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Accurate target delineation ofCT image is a critical step in radiotherapy treatment planning.This paper describes a novel strategy for
automatic contour propagation, based on deformable registration, for CT images of lung cancer. The proposed strategy starts with
a manual-delineated contour in one slice of a 3D CT image. By means of feature-based deformable registration, the initial contour
in other slices of the image can be propagated automatically, and then refined by active contour approach. Three algorithms are
employed in the strategy: the Speeded-UpRobust Features (SURF),Thin-Plate Spline (TPS), and an adapted active contour (Snake),
used to refine andmodify the initial contours. Five pulmonary cancer cases with about 400 slices and 1000 contours have been used
to verify the proposed strategy. Experiments demonstrate that the proposed strategy can improve the segmentation performance
in the pulmonary CT images. Jaccard similarity (JS) mean is about 0.88 and the maximum of Hausdorff distance (HD) is about
90%. In addition, delineation time has been considerably reduced. The proposed feature-based deformable registration method in
the automatic contour propagation improves the delineation efficiency significantly.

1. Introduction

Carcinoma of the lung is one of the most common cancers,
which has the highest mortality rate all over the world [1].
Radiotherapy is an effective option for carcinoma treatment.
How to maintain adequate sparing of the sensitive structures
is one of the biggest challenges in radiotherapy, which can
be faced by means of treatment planning [2, 3]. The precise
target delineation is an essential prerequisite for treatment
planning; this, in fact, provides dose escalation to the tumor
[4]. In the conventional radiotherapy planning, the clinical
contour delineation is manually conducted by physicians
slice by slice; however, this is a tedious and time-consuming
procedure. Consequently, some fully automatic methods on
each slice, such as the traditional water-based segmentation
and level set active contour, have been proposed. These
techniques mainly rely on local image features, such as
intensity and gradient variations. However, these methods
are unable to generate accurate target contour in absence
of distinctive local image feature, such as in the tissues of
mediastinum, hilus pulmonis, or pulmonary artery.

For target delineation of metastatic lung cancer, the hilus
pulmonis should be embraced in the lung. Some statistical
model-based approaches, such as the classical active shape
models [5] or active appearance models [6], have been pro-
posed by adding superior contour constraints in procrustes
analysis and principal component analysis. However, lung
morphology varies from patient to patient; several efforts
have been made to solve this issue by providing prior knowl-
edge by means of three-dimensional views [7–10]. For exam-
ple, Brown et al. [7] presented an automatic knowledge-based
method for segmenting chest CT datasets. Then, Zhang et al.
[8] used an anatomic pulmonary atlas, encoded with a priori
information on the pulmonary anatomy, to automatically
segment the oblique lobar fissures. Qazi et al. [9] presented
a fully automatic hybrid approach and combined deformable
registration with the model-based approach to accurately
segment normal tissues and target from head and neck CT
images. Additionally, Collins et al. [10] presented a 3Dmodel-
based segmentation method for the automatic identification
and delineation of gross anatomical structures of the human
brain. However, since these methods partially depended on
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Figure 1: Flowchart of the automatic contour propagationmethod. (a) General flowchart of the automatic contour propagation; (b) flowchart
of the automatic contour delineation between adjacent slices on (a).

a massive patient model dataset and complicated statistical
analysis, the necessary work tends to be extensive, and it
may result in potential errors arising from the reliability
of the selection of the optimal model. In addition, three-
dimensional image processing is a time-consuming proce-
dure, and its accuracy hardly reaches the two-dimensional
processing accuracy because of the deformation due to
respiratory movement. As any error at this step is systematic
and would affect the whole course of radiotherapy, manual
delineation method is required.

In this paper, a 2D contour propagation method is
proposed. Feature-based deformable registrationmethodwas
employed by using an initial manual delineated contour slice
as the prior knowledge; in this way the interaction time
compared to the fully manual delineation method can be
greatly reduced.

2. Materials and Methods

2.1. Overview of the Automatic Target Delineation. The
flowchart of the proposed automatic contour propagation
is shown in Figure 1(a). In this study, a template-based
registration method was introduced from the research of
brain functional area [11], in which a standard brain is
used as template to determine the brain functional area for
clinical cases through deformable registration. To reduce user
interaction time, one slice of the 3D CT image is manually
delineated as prior model and then other contours are
automatically and recursively delineated by using deformable
registration. As shown in Figure 1(b), the previous slice is
set as template image, and the next slice is set as target
image. The first two steps, feature points detection and
association, are conducted by Speeded-Up Robust Features
(SURF) [12]. These points contain the local features and also
keep invariant to the environment variation.Then,Thin-Plate

Figure 2: The SURF descriptor (left) and GDLOH descriptor
(right). The GDLOH regards a concentric rectangle grid different
radius and 4 in angular direction.

