongly suggest that partial chromo-
some methylation led to McrBC-mediated chromosome
breakage and that RecBCD/RecA machinery repairs this
breakage. The defects in the repair of the McrBC-mediated
chromosome breakage are likely the cause of the delayed
growth of the recA and recBC mutants (Figure 5a).

When the methyltransferase is induced, the RecBC/RecA
mediated break repair presumably delays growth arrest (Fig-
ure 5a). The recA or recBC mutations slightly affected the loss
of cell viability 30 minutes after the induction of methyltrans-
ferase (Table 3). However, the final viability level on exposure
of the genome to methylation was similar to that in the rec+
strain (data not shown).

The chromosomes in these mutants showed changes consist-
ent with the above growth patterns and their known proper-
ties (Figure 5¢). The recBC mutant showed a large amount of
huge broken chromosomes in the uninduced state; these
remained abundant as long as 60 minutes after induction. In
the lower area, which corresponds to smaller broken chromo-
somes, many discrete bands are visible in the recBC mutant.
This is consistent with the process in which the chromosomes
broken by McrBC endonuclease were further degraded by
RecBCD exonuclease. The recA mutant, unlike the rec* strain,
showed more of the huge broken chromosomes even in the
uninduced state. In the rec+ strain, this species became prom-
inent only 15 minutes after induction and disappeared. In the
recA mutant, it remained abundant for 30 minutes but
started decreasing by 45 minutes after induction. The amount
of smaller broken chromosomes in the recA strain was less
than that in the rec* strain, presumably due to degradation by

RecBCD enzyme. No discrete bands are visible in the recA
mutant, which is consistent with rapid and extensive DNA
degradation by RecBCD enzyme. Discrete bands are seen in
the rec* strain but they are not so many as in the recBC
mutant.

These electrophoresis patterns are consistent with the steps
of McrBC-mediated chromosomal breakage, RecBCD-medi-
ated exonucleolytic degradation from the break, and RecA-
mediated homologous pairing for repair. The RecBCD/RecA-
mediated repair was also found for post-segregational killing
by a type II RM system [28]. From the results presented in
Figure 5 and Table 3, we inferred that the RecBCD/RecA-
mediated recombination repair can counteract McrBC's
lethal action to some extent at a low methylation level. How-
ever, chromosome repair by them appears unable to contrib-
ute to cell survival when the genome methylation and the
McrBC-mediated cleavage become extensive. This is similar
to the chromosome cleavage by a mutant EcoRI enzyme
[57,58].

Table 3

Viability loss in various mutants after methyltransferase induc-
tion

Viability (relative)

E. coli strain 0% arabinose 0.0002% arabinose
rect 25,23 1.9, 0.92
ArecA 1.3, 1.7 0.45, 0.31
ArecBC 1.3, 1.2 0.43, 0.59
lexA(Ind-)malF 3.1,25 0.21,0.15
malF- 2.1,2.1 0.85, 0.88
lexA(Def)sulA- 2.1,20 0.96, 0.99
sulA- 2.1,20 1.4, 1.2
mutS- 2.0, 1.8 1.4, 1.2

Viability of several mutant E. coli strains after induction of Pvull
methyltransferase was measured. The number of viable cells was
monitored 30 minutes after addition of the lower concentration
(0.0002%) of arabinose in two independent experiments. Each value
was divided by the value at time zero.
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The RecA/RecBCD function is also involved in the SOS
response as mentioned. The cell filamentation was not
observed in a recA deletion strain (data not shown). This indi-
cates that the cell filamentation we observed represents an
SOS response. In order to assess the effects of the SOS
response on McrBC-mediated growth inhibition and cell
death, we examined SOS-related mutants (Figure 6 and Table
3). Among these, the lexA(Ind-) mutant is defective in SOS
induction, the lexA(Def) mutant is constitutive for SOS induc-
tion, and the mutS mutant shows less background DNA
breaks under some genetic backgrounds [59].

These mutants showed McrBC-dependent growth inhibition
when M.Pvull was induced, but not in the repressed state
(Figure 6). McrBC-mediated inhibition observed in the
lexA(Ind-) mutant was stronger than that in the rec* strain
but not so strong as in the recA strain (Figure 5a). A simple
interpretation of this result is that the defect in repair in the
recA-negative mutant cannot be entirely attributed to the
absence of the SOS response. In other words, RecA is likely to
play a direct role, presumably, in recombination repair. The
lexA(Ind) strain also showed severe loss of cell viability 30
minutes after induction (Table 3). The results with lexA(Def)
are difficult to interpret because the lexA(Def) mcrBi1 strain
showed slow growth. It is known that lexA(Def) mutation
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Figure 6

Effect of SOS-related mutations on cell growth. BIK18262 (mcrBl mutS),
BIK 18264 (mcrBC*mutS), BIK18271 (mcrBl lexA(Ind-)), BIK 18276
(mcrBCtlexA(Ind)), BIK 18278 (mcrB I lexA(Def)), BIK 18280 (mcrBC*
lexA(Def)), carrying pEF24 (pSC101::pvullM; see Table 1), were grown in
LB broth with 0.2% glucose and selective antibiotics to exponential phase,
diluted to OD600 = 0.1 and further grown with or without 0.0002%
arabinose. OD600 was monitored at the indicated time intervals after
addition of arabinose. Each value was divided by the value at time zero.

Genome Biology 2008,  Volume 9, Issue | I, Article R163

delays growth even in the sulA-negative background [60].
This effect could be exaggerated with McrBC-mediated chro-
mosome breakage upon genome methylation. The mutS
mutant was indistinguishable from the rec+ (mutS+) strain in
these measurements. From these results, we inferred that the
SOS response and RecA/RecBCD-mediated DNA recombina-
tion/repair both affect cell death/survival upon McrBC action
on the methylated genome. The repair systems, however, can-
not block cell death upon extensive chromosome methylation
and cleavage. These observations are consistent with our
hypothesis that chromosome methylation leads to its McrBC-
mediated lethal cleavage.

Generality and specificity of McrBC action against
DNA methyltransferases

In order to investigate the generality and specificity of
McrBC-mediated cell death with regard to DNA methyltrans-
ferase specificity, we expressed McrBC in a cell carrying one
of several methyltransferases with different specificities.
First, merBC of E. coli was placed under the Pg,, promoter
(pEF46 in Table 1). As expected, McrBC induction in a cell
harboring another plasmid encoding M.Pvull (CAG™4CTG)
led to cell death in the colony formation assay (Figure 7).
McrBC induction also led to cell death with M.SinI
(GGWm5CC) and M.Mspl (m5CCGG) (Figure 7) but not with
M.Ssoll (Cm5CNGG) (data not shown). These results are con-
sistent with the RmC sequence specificity of McrBC observed
in vitro [33]. Our interpretation is that McrBC has the poten-
tial to act as a defense system against many DNA methyl-
transferases of an appropriate specificity.

Molecular evolutionary analyses of McrB and McrC
reveal their frequent loss and horizontal transfer
between distantly related genomes

The above experimental results provide an answer to the
question we first formulated. It is very likely that McrBC

Uninduced

Induced

Figure 7

McrBC-mediated cell death with DNA methyltransferases. Cells
(BIK18308) harboring pEF46 (Pgap-mcrBC; see Materials and Methods) and
pEF43 (M.Pvull), pSI4 (M.Sinl), pPNW106RM2-3 (M.Mspl), or pBAD30
(vector) were streaked on LB agar plate containing 30 pig/ml
chloramphenicol and 25 pg/ml ampicillin, and 0.2% glucose or 0.2%
arabinose. Plates were incubated overnight at 37°C.
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cleaves host chromosomes and causes cell death upon
genome methylation and that this cell death inhibits propaga-
tion of the methyltransferase gene (Figure 1b). McrBC was
also demonstrated to severely restrict bacteriophages carry-
ing hydroxymethylated C in place of C in their genomes
[34,35,61,62]. Which of these actions of McrBC has been pro-
viding selective advantage for their spread and maintenance
during evolution?

In order to address this question, we focused on the similarity
of McrBC with type IT RM systems in the action of host killing
by chromosome cleavage. As illustrated in Figure 1a, when a
type II RM gene complex is replaced by a competitor genetic
element, its product restriction enzyme will cleave host chro-
mosomes in which methylation decreases and kill the host
(Figure 1a) [22]. This leads to survival of cells retaining the
RM gene complex but not its competitor. The McrBC system
may likewise contribute to exclusion of epigenetic methyla-
tion systems (Figure 1b). A contrast between them is that
MecrBC action follows gain of methylation, as opposed to loss
of methylation.

The potential for host killing by type II RM systems indicates
their relative independence from the host. They act as a unit
of selection and, in this regard, they might be similar to viral
genomes, transposons and other selfish mobile elements.
Indeed, there are now many lines of evidence for the mobility
of type II RM systems [21]. These include molecular evolu-
tionary evidence for their extensive horizontal transfer
between distantly related prokaryotes, carriage by mobile ele-
ments such as plasmids and linkage with mobility-related
genes. Likely due to this mobility, in addition to the ability to
cut incoming DNAs and to fight against competing elements
by host killing, type IT RM systems are widespread through-
out Prokaryota. They are often lost from a genome by various
mutations [21]. They are quite diversified in sequence recog-
nition because of frequency-dependent selection in defense
against incoming DNAs [63] and/or because of mutual com-
petition for recognition sequence in host killing [18]. We
asked whether McrBC homologs show similar properties. If
they do so, we might take it as evidence supporting the
hypothesis that McrBCs have evolved for their ability to kill
the host cell in competition with genome methylation systems
and behave as selfish mobile elements.

In order to address these points and evaluate the above two
hypotheses for McrBC, we examined its evolutionary history.
Using the sequence of McrB and McrC from E. coli as queries
for PSI-BLAST [64] searches, we identified 199 homologous
McrBC-like systems, typically comprising operons with an
mcrB-like gene followed by a merC-like gene (see also below).
These homologs of the McrBC system are widely distributed
in Bacteria and Archaea (Table S1 in Additional data file 1),
like, for example, type I or type II RM systems [17]. If merBC
homologs show a very narrow distribution and this correlates
with distribution of phages with hydroxymethyl C, the phage
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defense hypothesis might be favored. We address these issues
in the Discussion.

Phylogenetic trees calculated from multiple sequence align-
ments of McrB and McrC sequences (Materials and methods)
reveal very similar topologies, suggesting strong co-evolution
of these two proteins (Figure S1 in Additional data file 2).
Nine bootstrap-supported branches reveal relationships
between sequences from different taxons, indicating a very
high probability of distant horizontal gene transfer events,
which is also a feature of evolution of type II RM systems
[15,65]. In the aforementioned cases, McrB and McrC appear
to have experienced joint horizontal transfer.

The mcerBC gene complex in E. coli K12 was suggested to have
been acquired recently [61], which is confirmed by our phylo-
genetic analysis: McrB and McrC from E. coli K12 are not
found in a branch specific to Proteobacteria (top part of the
tree in Figure S1in Additional data file 2), but in a branch that
also includes Acidobacteria bacterium Blin 345 (the closest
homolog of E. coli McrBC), Firmicutes, and Actinobacteria.
In general, McrBC subunits from taxons such as Proteobacte-
ria, Actinobacteria, or Firmicutes form numerous intermixed
branches in the tree, suggesting multiple horizontal gene
transfers followed by vertical dissemination among diverging
species and strains. One example of a branch of functionally
similar enzymes from completely different taxons is provided
by the family of unusual type II RM systems related to McrBC
(including Llal [66], BsuMI [67], LlaJI [68] and their experi-
mentally uncharacterized homologs) that cleave unmethyl-
ated DNA and are accompanied by a pair of type IIS DNA
methyltransferases to protect against the cleavage of their
self-DNA (labelled type II R-like subfamily in Figure S1 in
Additional data file 2).

Another feature revealed by the phylogenetic trees is the pres-
ence of two strongly diverged subfamilies of McrBC-like sys-
tems, one comprising known McrBC (for example, the one
from E. coli K12) and McrB-like systems (for example, the
aforementioned type II enzymes), and the other comprising
solely uncharacterized McrBC-like homologs of unknown
function, with the McrC-like component defined as uncharac-
terized protein family DUF524. It is interesting that members
of these two subfamilies show nearly perfectly complemen-
tary phylogentic distribution, that is, despite their presence in
similar taxons, they do not co-occur in one genome (Table S2
in Additional data file 3 and Table S1 in Additional data file 1),
which probably reflects some degree of their mutual incom-
patibility.

The few events of distant horizontal transfer indicated on the
phylogenetic trees correspond only to those cases where an
MerB (and/or McrC) homolog from one taxon is found to be
embedded in a branch comprising a different taxon (for
example, Deinococcus within Gammaproteobacteria) and
where this branch has bootstrap support >50%. This is a very
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conservative estimation of horizontal gene transfer events.
The trees reveal many other cases of branches with mixed tax-
ons, but their bootstrap support is <50%, indicating lack of
statistical support for the local tree topology. When we com-
pared the McrB and McrC trees with the 16S rRNA trees cal-
culated for the same set of species (Figure S2 in Additional
data file 4), we found numerous disagreements in deep
branches, and agreement only in short branches that connect
closely related species. This analysis suggests that McrBC sys-
tems have been transmitted horizontally numerous times, but
of course they have been also inherited vertically by closely
related groups of organisms radiating from their common
ancestor (for example, by strains of the same species, such as
Streptococcus pneumoniae, Campylobacter jejuni, or Yers-
inia pestis). However, it is very difficult to quantify the rate of
distant horizontal transfer by analyzing a tree with a highly
variable bootstrap support for different nodes; therefore, we
resorted to an independent strategy.

Gojobori and coworkers [69] have published analysis of 116
completely sequenced prokaryotic genomes, in which they
calculated an index of potential distant horizontal transfer for
all genes, by comparing the frequency of 'words' of pentanu-
cleotide length within each gene with the average word fre-
quency of the entire genome. We have obtained an updated
data set for 165 genomes from Dr Nakamura and Dr Gojobori
(personal communication). Among these genomes, 29 con-
tain both McrB and McrC homologs (D. radiodurans con-
tains one additional McrB homolog). We have analyzed the
horizontal transfer index of all genes encoding McrB and
MecrC homologs and found that 9 McrB-homologous genes
(9/30 = 30%) and 10 McrC-homologous genes (10/29 = 35%)
exhibit word frequencies that indicate significant likelihood
of distant horizontal gene transfer. Thus, in the sample of
McrBC systems, for which data are available, approximately
one-third appears to have been derived by a recent horizontal
gene transfer event from a distantly related group. For the
same set of genomes, we also carried out analysis of the hori-
zontal transfer index of genes from two reference house-
keeping' protein families: RecA and RpoB. We found no
members of RecA or RpoB genes in this sample to be pre-
dicted as recently transferred.

We found that the McrBC gene complex tends to be lost quite
frequently, as no higher-order taxon is found in which all
completely sequenced genomes possess this system. Among
567 completely sequenced genomes in which we looked for
MecrB/C homologs, we found MecrB in only 112 cases (19.8%)
and MecrC in 108 cases (19.0%); McrB and McrC were found
together in 107 cases (18.9%). Thus, we conclude that McrBC
systems are frequently transmitted by horizontal gene trans-
fer (in addition to regular vertical transfer), but are also very
frequently lost. This argues against the hypothesis that they
are conserved due only to their utility for defense against
phages or other parasites and favors the hypothesis they
behave as selfish (host-killing) mobile elements.
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Genomic neighborhood analysis of McrBC systems
suggests their mobility and linkage with genome
methylation systems

Type II RM gene complexes are often found on mobile ele-
ments such as plasmids, phages, integrons and genomic
islands [21]. In accord, they are often linked with mobility-
related genes such as transposase homologs and integrase
homologs. We examined the neighbourhoods of mcrBC
homologs expecting to find similar genes.

Genomic neighbourhood analysis (Table S2 in Additional
data file 3; see Table S1 in Additional data file 1 for the com-
plete data set) revealed that McrB and McrC are tightly linked
to each other, suggesting their structure as a single operon.
They are frequently associated with homologs of integrases
and transposases (Table S2 in Additional data file 3 and Table
S1in Additional data file 1). Several McrBC homologs clearly
occur as an insert in an RM gene complex (Figure 8). In addi-
tion, eight McrBC-like systems were found on a plasmid
(Table S1 in Additional data file 1). These three lines of evi-
dence indicate potential mobility of the merBC unit. The
merBC homologs were often linked with RM systems or just
DNA methyltransferases (Table S2 in Additional data file 3),
as first noted for E. coli [70]. The implication of this finding is
discussed below.

Some genomes, such as the Deinococcus radiodurans Ri
genome, contain two mcrBC homologs, sometimes one on a
plasmid and the other in the chromosome. Alignment of these
pairs of McrB homologs found in the same genome revealed
that their amino acid sequences often vary in the amino-ter-
minal region, which is involved in DNA binding [46], suggest-
ing evolutionary shifts in DNA sequence specificity (Figure
9). This parallels the diversity in sequence recognition of type
II restriction and modification enzymes.

To investigate the relationship between the diversity of the
McrB amino-terminal region and sequence recognition, sev-
eral McrBC homologs, STOMcrBC (NP_377078.1) and
STOMcrBC2 (NP_377080.1) from Sulforobus tokodaii str. 7,
TKOMcrBC (YP_183208.1) and TKOMcrBC2 (YP_183422.1)
from Thermococcus kodakaraensis KOD1, and DraMcrBC
(NP_o051672.1) from D. radiodurans R1, were amplified from
genome DNA and cloned into pBAD30 [51]. These mcrBC
homologs did not cause cell death in E. coli at 37°C in the
presence of arabinose in a cell harboring either of the four
DNA methyltransferase genes, M.Pvull (CAGM4CTG), M.SinI
(GGWmsCC), M.Mspl (m5CCGG), or M.Ssoll (Cm5CWGG)
(data not shown). EcoKMecrBC from E. coli caused cell death
sensing genome methylation by M.Sinl (GGWm5CC) and
M.Mspl (m5CCGG) under the same condition (Figure 7).
Therefore, we were unable to link these homologs with the
biology of the organisms.
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merBC-like homologs apparently inserted into an RM gene complex. Open reading frame names indicate enzyme names (REBASE) or locus tags (GenBank).