Spline (TPS) [13] is employed to generate the deformation
vector field (DVF) based on the displacement vectors of
associated feature points. In the fourth step, the contour
transformation is obtained from the DVF. Finally, Snake is
introduced as refinement andmodification approach to drive
the initial contours towards the desired segmented object in
the image.

2.2. Tissue Feature Detection and Association. Detection and
association of distinct tissue feature points on two images
play an important role in contour propagation [14]. SURF
detector is the accelerated version of the classical Scale-
Invariant Feature Transform (SIFT) [15], with the same
matching quality. This is considered a beneficial approach
because of its distinctive invariant features and robustness to
affine distortion, noise, and intensity changes.

With regard to the feature descriptor, an improved
version of SURF, gradient distance-location-orientation his-
togram (GDLOH) [16], is considered to be more distinctive.
GDLOH descriptor, as shown in Figure 2, contains 16 square
subregions with four principal characters: the frame center
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coordination (𝑥, 𝑦), the scale 𝜎, and the orientation 𝜃.
For each square, the Haar wavelet responses in horizontal
direction and vertical direction are computed and summed.
In this way, the histogram of 16 frames with 4 dimension
gradient vector around the center can obtain 64 dimensional
feature descriptors.

The descriptor is employed to search the best associ-
ation candidate for each feature point by identifying its
nearest neighbor in the database of points from testing
images. The nearest neighbor is defined as points’ minimum
Euclidean distance. In this method, interrelationship among
the descriptor’s elements is also considered in the distance
calculation. The expression can be defined as follows:
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2.3. TPS Transformation. Thin-Plate Splines (TPS) were
introduced in geometric designs by Duchon [17]. This has
been widely used as deformable transformation model in
image registration. In the proposed method, TPS trans-
formation warps the template image to match the target
image pixel-by-pixel. Mathematically, this consists in an
optimization problem, in which a set of transformation
parameters transform the pixels in the template image to their
corresponding pixels in the target image.

To find the transformation matrix a TPS deformable
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𝑓(𝑢, V).

2.4. Active Contour (Snake). The above contour propagation
was based on the manual delineation and deformable regis-
tration; this could cause some potential artifacts or distortion.
Adapted active contour was proposed to solve this issue.This
model is an energy-minimizing spline guided by internal and
external forces, which are responsible for driving the contour
to the desired local minimum or pulling it towards features
such as lines or edges. Its energy function can be represented
as

𝐸
∗
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0
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𝐸cont (V (𝑠)) + 𝛽

∗
𝐸curv (V (𝑠))
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𝐸image (V (𝑠))) 𝑑𝑠,

(6)

where V(𝑠) = (𝑥(𝑠), 𝑦(𝑠)) stands for the contour parameter,
𝐸cont stands for the continuity energy, 𝐸curv stands for the
internal energy of the spline due to bend and smooth, 𝐸image
stands for the external image forces, and the three parameters
𝛼, 𝛽, and 𝛾 stand for the weight coefficient of 𝐸cont, 𝐸curv,
and 𝐸image, and they all range from 0 to 1. The optimization
of the parameters has been conducted by experiments with
3 parameters 𝛼, 𝛽, and 𝛾 equal to 0.15 ± 0.08, 0.2 ± 0.08,
and 0.85±0.06, respectively. Moreover, a band was employed
to limit the range of contour motion. According to the
experiment results, a band width of 3 to 9 pixels has been
proposed for 512 ∗ 512 lung CT image.
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Figure 3: Displacement vectors of control points generated by the TPS transformation in three axial images. The yellow points stand for the
control points, and the blue arrows stand for the displacement direction.