Discussion

McrBC of E. coli can cleave incoming bacteriophage DNAs
with methylated bases such as hydroxymethylcytosine
[34,35]. This has been thought to be the selective force that
allowed their spread and maintenance. In the present work,
we propose and examine an alternative (but not necessarily
exclusive) hypothesis: when an epigenetic genome methyla-
tion system enters a host, McrBC aborts its establishment by
cleaving the methylated host genome. We hypothesize that
such conflicts with genome methylation systems leading to
the sacrificing of a host cell has been the force that allowed
their evolution.

In order to examine this hypothesis, we first asked whether
such host death through chromosome cleavage in order to
exclude DNA methyltransferase genes could take place at all.
This is not a trivial question because the genome is protected
from cellular DNases by a variety of means (see Background).
Our experiments revealed: McrBC-mediated inhibition of
establishment of an epigenetic methylation gene (on a plas-
mid lacking its methylation site; Figure 2); McrBC-mediated
chromosome cleavage and degradation following entry of the
DNA methyltransferase gene (on a phage genome; Figure 3);
a close correlation between genome methylation by the meth-
yltransferase and McrBC-mediated chromosome cleavage,
degradation and cell death (Figure 4); and that the effects of
mutations in DNA repair-related genes were also consistent

with the occurrence of McrBC-mediated lethal chromosome
cleavage (Figures 5 and 6). These results strongly argue that
the McrBC system can prevent establishment of an epigenetic
methylation system by cleaving methylated chromosomes to
cause death of the host cell (Figure 1b). The methyltransferase
used in our experiments is that of Pvull RM, which was found
in a plasmid from a bacterium closely related to E. coli and
dwelling in the same environment, thus, under conditions
that enable horizontal gene transfer. A derivative of this plas-
mid was demonstrated to be excluded by McrBC (Figure 2b).
These results suggest that these experiments are biologically
relevant.

Another question is how important has such a capacity of host
killing been in evolution. Such a capacity implies that McrBC
is in potential conflict with the host genome just as in the case
of type IT RM systems (Figure 1a). Several type II RM systems
kill the host cell when their genes are replaced by a competing
element, such as an incompatible plasmid and an allelic gene
[20,22,23]. One feature related to such independence from
the host genome is the mobility of these RM systems [14]. Just
as for type II RM systems, McrBC family members have been
shown to be potentially mobile. They have frequently experi-
enced horizontal transfer between distantly related groups,
are often linked with mobility-related genes and are widely
distributed in Prokaryota. Some of them were found on a
plasmid. Their frequent decay is also similar to the decay of
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Dot-plot comparison of intragenomic mcrB paralogs. Amino acid
sequences of a pair of mcrB paralogs within one genome were plotted
against each other.

type II RM systems [71,72]. These evolutionary and genomic
analyses are contrary to the hypothesis that they have been
maintained solely as a faithful tool of defense, directly cleav-
ing incoming DNAs, and favor our hypothesis that they have
evolved as mobile elements that compete with genome meth-
ylation systems through host killing.

How strong is the evidence for the alternative hypothesis of
defense against phages with unusual bases, such as T-even
phages, by direct cleavage? Phages related to T4 in morphol-
ogy have been isolated from enterobacterial species closely
related to E. coli (Klebsiella, Shigella, and Yersinia) and, less
frequently, from Citrobacter, Proteus, Salmonella, and Ser-
ratia. Others propagate on more distantly related bacteria
(Acinetobacter, Aeromonas, Burkholderia, and Vibrios)
[73]. The genomes of the pseudo T-even phage, a subgroup of
T4-like phages only distantly related to T4 that includes col-
iphages and Aeromonas phage, can be digested by restriction
enzymes [74]. This suggests that only limited nucleotide
modifications must be present in their genomes.

Reports of phage genomes with 5mC in place of C are rare: one
for Xanthomonas [75] and the other for Halobacterium, an
Archaeon [76]. This distribution is in apparent contrast to the
wide distribution of McrBC homologs in Prokaryota and
could be taken as evidence against the phage defense hypoth-
esis. This evidence is, however, not very strong because we do
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not know whether there has been an extensive search for
phages with unusual bases, mC and others [77], and because
we do not know the specificity of most of the McrBC homologs
(see below).

Another type IV nuclease, GmrSD, found in an E. coli strain
targets glucosylated hydroxymethyl-C and may have evolved
to cut T4 genome [78]. The resistance of hydroxylmethy-C-
containing phage to restriction enzymes but its sensitivity to
McrBC [79] and the resistance of glucosylated hydroxyme-
thyl-C to GmrSD but its inhibition by T4-coded internal pro-
tein [78] suggest an evolutionary arms race (evolutionary
struggle between competing sets of co-evolving genes that
develop adaptations and counter-adaptations against each
other) between the bacteria and the phage.

The present lines of analyses, combined with examination of
the relationships of McrBC homologs with bacteriophages
with modified bases in ecological and evolutionary contexts,
will help in evaluating these two hypotheses. These two roles
may not be necessarily mutually exclusive.

McrBC family members appear to be quite divergent in
sequence (Figure S1 in Additional data file 2). Such diversity
might be accompanied by diversity in their target recognition.
Indeed, members of one McrBC subfamily have been shown
to be type II like in that they cleave a specific sequence when
unmethylated [66] (Figure S1 in Additional data file 2). The
presence of two merB paralogs diverged in the amino termi-
nus in one genome (Figure 9) is consistent with their diver-
gence in sequence recognition, although our experiments
could not demonstrate this. Such divergence in target recog-
nition could also be a basis for the apparent incompatibility of
the two subgroups, McrBC-like and the DUF524 subfamily.
We imagine that the family of McrBC-like systems may have
evolved a variety of substrate specificities to respond to a vari-
ety of DNA methylation systems.

Unexpectedly, we found that mcrBC homologs are frequently
linked with DNA methyltransferase homologs. Many of them
are from a type I RM system, while some of them are from a
type IIG system (Table 3; Figure 8; Table S1 in Additional
data file 1). The linked methyltransferases are expected to
have a specificity that does not create a target of the McrBC
nuclease. This implies that the McrBC will compete with
other methyltransferases of a specificity different from its
neighbor (linked) methyltransferase. The base specificity of
type I modification enzymes, that is, mA methylation [80], as
opposed to m4C and m5C of McrBC, is consistent with this idea.

Thus, McrBC may be regarded to serve as a player in the com-
petition between different epigenetic genome methylation
systems. The insertion of merBCinto a preexisting type I gene
complex, as inferred from Figure 8, is explained as acquisi-
tion of a helper by the type I system. Such competition proc-
esses may have driven diversification of methyltransferases'

Genome Biology 2008, 9:R163

Fukuda et al. R163.15



http://genomebiology.com/2008/9/1 I/R163

sequence recognition just as competition between type II RM
systems have likely driven diversification of their sequence
recognition [18]. Their linkage may also have led to evolution
of McrBC-like type II RM systems.

Epigenetic methylation often plays a role in intragenomic
conflicts of genetic elements, such as silencing of selfish ele-
ments [1]. The present results and the above argument sug-
gest the possibility that epigenetic systems themselves are
potentially in a mutual conflict.

A gene programming death of its host has advantages under
several conditions. Defense against microbial infection
through cell death has been known for animals, plants and
prokaryotes [38]. A prokaryotic example of phage exclusion
or phage abortion has been known for half a century [39].
Successful infection of a bacterial cell by a phage will lead to
production of progeny virus particles, which would then
infect the neighboring, likely clonal cells. Then, all the clonal
cells and the genes within them might disappear through sec-
ondary infection. However, when the first infected cell carries
a gene that programs death of the infected cell together with
the viral genome, there is no progeny virus production for the
secondary infection. The neighboring sibling cells and their
genomes would survive. Among these genomes is the gene
that programmed the death.

Several type IT RM systems trigger cell death when their genes
are eliminated by a competitor genetic element [20,22,23]
(Figure 1a). There is experimental evidence that one resident
type II RM system aborts establishment of another, incoming
type IT RM system by forcing it to cleave the host genome [19].

Epigenetic genome methylation is involved in transposon
silencing [6,81]. There are examples of involvement of other
types of epigenetic systems in intragenomic conflicts [1]. The
MocrBC case is unique in that it directly relates an epigenetic
modification to cell death through genome cleavage. To our
knowledge, this represents the first report of a defense system
against epigenetic systems through cell death.

Mrr, another methyl-specific deoxyribonuclease, induces cell
death under high-pressure stress, likely through chromosome
breakage [82]. The Mrr gene forms a cassette together with
merBC and the EcoKI type I RM gene complex.

In this article, we treated genes (rather than cells, individual
organisms or genomes) as the unit of selection, adopting var-
ious strategies to increase their frequency [83]. A gene would
increase its frequency if its effects help to do so. This is the
basic view in genetics and evolutionary studies, although it
might sound anthropomorphic. We use the term 'selfish' as
(and only as) 'being a unit of evolutionary selection'. For the
situations shown in Figure 1a,b and in programmed death
upon infection (see above), expressions such as 'the altruistic
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cell death is indeed programmed by a selfish gene' are concise
and to the point.

The above genes programming death of their host bacterial
cell are expected to increase in frequency because of the
advantage. However, this argument needs mathematical jus-
tification in the domain of evolutionary game theory. The ulti-
mate players of these games must be the genes. For the type
of host killing genes illustrated in Figure 1a (addiction or
post-segregational killing genes, including type II RM sys-
tems), an earlier attempt was unable to demonstrate their
spread [84]. This analysis used a model lacking spacial struc-
ture, such as a well-mixed liquid culture, where every cell can
potentially interact with every other cell. We demonstrated
that these genes can increase in frequency if spacial structure
is present (that is, if the habitat is structured) so that a cell
preferentially interacts with its neighbors [85]. Their increase
also depended on the relative cost of the host-killing gene
(and its competitor) on the host and on their rate of horizon-
tal transfer.

The merBC action (Figure 1b) of host killing in competition
with the incoming methylation system is formally very similar
to this genetic addiction (Figure 1a). We expect that merBC
genes would increase: in the presence of spacial structure (in
a structured habitat); if the methylation is costly relative to
merBC genes; and if merBC genes transfer at a high rate. The
second point implies that a methylation system beneficial to
the host because of its function (see Background) would not
be eliminated. The third point is related to the frequent hori-
zontal transfer of merBC genes. Mathematical treatment and
simulation more specialized to McrBC would help to identify
conditions for evolution of this form of programmed cell
death and to allow broader interpretations of the role of these
genes.

In this work, the term epigenetic indicates 'not genetic but
heritable through DNA replication' and is used to distinguish
among three modes of DNA methylation: genetic methyla-
tion, for example, in the biosynthesis of dTMP from dUMP,
then incorporation into DNA by the replication machinery;
epigenetic methylation, such as in 5-methylcytosine (m5C),
N4-methylcytosine (m4C) and N6-methyladenine (m6A),
which is inherited by maintenance methylation after DNA
replication; and non-genetic and non-epigenetic methylation
as, for example, in O6-methylguanine. It is known that the
non-epigenetic and non-genetic DNA methylation in O6-
methylguanine triggers cell death [86].

Exogenous expression of mouse DNA methyltransferases
induces lethality in Drosophila and Xenopus [87,88]. The
underlying mechanisms and biological significance of such
deaths in these heterologous systems remain unclear.
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Conclusion

The observations and considerations presented in this study
are consistent with our hypothesis that McrBC-like systems
have evolved and are maintained because they would com-
pete with particular epigenetic genome methylation systems
by sacrificing their host cell through chromosome cleavage.
They can be regarded as selfish mobile elements. This repre-
sents, to our knowledge, the first analysis of programmed
death machinery protecting the genome from epigenetic sys-
tems.

Materials and methods

Bacteria and plasmids

All the bacterial strains used were derivatives of E. coli K-12
and are listed in Table 2. The AaraBAD, ArecA and ArecBC
mutations were introduced into ER1563 [89] using a pub-
lished procedure [90]. The AaraBAD mutation is a deletion of
the AaraBAD operon and was generated using the Hi-ara
(GGTTTCGTTTGATTGGCTGTGGTTTTATACAGTCATTACT
GCCCGTAATAGTGTAGGCTGGAGCTGCTTC) and H2-ara-
BAD (GGCGTCACACTTTGCTATGCCATAGCATTTTTATCC
ATAAGATTAGCGGAATTCCGGGGATCCGTCGACC) prim-
ers. The ArecA mutation is a deletion of the recA gene and was
created using the previously described primers [90]. The
ArecBC mutation is a deletion from recB through recC and
was generated using the Hi-recBC (TTCATTACGCCTCCTC-
CAGGGT CATACCGGCAAACATCTCATCCATCAGGGTGTA
GGCTGGAGCTGCTTC) and H2-recBC (TCAGAGCCGCTATG
TTAAGGGTCTACCATTCCAATCGTCTGGACGTGCTATTC-
CGGGGATCCGTCGACC) primers. E. coli DH5a [91] and
DH5a MCR [92] were used for plasmid construction. Other
mutations were introduced by P1 transduction [93].

All the plasmids used are listed in Table 1. A 1,200 bp frag-
ment including the pvulIM gene without the SD sequence
was amplified from pYNEC302 [19] using the M.PvullI-1 (5'-
GgaattcGAATTCGGGCTGATAAAGGATTT-3") and M.Pvull-
2 (5-GGggtaccGGTACCTTTGCTGAGGCGGTTTT-3") prim-
ers. Each PCR primer has an introduced restriction site, for
Kpnl and EcoRI, respectively, at the 5' end (small letters). The
fragment was digested with Kpnl and EcoRI and then
inserted into pBAD18 [51] to generate pEF1 (Py,p-pvulIM;
ColE1; Ap). pIK8004 was constructed by Mikihiko Kawai by
inserting a Notl linker (GCGGCCGC, TaKaRa Bio, Otsu,
Shiga, Japan) into the Dral site of pBR322 (Mikihiko Kawai,
personal communication). pEF23 (PBAD-pvulIM; ColE1;
Ap) was constructed by ligating a ClaI-Sall fragment of
pIK8004 and a ClaI-Sall fragment of pEF1. The pEF24 plas-
mid (Pgp-pvulIM; pSC101; Ap) was constructed by ligating
the smaller Smal-EcoRV fragment of pSC101 and a NotI-Sall
fragment of pEF23. pEF30 was constructed by joining the
EcoRI-HindIII fragment that contained the BamHI RM gene
complex of pYNEC404 to the larger EcoRI-HindIII fragment
of pBR322. pEF33 was constructed by eliminating a Pvull site
in the rop gene of pBR322 by mutation of Ser51 (AGC to
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AGT). pEF43 was constructed by ligating a KpnI-EcoRI frag-
ment of pEF1 with the larger KpnI-EcoRI fragment in pEF33.

A 2.4 kb fragment including the mcrB and mcrC gene was
amplified from E. coli ER1563 using the EcoKMcrBC-for (5'-
GGGggtaccATGGAATCTATTCAACCCTGGATTG-3") and
EcoKMcrBC-rev  (5'-GGGgtegacTTATTTGAGATATTCATC-
GAAAATG-3') primers. Each PCR primer has an introduced
restriction site for KpnlI or Sall at the 5' end (small letters).
The fragment was digested with KpnlI and Sall and then
inserted into pBAD30 [51] to generate pEF46. pEF60 was
constructed by deletion of the Dral-Stul fragment, including
the ampicillin-resistance gene, through Dral and Stul cleav-
age followed by self-ligation.

Genomic DNA was obtained from Issei Narumi for D. radio-
durans R1, Toshiaki Fukui for T. kodakaraensis, and Yutaka
Kawarabayashi for S. Tokodaii str. 7. Other merBC homologs
were similarly amplified from the genomic DNAs using
DraMcrBC-for  (5'-GGGggtaccATGAGCGACGCTGCCATT-
TCGTGTT-3') and DraMcrBC-rev (5-GGGgtcgacTCAGGT-
CAAGACCGAAGCTGGCCAT-3"), TkoMerBC-for (5'-GGG
ggtaccGTGGGCAGATTTGAGATTTCCGAAA-3") and TkoM-
crBC-rev (5'-GGGgtcgacTTAAACCTCTCCCGAAGAGCAGA
GG-3"), TkoMcrBC2-for (5'-GGGggtaccATGAATCAATCAGT-
TATAATAGATG-3") and TkoMcrBC2-rev (5-GGGgtcgac-
CTAGTTTATTAGCGAATTTAGATAA-3"), StoMcrBC-for (5'-
GGGggtaccGTGAACAAAAGAGATATACAACTAC-3") and
StoMcrBC-rev (5'-GGGgtcgacTTAGATTTTACGATTTTCGCC
TTTT-3'), or StoMcrBC2-for (5'-GGGggtaccGTGAGGTTAA-
GAAAAAGAGATCTAG-3") and StoMcrBCa-rev (5'-GGGgtc-
gacTTAACTAATAATACCTTTTTTCTT-3') primers.

A Sall-PstI fragment of pPvuCat16 (pPvu1 ori, pvulIM) and
pPvuCat17 (pPvu1 ori) [43] carrying the cat gene was replaced
by a PCR-generated fragment carrying the kan gene from
pUC4K to generate pEF65 (pPvui ori, pvulIM) and pEF67
(pPvu1 ori), respectively. The kan fragment was amplified
using kan-for (5-ACGCgtcgacGTTGTGTCTCAAAATCTC-3")
and kan-rev (5-TTctgcagAACCAATTCTGATTAGAAAA-3")
primers.

Phages

A phage strain LIK891 was as described [94]. This phage pos-
sesses a single site for HindIII located near the int gene, a
deletion between EcoRI sites 1 and 2, immunity substitution
from phage 21 (immz21), and deletion between Sall sites,
which inactivates the red and gam genes. A phage strain
LIK891 carries 15 Pvull sites. M.Pvull-modified A LIK891
was prepared on ER1562 (pYNEC313 = pBR322::pvulIRMC)
by the plate lysate method [95], while its unmodified version
was prepared on ER1562. A phage strain LEF1 was con-
structed by inserting a Hind III fragment of pYNEC301 into
the HindIII site of LIK891.
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The modification status of the phage was confirmed by resist-
ance to Pvull restriction endonuclease both in vitro and in
vivo. A phage prepared by the plate method (see above) was
purified by ultra-centrifugation [96]. The phage genome DNA
was purified from the A preparation using a A DNA purifica-
tion kit (TaKaRa Bio), digested with Pvull (TaKaRa Bio), and
subjected to pulsed-field agarose gel electrophoresis. Pvull
treatment introduced no detectable change in electrophoresis
pattern for Pvull-modified A LIK891 and LEF1 DNAs when it
completely cleaved unmodified A LIK891 DNA (date not
shown). Pvull-modified A LIK891 and LEF1 showed no
decrease in plaque formation efficiency in ER1562
(PYNEC313 = pBR322:pvulIRMC) compared to that in
ER1562, although the unmodified A LIK891 was restricted
severely to a relative plaque formation efficiency of 4 x 106.