2.5. Case Study andEvaluation. TheCT imageswere acquired
with a GE Discovery-ST CT scanner (GE Medical System,
Milwaukee, WI, USA). The proposed method was developed
using the Insight Segmentation and Registration Toolkit
(ITK) [19] and Open Source Computer Vision (OpenCV)
[20]. ITK is an open-source and cross-platform image
processing software developed by the National Library of
Medicine. OpenCV is a library of programming functions
developed by Intel. In addition, VOLVIEW [21], PARAVIEW
[22], and The Visualization ToolKit (VTK) [23] have been
used for image visualization. The image sets for all the
patients were reconstructed with a 2.5mm slice thickness.
Each CT slice was discretized into 512∗512 pixels. About 400
slices and nearly 1000 contours were tested in the evaluation.

To quantitatively evaluate the accuracy of our method,
the Jaccard similarity (JS) [24, 25] between the automatic and
manual segmentation was calculated as follows:

JS = (
𝑆auto⋂𝑆manual
𝑆auto⋃𝑆manual

) , (7)

where 𝑆auto is the area of the autosegmentation and 𝑆manual
is the area of the manual segmentation. The value of JS is
defined from 0 to 1, where 0 indicates no overlapped regions
and 1 indicates that these two regions are the perfect overlap.
Area measures, such as JS, can give a good estimate of expert
agreement; however, they are much insensitive to boundary
errors in the segmentation. To provide additional informa-
tion, Hausdorff distance (HD) [26] between autodelineation
and the manual delineation is given for estimating mismatch
degree. HD measures the maximum and minimum distance
between two contour sets, and it can be used as metric of
similarity between two contours superimposed together.

3. Results

Figure 3 shows the displacement vectors of the control points
generated by the TPS transformation; the three images show
three different lung slices. The yellow points represent the
control points, and the blue arrows stand for the displacement
direction. At least 30 control points were obtained in each

slice; this has satisfied the requirement of the TPS transfor-
mation [27].

Normal tissue must be considered in radiotherapy plan,
whose radiation sensitivity influences the prescribed radia-
tion. In case of lung cancer, the organs at risk (OAR) mainly
include lungs and spinal cord [28]. Figure 4 shows the process
of the contour propagation and refinement, starting from the
initial manual delineation to the final automatic contour.The
three images represent a set of sequential slices. The cyan
lines represent themanual delineation, the red lines represent
the initial contour by SURF-TPS registration, and the yellow
lines represent the final contour refined by Snake. It is clear
that the yellow lines have much better consistency with the
cyan lines as compared with the red lines, especially near
the pleura. Since distribution of the pulmonary artery and
bronchia is cluttered, distinctive local features are not easily
discriminated by the fully automatic approach. Furthermore,
after the initial propagation, the JS between the reds and cyans
has reached 0.93 ± 0.08.

Figure 5 shows three lung segmented results conducted
by fully automatic methods compared with the manual
standard. Here, three classical algorithms have been chosen:
watershed, flood fill, and active contour. The active contour
used in the experiment, which has added the narrow band
constraint proposed by Mille [29], is one of the popular
extensions of the original Snake.The cyan contour represents
the manual standard delineated manually, the yellow region
in (a) is generated by flood fill algorithm, the red region
in (b) is by active contour, and the blue region in (c) is by
watershed algorithm. Notice that all three regions failed to
embrace the hilus pulmonis near the mediastinum, indicated
by the black ellipse, while our proposed method can reach
the requirement (as shown in Figure 4). In addition, as these
automatic algorithms highly depend on the initial seeds
to start the driving, the selection of the seeds should be
much more careful. In this way, it would raise potential
delineation time and risk. The JS between the segmented
region and the cyan surrounded one can only reach 0.85 ±
0.06; this value is much lower than the one found with the
proposed method. In the experiment, since active contour
and watershed algorithms, which highly rely on the intensity
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Figure 4: Process of the contour propagation and refinement, from themanual delineation to the final automatic contour.Three images stand
for three sets of sequential slices. The cyan lines stand for the manual delineation, the red lines stand for the initial contour by SURF-TPS
registration, and the yellow lines stand for the final contour refined by Snake. Yellow contours match the cyan better.

(a) (b) (c)

Figure 5: Comparison between fully automatic segmented methods and the manual delineation. The cyan contours were manual delineated
contours. (a) Flood fill algorithm (yellow); (b) active contour (red); (c) watershed algorithm (blue). The region embraced by the black ellipse
failed to be delineated by these automatic segmentations.

and seed information, do not perform well in the spinal cord
and tumor delineation, we will mainly introduce the flood fill
algorithm in the following to compare it with the results of
our proposed method.