For the phage plaque assay, an overnight culture of E. coli was
diluted 100-fold and grown to mid-exponential phase at 37°C
with aeration in A polypepton broth (Nihon Seiyaku, Chiyoda-
ku, Tokyo, Japan) with 0.2% maltose and 10 mM MgSO,.
Phage was appropriately diluted and mixed with 100 pl of the
fresh culture. After incubation at 37°C for 30 minutes, the
phage-bacteria complex was mixed with 2 ml of A polypepton
top agar and poured on X polypepton agar plate. After incuba-
tion at 37°C for 18 h, plaques were counted.

Plasmid preparation and quantitative transformation
Plasmid DNA was purified using a QTAGEN kit (Qiagen, Ger-
mantown, MD, USA). To confirm the accuracy of transforma-
tion, varying amounts of pUC19 plasmid DNA were
transformed into E. coli DH5a by electroporation with a Gene
Pulser (Bio-Rad, Hercules, California, USA), as described
[97]. Various amounts of pACYC184 plasmid were added to
give a total DNA amount of 200 ng.

For comparison of plasmids, 100 ng of plasmid DNA, purified
by cesium chloride-ethidium bromide centrifugation, was
used. The number of transformants was determined by
spreading an aliquot on agar plates containing ampicillin (50
ug/ml). Relative transformation efficiency to the vector was
calculated to normalize the transformation efficiency
between strains.

Induction of Pvull methyltransferase

Overnight cultures carrying pEF24 (PBAD-pvulIM; pSC101;
Ap) were diluted 100-fold and grown at 37°C in Luria-Bertani
(LB) medium containing 25 ug/ml ampicillin and 0.2% glu-
cose. When the cultures reached the mid-exponential phase,
the cultures were adjusted to OD600 = 0.1 in fresh medium
containing 25 pug/ml ampicillin and 0.0002% or 0.002% ara-
binose. The cultures were appropriately diluted to maintain
them at the exponential phase. To measure colony-forming
units, cells were diluted in LB with 0.2% glucose and spread
on LB agar with 0.2% glucose.
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Preparation of chromosomal DNA

Cells were lysed within an agarose gel by modification of a
published method [98] as follows. The cells were mixed with
2,4-dinitrophenol to block energy metabolism at the indi-
cated time intervals (in minutes) after the induction of Pvull
methyltransferase. After centrifugation, the pellet was
washed twice with suspension buffer (10 mM Tris-HCl (pH
8.0), 20 mM NaCl and 50 mM EDTA). The cells were mixed
with an equal volume of the same buffer containing 2% low-
melting agarose (SeaPlaque GTG agarose, FMC Bioproducts,
Rockland, Massachusetts, USA), pipetted into a plug mold
(Bio-Rad), and allowed to cool. The resulting plugs were incu-
bated at 37°C for 2 h in lysozyme solution (lysozyme (1 mg/
ml), sodium deoxycholate (0.2%), sodium lauryl sarcosinate
(0.5%), 10 mM Tris-HCI (pH 8.0), 50 mM NaCl, 10 mM
EDTA). The plugs were then washed twice with sterilized
water, incubated at 50°C for 15 h in proteinase K solution
(100 mM EDTA (pH 8.0), sodium deoxycholate (0.2%),
sodium lauryl sarcosinate (1%) and proteinase K (1 mg/ml)),
and washed with wash buffer (20 mM Tris-HCI (pH 8.0) and
50 mM EDTA). For Pvull restriction enzyme digestion, the
plugs were washed in 2 mM PMSF (Phenylmethylsulfonyl flu-
oride) in 10 mM Tris-HCI (pH 8.0) and 1 mM EDTA to inacti-
vate residual Proteinase K and incubated in 500 pl of the 1x
M buffer (TaKaRa Bio) and 50 units of Pvull (TaKaRa Bio)
per plug at 37°C for 15 h. After incubation, the plugs were
washed with the wash buffer.

Pulsed-field gel electrophoresis

Samples were subjected to pulsed-field gel electrophoresis in
a CHEF-DR III System (Bio-Rad) under the following condi-
tions: 18 h or 12 h run time, 5- to 40-s of switch time ramp,
120° included angle, 6 V/cm, 0.5% Tris-borate-EDTA buffer
(0.045 M Tris-borate, 0.01 M EDTA), 14°C, 1.2% Certified
Megabase agarose (Bio-Rad). For size markers, a A DNA lad-
der (Bio-Rad) and A DNA/HindIIT markers were used. After
the run, the gel was stained with ethidium bromide for 1 h,
destained in water, and examined using a FLA-5100 image
analyzer (Fujifilm, Minato-ku, Tokyo, Japan). The fluores-
cence response of each well was determined using the profile
analysis feature of the Image Gauge software (Fujifilm). Back-
ground was subtracted.

Microscopic observation

Cells were mixed with an equal volume of methanol-formal-
dehyde (2:1). After incubation on ice for 10 minutes, the cells
were collected by centrifugation, resuspended in 10 mM Tris-
HCI (pH 7.5) and 10 mM MgSO,, and stained with DAPI (4',6-
diamidino-2-phenylindole dihydrochloride). The cells were
observed using a fluorescence microscope.

Phylogenetic analysis

MecrB and McrC homologs were identified by PSI-BLAST [64]
searches of the GenBank database. Multiple sequence align-
ments were constructed by iterating automated alignment
construction with MUSCLE [99] and manual correction until
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all conserved regions had been satisfactorily aligned. Incom-
plete protein sequences that lacked more than 50% conserved
regions have been omitted from further analyses. MEGA4
[100] was used to calculate Minimum Evolution phylogenetic
trees of McrB and McrC families for conserved regions with
<5% gaps, using the following options: JTT matrix, 1,000
bootstrap replicates, Close Neighbor Interchange level = 2,
with initial trees calculated by the neighbor-joining method.

The alignment of 481,650 16S rRNA sequences was obtained
from the RDP database [101]. Only one representative
sequence per genome (113 sequences total) was retained for
further analysis. Missing sequences were retrieved manually
from the GenBank database, and subsequently aligned to the
partial 16S rRNA alignment from the RDP. The multiple
sequence alignment was refined by hand to remove truncated
variants. The final alignment comprising 154 16S rRNA
sequences was used to calculate the Minimum Evolution tree
with MEGA 4.0 (Maximum Composite Likelihood, 1,000
bootstrap replicates). The dot-plot analysis of amino acid
sequences was performed by DNASIS (Hitachi Software
Engineering, Shinagawa-ku, Tokyo, Japan) with the follow-
ing parameters: check size = 10, matching size = 6.

Neighbourhood analysis

The merB neighborhood has been defined as 10,000 base
pairs upstream and 10,000 base pairs downstream of the
translation start and stop codons of the mcrB-like gene. The
corresponding DNA sequences together with the protein
sequences encoded within their boundaries were retrieved
from GenBank [102]. For all proteins encoded in the McrB
neighborhood, the ultra-sensitive HHSEARCH program for
detection of homology [103] was used to search for amino
acid sequence similarity against the PFAM database of pro-
tein families and domains. A membership in a top-scoring
protein family was assigned to a given McrB neighbor only for
matches with an e-value = 0.001; in all the remaining cases,
the sequences have been considered unassigned. Analogous
homology assignments have been made for all protein
sequences in three representative genomes: E. coli K12 [104],
Bacillus subtilis [105], and Pyrococcus abyssi [106].

Abbreviations
DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; LB:
Luria-Bertani; RM: restriction-modification.
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Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1is a table (Table S1)
listing the genomic contexts of mcrB homologs. Additional
data file 2 is a figure (Figure S1) of phylogenetic trees of McrB
and McrC. Additional data file 3 is a table (Table S2) listing
neighbors of mcrB homologs. Additional data file 4 is a figure
(Figure S2) of a phylogenetic tree of the 16S rRNA gene.

Acknowledgements

We are grateful to Mikihiko Kawai, Robert Blumenthal, and Chihiro Sasa-
kawa for the gift of plasmids, Issei Narumi, Toshiaki Fukui, and Yutaka
Kawarabayashi for the gift of genomic DNA, Shigeo Ohta for providing
DH5a MCR, Yoji Nakamura and Takashi Gojobori for providing unpub-
lished results, and lkuo Uchiyama for discussion. Allan Campbell, Shoji
Tajima and Hiroyuki Sasaki provided critical comments on an early manu-
script. This work was supported by the 'Ground-based Research Program
for Space Utilization' promoted by the Japan Space Forum and 'Grants-in-
Aid for Scientific Research’ (15370099, 17310113, 19657002) from JSPS.
KHK was supported by the EU 6th Framework Programme (MRTNCT-
2005-019566). JMB was supported by the NIH (Fogarty International
Center grant RO3 TWO007163-01).

References

. Wilkins JF: Genomic imprinting and methylation: epigenetic
canalization and conflict. Trends Genet 2005, 21:356-365.

2. Kato Y, Sasaki H: Imprinting and looping: epigenetic marks
control interactions between regulatory elements. Bioessays
2005, 27:1-4.

3. Casadesus |, Low D: Epigenetic gene regulation in the bacterial
world. Microbiol Mol Biol Rev 2006, 70:830-856.

4. Li E, Bestor TH, Jaenisch R: Targeted mutation of the DNA
methyltransferase gene results in embryonic lethality. Cell
1992, 69:915-926.

5. La Salle S, Mertineit C, Taketo T, Moens PB, Bestor TH, Trasler JM:
Windows for sex-specific methylation marked by DNA
methyltransferase expression profiles in mouse germ cells.
Dev Biol 2004, 268:403-415.

6. Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani
T: Mobilization of transposons by a mutation abolishing full
DNA methylation in Arabidopsis. Nature 2001, 411:212-214.

7. Srikhanta YN, Maguire TL, Stacey K|, Grimmond SM, Jennings MP:
The phasevarion: a genetic system controlling coordinated,
random switching of expression of multiple genes. Proc Natl
Acad Sci USA 2005, 102:5547-5551.

8. Wion D, Casadesus J: N6-methyl-adenine: an epigenetic signal
for DNA-protein interactions. Nat Rev Microbiol 2006, 4:183-192.

9.  Médigue C, Viari A, Hénaut A, Danchin A: Escherichia coli molec-
ular genetic map (1500 kbp): update Il. Mol Microbiol 1991,
5:2629-2640.

10. Médigue C, Rouxel T, Vigier P, Hénaut A, Danchin A: Evidence for
horizontal gene transfer in Escherichia coli speciation. | Mol
Biol 1991, 222:851-856.

1. Gunthert U, Trautner TA: DNA methyltransferases of Bacillus
subtilis and its bacteriophages. Curr Top Microbiol Immunol 1984,
108:11-22.

12. BujnickiJM, Radlinska M: Molecular evolution of DNA-(cytosine-
N4) methyltransferases: evidence for their polyphyletic ori-
gin. Nucleic Acids Res 1999, 27:4501-4509.

13.  Nobusato A, Uchiyama |, Ohashi S, Kobayashi I: Insertion with long
target duplication: a mechanism for gene mobility suggested
from comparison of two related bacterial genomes. Gene
2000, 259:99-108.

14. Kobayashi I: Behavior of restriction-modification systems as
selfish mobile elements and their impact on genome evolu-
tion. Nucleic Acids Res 2001, 29:3742-3756.

I15. Nobusato A, Uchiyama |, Kobayashi |: Diversity of restriction-
modification gene homologues in Helicobacter pylori. Gene
2000, 259:89-98.

16. REBASE [http://rebase.neb.com/rebase/rebase.html]

Genome Biology 2008, 9:R163

R163.19


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15922835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15922835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15612042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15612042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16959970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16959970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1606615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1606615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15063176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15063176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11346800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15802471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15802471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15802471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16489347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16489347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1779754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1779754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1762151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6325095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10536161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10536161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10536161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11557807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11557807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11557807
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163966
http://rebase.neb.com/rebase/rebase.html

http://genomebiology.com/2008/9/1 I/R163

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.
40.

Roberts R}, Vincze T, Posfai J, Macelis D: REBASE - enzymes and
genes for DNA restriction and modification. Nucleic Acids Res
2007, 35:D269-D270.

Kusano K, Naito T, Handa N, Kobayashi I: Restriction-modifica-
tion systems as genomic parasites in competition for specific
sequences. Proc Natl Acad Sci USA 1995, 92:11095-11099.
Nakayama Y, Kobayashi I: Restriction-modification gene com-
plexes as selfish gene entities: roles of a regulatory system in
their establishment, maintenance, and apoptotic mutual
exclusion. Proc Natl Acad Sci USA 1998, 95:6442-6447.

Sadykov M, Asami Y, Niki H, Handa N, Itaya M, Tanokura M, Koba-
yashi |: Multiplication of a restriction-modification gene com-
plex. Mol Microbiol 2003, 48:417-427.

Kobayashi I: Restriction-modification systems as minimal
forms of life. In Restriction Endonucleases Edited by: Pingoud A. Ber-
lin/Heidelberg: Springer-Verlag; 2004:19-62.

Naito T, Kusano K, Kobayashi I: Selfish behavior of restriction-
modification systems. Science 1995, 267:897-899.

Handa N, Nakayama Y, Sadykov M, Kobayashi |: Experimental
genome evolution: large-scale genome rearrangements
associated with resistance to replacement of a chromosomal
restriction-modification gene complex. Mol Microbiol 2001,
40:932-940.

Kobayashi I: Genetic addiction - a principle in symbiosis of
genes in a genome. In Plasmid Biology Edited by: Phillips G, Funnell
B. Washington, DC: ASM Press; 2004:105-144.

Tao T, Blumenthal RM: Sequence and characterization of
pvullR, the Pvull endonuclease gene, and of pvullC, its regu-
latory gene. | Bacteriol 1992, 174:3395-3398.

Som S, Friedman S: Autogenous regulation of the EcoRIl meth-
ylase gene at the transcriptional level: effect of 5-azacytidine.
EMBO J 1993, 12:4297-4303.

Mruk |, Blumenthal RM: Real-time kinetics of restriction-modi-
fication gene expression after entry into a new host cell.
Nucleic Acids Res 2008, 36:2581-2593.

Handa N, Ichige A, Kusano K, Kobayashi I: Cellular responses to
postsegregational killing by restriction-modification genes. |
Bacteriol 2000, 182:2218-2229.

Takahashi N, Naito Y, Handa N, Kobayashi I: A DNA methyltrans-
ferase can protect the genome from postdisturbance attack
by a restriction-modification gene complex. | Bacteriol 2002,
184:6100-6108.

Ohno S, Handa N, Watanabe M, Takahashi N, Kobayashi I: Mainte-
nance forced by a restriction-modification system can be
modulated by a region in its modification enzyme not essen-
tial for the methyltransferase activity. | Bacteriol 2008,
190:2039-2049.

Makovets S, Doronina VA, Murray NE: Regulation of endonucle-
ase activity by proteolysis prevents breakage of unmodified
bacterial chromosomes by type | restriction enzymes. Proc
Natl Acad Sci USA 1999, 96:9757-9762.

Luria SE, Human ML: A nonhereditary, host-induced variation
of bacterial viruses. | Bacteriol 1952, 64:557-569.

Sutherland E, Coe L, Raleigh EA: McrBC: a multisubunit GTP-
dependent restriction endonuclease. | Mol Biol 1992,
225:327-348.

Fukasawa T: The course of infection with abnormal bacteri-
ophage T4 containing non-glucosylated DNA on Escherichia
coli strains. | Mol Biol 1964, 9:525-536.

Revel HR: Restriction of nonglucosylated T-even bacteri-
ophage: properties of permissive mutants of Escherichia coli
B and K12. Virology 1967, 31:688-701.

Kelleher JE, Raleigh EA: A novel activity in Escherichia coli K-12
that directs restriction of DNA modified at CG dinucle-
otides. | Bacteriol 1991, 173:5220-5223.

Blumenthal RM, Gregory SA, Cooperider |S: Cloning of a restric-
tion-modification system from Proteus vulgaris and its use in
analyzing a methylase-sensitive phenotype in Escherichia coli.
J Bacteriol 1985, 164:501-509.

Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M,
Nishimura M, Hara-Nishimura I: A plant vacuolar protease, VPE,
mediates virus-induced hypersensitive cell death. Science
2004, 305:855-858.

Snyder L: Phage-exclusion enzymes: a bonanza of biochemical
and cell biology reagents? Mol Microbiol 1995, 15:415-420.
Meidler R, Morad |, Amitsur M, Inokuchi H, Kaufmann G: Detection
of anticodon nuclease residues involved in tRNALys cleavage
specificity. | Mol Biol 1999, 287:499-510.

Genome Biology 2008,

41.

42.

43.

44,

45.

46.

47.

48.
49.

50.

51,

52.

53.

54.

55.

56.

57.

58.

59.

60.

6l.

62.

63.

Volume 9, Issue | |, Article R163 Fukuda et al.

Butkus V, Klimasauskas S, Petrauskiene L, Maneliene Z, Lebionka A,
Janulaitis A: Interaction of Alul, Cfré6l and Pvull restriction-
modification enzymes with substrates containing either N4-
methylcytosine or 5-methylcytosine. Biochim Biophys Acta 1987,
909:201-207.

Blumenthal RM, Cotterman MM: Isolation of mutants in a DNA
methyltransferase through mcrB -mediated restriction. Gene
1988, 74:271-273.

Calvin Koons MD, Blumenthal RM: Characterization of pPvul,
the autonomous plasmid from Proteus vulgaris that carries
the genes of the Pvull restriction-modification system. Gene
1995, 157:73-79.

Mehta P, Casjens S, Krishnaswamy S: Analysis of the lambdoid
prophage element el 4 in the E. coli K-12 genome. BMC Micro-
biol 2004, 4:4.

Brody H, Greener A, Hill CW: Excision and reintegration of the
Escherichia coli K-12 chromosomal element el4. | Bacteriol
1985, 161:1112-1117.

Panne D, Raleigh EA, Bickle TA: The McrBC endonuclease trans-
locates DNA in a reaction dependent on GTP hydrolysis. |
Mol Biol 1999, 290:49-60.

Wang H, Yang CH, Lee G, Chang F, Wilson H, del Campillo-Campbell
A, Campbell A: Integration specificities of two lambdoid
phages (21 and el 4) that insert at the same attB site. | Bacte-
riol 1997, 179:5705-5711.

Campbell A: Comparative molecular biology of lambdoid
phages. Annu Rev Microbiol 1994, 48:193-222.

Juhala R}, Ford ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW:
Genomic sequences of bacteriophages HK97 and HKO022:
pervasive genetic mosaicism in the lambdoid bacteri-
ophages. | Mol Biol 2000, 299:27-51.

Friedman DI, Court DL: Regulation of lambda gene expression
by transcription termination and antitermination. In The Bac-
teriophages 2nd edition. Edited by: Calendar RL. US: Oxford Univer-
sity Press; 2006.

Guzman LM, Belin D, Carson MJ, Beckwith J: Tight regulation,
modulation, and high-level expression by vectors containing
the arabinose PBAD promoter. | Bacteriol 1995, 177:4121-4130.
Khlebnikov A, Datsenko KA, Skaug T, Wanner BL, Keasling JD:
Homogeneous expression of the P(BAD) promoter in
Escherichia coli by constitutive expression of the low-affinity
high-capacity AraE transporter. Microbiology 2001,
147:3241-3247.

Lesic B, Bach S, Ghigo JM, Dobrindt U, Hacker ], Carniel E: Excision
of the high-pathogenicity island of Yersinia pseudotuberculosis
requires the combined actions of its cognate integrase and
Hef, a new recombination directionality factor. Mol Microbiol
2004, 52:1337-1348.

Miyazono K, Watanabe M, Kosinski J, Ishikawa K, Kamo M, Sawasaki
T, Nagata K, Bujnicki JM, Endo Y, Tanokura M, Kobayashi I: Novel
protein fold discovered in the Pabl family of restriction
enzymes. Nucleic Acids Res 2007, 35:1908-1918.

Dillingham MS, Kowalczykowski SC: RecBCD Enzyme and the
Repair of Double-Stranded DNA Breaks. Microbiol Mol Biol Rev
2008, 72:642-671.

Walker GC, Smith BT, Sutton MD: The SOS response to DNA
damage. In Bacterial Stress Responses Edited by: Storz G, Hengge-
Aronis R. Washington, DC: ASM Press; 2000:13|-144.

Heitman J, Zinder ND, Model P: Repair of the Escherichia coli
chromosome after in vivo scission by the EcoRIl endonucle-
ase. Proc Natl Acad Sci USA 1989, 86:2281-2285.

Heitman }, Ivanenko T, Kiss A: DNA nicks inflicted by restriction
endonucleases are repaired by a RecA- and RecB-dependent
pathway in Escherichia coli. Mol Microbiol 1999, 33:1141-1151.
Robbins-Manke JL, Zdraveski ZZ, Marinus M, Essigmann JM: Analysis
of global gene expression and double-strand-break forma-
tion in DNA adenine methyltransferase- and mismatch
repair-deficient Escherichia coli. | Bacteriol 2005, 187:7027-7037.
Krueger JH, Elledge SJ, Walker GC: Isolation and characteriza-
tion of Tn5 insertion mutations in the lexA gene of
Escherichia coli. | Bacteriol 1983, 153:1368-1378.

Dila D, Sutherland E, Moran L, Slatko B, Raleigh EA: Genetic and
sequence organization of the mcrBC locus of Escherichia coli
K-12. ] Bacteriol 1990, 172:4888-4900.

Raleigh EA, Trimarchi R, Revel H: Genetic and physical mapping
of the mcrA (rglA) and mcrB (rglB) loci of Escherichia coli K-12.
Genetics 1989, 122:279-296.

Levin BR: Frequency-dependent selection in bacterial popula-

Genome Biology 2008, 9:R163


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17202163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17202163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9600985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9600985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9600985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12675801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12675801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7846533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7846533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11401700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11401700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11401700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1577705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1577705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7693455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7693455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18334533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18334533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10735865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10735865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18192396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18192396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18192396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10449767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10449767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10449767
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12999684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12999684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1317461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1317461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14202283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4290282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4290282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1830580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1830580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1830580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2997113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7540246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7540246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10092455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10092455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10092455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3040102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3040102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3040102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2854810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7607530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7607530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14733619
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2982786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10388557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10388557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9294425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7826005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7826005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10860721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10860721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10860721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7608087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7608087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7608087
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11739756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11739756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15165237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15165237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15165237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17332011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17332011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17332011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19052323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19052323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2648397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2648397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10510229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6298183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2203735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2203735
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2548920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2905487

http://genomebiology.com/2008/9/1 I/R163

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

8l.

82.

83.

84.

85.

86.
87.

tions. Philos Trans R Soc Lond B Biol Sci 1988, 319:459-472.

Altschul SF, Madden TL, Schaffer AA, Zhang |, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res 1997,
25:3389-3402.

Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo
CL, Case R}, Doolittle WF: Lateral gene transfer and the origins
of prokaryotic groups. Annu Rev Genet 2003, 37:283-328.
O'Sullivan DJ, Zagula K, Klaenhammer TR: In vivo restriction by
Llal is encoded by three genes, arranged in an operon with
llalM, on the conjugative Lactococcus plasmid pTR2030. | Bac-
teriol 1995, 177:134-143.

Ohshima H, Matsuoka S, Asai K, Sadaie Y: Molecular organization
of intrinsic restriction and modification genes BsuM of Bacil-
lus subtilis Marburg. | Bacteriol 2002, 184:381-389.

O'Driscoll J, Heiter DF, Wilson GG, Fitzgerald GF, Roberts R, van
Sinderen D: A genetic dissection of the LlaJl restriction cas-
sette reveals insights on a novel bacteriophage resistance
system. BMC Microbiol 2006, 6:40.

Nakamura Y, Itoh T, Matsuda H, Gojobori T: Biased biological
functions of horizontally transferred genes in prokaryotic
genomes. Nat Genet 2004, 36:760-766.

Ross TK, Braymer HD: Localization of a genetic region involved
in McrB restriction by Escherichia coli K-12. | Bacteriol 1987,
169:1757-1759.

Lin LF, Posfai ], Roberts RJ, Kong H: Comparative genomics of
the restriction-modification systems in Helicobacter pylori.
Proc Natl Acad Sci USA 2001, 98:2740-2745.

Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR,
Noonan B, Guild BC, dejonge BL, Carmel G, Tummino PJ, Caruso A,
Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD,
Jiang Q, Taylor DE, Vovis GF, Trust TJ: Genomic-sequence com-
parison of two unrelated isolates of the human gastric path-
ogen Helicobacter pylori. Nature 1999, 397:176-180.

Tetart F, Desplats C, Kutateladze M, Monod C, Ackermann HW,
Krisch HM: Phylogeny of the major head and tail genes of the
wide-ranging T4-type bacteriophages. | Bacteriol 2001,
183:358-366.

Monod C, Repoila F, Kutateladze M, Tetart F, Krisch HM: The
genome of the pseudo T-even bacteriophages, a diverse
group that resembles T4. | Mol Biol 1997, 267:237-249.

Kuo TT, Huang TC, Teng MH: 5-Methylcytosine replacing cyto-
sine in the deoxyribonucleic acid of a bacteriophage for Xan-
thomonas oryzae. | Mol Biol 1968, 34:373-375.

Vogelsang-Wenke H, Oesterhelt D: Isolation of a halobacterial
phage with a fully cytosine-methylated genome. Mol Gen
Genet 1988, 211:407-414.

Gommers-Ampt JH, Borst P: Hypermodified bases in DNA.
Faseb | 1995, 9:1034-1042.

Bair CL, Black LW: A type IV modification dependent restric-
tion nuclease that targets glucosylated hydroxymethyl cyto-
sine modified DNAs. | Mol Biol 2007, 366:768-778.

Huang LH, Farnet CM, Ehrlich KC, Ehrlich M: Digestion of highly
modified bacteriophage DNA by restriction endonucleases.
Nucleic Acids Res 1982, 10:1579-1591.

Murray NE: Type | restriction systems: sophisticated molecu-
lar machines (a legacy of Bertani and Weigle). Microbiol Mol
Biol Rev 2000, 64:412-434.

Zhou Y, Cambareri EB, Kinsey JA: DNA methylation inhibits
expression and transposition of the Neurospora Tad retro-
transposon. Mol Genet Genomics 2001, 265:748-754.

Aertsen A, Michiels CW: Mrr instigates the SOS response after
high pressure stress in Escherichia coli. Mol Microbiol 2005,
58:1381-1391.

Haig D: The social gene. In Behavioural Ecology: an Evolutionary
Approach Edited by: Krebs JR, Davies NB. London: Blackwell Publish-
ers; 1997:284-304.

Mongold JA: Theoretical implications for the evolution of
postsegregational killing by bacterial plasmids. Am Nat 1992,
139:677-689.

Mochizuki A, Yahara K, Kobayashi |, Iwasa Y: Genetic addiction:
selfish gene's strategy for symbiosis in the genome. Genetics
2006, 172:1309-1323.

Roos WP, Kaina B: DNA damage-induced cell death by apop-
tosis. Trends Mol Med 2006, 12:440-450.

Lyko F, Ramsahoye BH, Kashevsky H, Tudor M, Mastrangelo MA,
Orr-Weaver TL, Jaenisch R: Mammalian (cytosine-5) methyl-
transferases cause genomic DNA methylation and lethality

Genome Biology 2008,

88.

89.

90.

9l.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

Volume 9, Issue | |, Article R163 Fukuda et al.

in Drosophila. Nat Genet 1999, 23:363-366.

Kimura H, Suetake |, Tajima S: Exogenous expression of mouse
Dnmt3 induces apoptosis in Xenopus early embryos. | Biochem
2002, 131:933-941.

Raleigh EA, Murray NE, Revel H, Blumenthal RM, Westaway D, Reith
AD, Rigby PW, Elhai ], Hanahan D: McrA and McrB restriction
phenotypes of some E. coli strains and implications for gene
cloning. Nucleic Acids Res 1988, 16:1563-1575.

Datsenko KA, Wanner BL: One-step inactivation of chromo-
somal genes in Escherichia coli K-12 using PCR products. Proc
Natl Acad Sci USA 2000, 97:6640-6645.

Hanahan D: Studies on transformation of Escherichia coli with
plasmids. | Mol Biol 1983, 166:557-580.

Grant SG, Jessee |, Bloom FR, Hanahan D: Differential plasmid
rescue from transgenic mouse DNAs into Escherichia coli
methylation-restriction mutants. Proc Natl Acad Sci USA 1990,
87:4645-4649.

Miller JH: A Short Course in Bacterial Genetics, a Laboratory Manual and
Handbook for Escherichia coliand Related Bacteria New York: Cold
Spring Harbor Laboratory Press; 1992.

Handa N, Ohashi S, Kusano K, Kobayashi I: Chi-star, a chi-related
I I-mer sequence partially active in an E. coli recC1004
strain. Genes Cells 1997, 2:525-536.

Arber W, Enquist L, Hohn B, Murray NE, Murray K: Experimental
methods for use with lambda. In Lambda Il Edited by: Hendrix
RW, Roberts JW, Stahl FW, Weisberg RA. New York: Cold Spring
Harbor Laboratory; 1983:433-466.

Kobayashi |, Ikeda H: Formation of recombinant DNA of bacte-
riophage lambda by recA function of Escherichia coli without
duplication, transcription, translation, and maturation. Mol
Gen Genet 1977, 153:237-245.

Takahashi N, Kobayashi I: Evidence for the double-strand break
repair model of bacteriophage lambda recombination. Proc
Natl Acad Sci USA 1990, 87:2790-2794.

Handa N, Kobayashi I: Accumulation of large non-circular
forms of the chromosome in recombination-defective
mutants of Escherichia coli. BMC Mol Biol 2003, 4:5.

Edgar RC: MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Res 2004,
32:1792-1797.

Tamura K, Dudley |, Nei M, Kumar S: MEGA4: Molecular Evolu-
tionary Genetics Analysis (MEGA) software version 4.0. Mol
Biol Evol 2007, 24:1596-1599.

Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS,
McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM: The
ribosomal database project (RDP-Il): introducing myRDP
space and quality controlled public data. Nucleic Acids Res 2007,
35:D169-DI72.

Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K,
Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Geer
LY, Helmberg W, Kapustin Y, Kenton DL, Khovayko O, Lipman D},
Madden TL, Maglott DR, Ostell J, Pruitt KD, Schuler GD, Schriml LM,
Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Suzek
TO, Tatusov R, Tatusova TA, et al.: Database resources of the
National Center for Biotechnology Information. Nucleic Acids
Res 2006, 34:D173-D180.

Soding J: Protein homology detection by HMM-HMM compar-
ison. Bioinformatics 2005, 21:951-960.

Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M,
Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor ], Davis
NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The
complete genome sequence of Escherichia coli K-12. Science
1997, 277:1453-1474.

Kunst F, Ogasawara N, Moszer |, Albertini AM, Alloni G, Azevedo V,
Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier
L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV,
Caldwell B, Capuano V, Carter NM, Choi SK, Codani ]}, Connerton
IF, Cummings NJ, Daniel RA, Denizot F, Devine KM, Diisterhéft A,
Ehrlich SD, et al.: The complete genome sequence of the gram-
positive bacterium Bacillus subtilis. Nature 1997, 390:249-256.
Cohen GN, Barbe V, Flament D, Galperin M, Heilig R, Lecompte O,
Poch O, Prieur D, Quérellou J, Ripp R, Thierry JC, Oost | Van der,
Weissenbach |, Zivanovic Y, Forterre P: An integrated analysis of
the genome of the hyperthermophilic archaeon Pyrococcus
abyssi. Mol Microbiol 2003, 47:1495-1512.

Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer
HW: Construction and characterization of new cloning vehi-
cles. ll. A multipurpose cloning system. Gene 1977, 2:95-113.

Genome Biology 2008, 9:R163


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2905487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14616063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14616063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7528201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16646963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16646963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16646963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3031021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11226310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9923682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11114936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11114936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9096222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9096222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9096222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5760463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7649402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17188297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17188297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17188297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6280151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6280151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10839821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10839821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11459196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11459196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16313623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16299387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16299387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16899408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16899408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10545955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12038991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2831502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2831502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10829079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6345791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6345791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2162051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2162051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9348042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9348042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=331071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=331071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2138786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2138786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12718760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17488738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17488738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17090583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17090583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17090583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15531603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15531603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9278503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9384377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12622808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=344137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=344137

http://genomebiology.com/2008/9/1 I/R163 Genome Biology 2008,  Volume 9, Issue | I, Article R163 Fukuda et al. R163.22

108. Yanisch-Perron C, Vieira ], Messing J: Improved M3 phage clon-
ing vectors and host strains: nucleotide sequences of the
MI3mpl8 and pUCI9 vectors. Gene 1985, 33:103-119.

109. Chang AC, Cohen SN: Construction and characterization of
amplifiable multicopy DNA cloning vehicles derived from
the PI5A cryptic miniplasmid. | Bacteriol 1978, 134:1141-1156.

110. Cohen SN, Chang AC: Revised interpretation of the origin of
the pSCI0I1 plasmid. | Bacteriol 1977, 132:734-737.

I'11. Chinen A, Naito Y, Handa N, Kobayashi I: Evolution of sequence
recognition by restriction-modification enzymes: selective
pressure for specificity decrease. = Mol Biol Evol 2000,
17:1610-1619.

112. Cherepanov PP, Wackernagel W: Gene disruption in Escherichia
coli: TcRand KmR cassettes with the option of Flp-catalyzed
excision of the antibiotic-resistance determinant. Gene 1995,
158:9-14.

113. Karreman C, de Waard A: Cloning and complete nucleotide
sequences of the type Il restriction-modification genes of
Salmonella infantis. | Bacteriol 1988, 170:2527-2532.

114. Nwankwo DO, Wilson GG: Cloning and expression of the Mspl
restriction and modification genes. Gene 1988, 64:1-8.

I15. Vieira ], Messing J: The pUC plasmids, an MI13mp7-derived sys-
tem for insertion mutagenesis and sequencing with synthetic
universal primers. Gene 1982, 19:259-268.

116. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko
KA, Tomita M, Wanner BL, Mori H: Construction of Escherichia
coli K-12 in-frame, single-gene knockout mutants: the Keio
collection. Mol Syst Biol 2006, 2:2006.0008.

117. Gillen JR, Willis DK, Clark AJ: Genetic analysis of the RecE path-
way of genetic recombination in Escherichia coli K-12. | Bacte-
riol 1981, 145:521-532.

118. Marsh L, Walker GC: Cold sensitivity induced by overproduc-
tion of UmuDC in Escherichia coli. | Bacteriol 1985, 162:155-161.

119. Sasakawa C, Yoshikawa M: A series of Tn5 variants with various
drug-resistance markers and suicide vector for transposon
mutagenesis. Gene 1987, 56:283-288.

120. Elledge S), Walker GC: Proteins required for ultraviolet light
and chemical mutagenesis. Identification of the products of
the umuC locus of Escherichia coli. | Mol Biol 1983, 164:175-192.

121. Takahashi NK, Kusano K, Yokochi T, Kitamura Y, Yoshikura H, Koba-
yashi |: Genetic analysis of double-strand break repair in
Escherichia coli. | Bacteriol 1993, 175:5176-5185.

Genome Biology 2008, 9:R163


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2985470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2985470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2985470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=149110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=149110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=149110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=334752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=334752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11070049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11070049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11070049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7789817
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7789817
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2836359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2456254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2456254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6295879
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6295879
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6295879
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16738554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16738554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6257642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2984171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2824292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2824292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2824292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6302271
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8349557

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	McrBC-mediated inhibition of establishment of a DNA methyltransferase gene
	McrBC-mediated chromosome cleavage after phage- mediated transfer of the DNA methyltransferase gene
	McrBC-mediated cell death and chromosome degradation following induction of the DNA methyltransferase
	Effect of mutations in DNA-related genes
	Generality and specificity of McrBC action against DNA methyltransferases
	Molecular evolutionary analyses of McrB and McrC reveal their frequent loss and horizontal transfer between distantly related genomes
	Genomic neighborhood analysis of McrBC systems suggests their mobility and linkage with genome methylation systems

	Discussion
	Conclusion
	Materials and methods
	Bacteria and plasmids
	Phages
	Plasmid preparation and quantitative transformation
	Induction of PvuII methyltransferase
	Preparation of chromosomal DNA
	Pulsed-field gel electrophoresis
	Microscopic observation
	Phylogenetic analysis
	Neighbourhood analysis

	Abbreviations
	Authors' contributions
	Additional data files
	Acknowledgements
	References