With respect to the spinal cord, which is more sensitive
to the radiation injury, more precise delineation was needed.
Figure 6 shows three cases of delineation results obtained
from the proposed method and the flood fill method, respec-
tively. As shown in Figure 5, better results were achieved by
using flood fill method and then active contour method and
watershed method. In Figure 6, the red region is generated
by the flood fill method, the yellow contour is delineated
by our proposed method, and the cyan contour stands for
the manually delineated contour. It has been found that the
yellow contours can better fit the cyan contours as compared
to the red contours. In addition, as the intensity information
is distributed differently from slice to slice, the parameter
settings of the flood fill algorithm should be changed. For
example, the optimal local scale parameter for lung is 12 ± 2,
but for spinal cord it is reduced to 5 ± 1, which results in

some uncertainty.The JS between the red region and the cyan
surrounded region is about 0.65 ± 0.08, which is much lower
than what the yellow contains.

Figure 7 shows three cases of lung tumor segmentation
obtained from our proposed method and the flood fill
algorithm, respectively. The cyan contour represents the
manual delineation, the yellow contour is generated by our
proposed method, and the red region is generated by flood
fill algorithm.These three tumors are located on the bronchia,
hilus pulmonis, and lobe, respectively. As there is no obvious
intensity difference among the tumor, bronchia, and hilus,
the red contour tends to be more inconsistent with the cyan
contour, while the yellow contour that can better fit the cyan
contour well overcomes this problem. The JS between the
yellows and the cyan is nearly 0.88±0.5, which ismuch higher
than the JS between the reds and the cyan.

Since the contour delineation of tumor and organ at
risk (OAR) is very important for treatment planning, the
feasibility and accuracy of the proposed method should be
reliably tested. There are five lung cancer patients with over
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Figure 6: Three cases of delineation results conducted by our proposed method and the flood fill algorithm, respectively. The cyan contour
represents the manual delineation, the yellow is automatically delineated by our proposed method, and the red region is generated by flood
fill algorithm.

Figure 7: Three cases of lung tumor segmentation conducted by our proposed method and the flood fill algorithm, respectively. The tumors
are located on the bronchia, hilus pulmonis, and lobe, respectively. The cyan contour represents the manual delineation, the yellow contour
is generated by our proposed method, and the red region is generated by flood fill algorithm.

Table 1: JS comparison of five lung cancer patients by using the
proposed method and the flood fill algorithm.

Patient Target
The JS

Percentage
gainsProposed

method
Flood fill
method

Patient 1
Lung 0.9458 0.8540 9.71%
Spinal cord 0.8520 0.7018 17.63%
Tumor 0.9447 0.9334 1.20%

Patient 2
Lung 0.9544 0.8658 9.28%
Spinal cord 0.8402 0.6875 18.17%
Tumor 0.8589 0.7569 11.88%

Patient 3
Lung 0.9541 0.8320 12.80%
Spinal cord 0.8654 0.7468 13.70%
Tumor 0.9014 0.8654 3.99%

Patient 4
Lung 0.9440 0.8214 12.99%
Spinal cord 0.8598 0.7025 18.29%
Tumor 0.8958 0.6475 27.72%

Patient 5
Lung 0.9486 0.8258 12.95%
Spinal cord 0.8475 0.6732 20.57%
Tumor 0.8858 0.7854 11.33%

400 CT slices for the verification. The position and size of
the tumors differ from patient to patient. Table 1 shows the
JS by using the proposed method and the flood fill method.

For patients 1 and 3, tumors are located on the lung lobe with
much more apparent local features, while for the other three
patients, tumors are located near the pleura, bronchia, and
hilus pulmonis. Features are not apparent. It is easy to find
that the JS of the first and the third patients, obtained from
flood fill method, is much higher than that of the second,
fourth, and fifth. On the contrary, the JS obtained from the
proposed method presents small changes for all patients.
When the delineation goes to the spinal cord with efferent
nerves, the contour driven by flood fill tends to be less robust,
and the JS between it and themanual standard becomes lower.
The percentage gains of the JS between these twomethods are
also listed. The gains for lung and spinal cord remain steady
around 0.10, but for tumor, it changes greatly among different
cases. The maximum JS gain for lung, spine cord, and tumor
has reached values around 12%, 17%, and 24%, respectively.

Table 2 shows the statistical value of mean andmaximum
of HD for lung, spinal cord, and tumor, respectively. As the
tumor position and size differ from patient to patient, the
HD should be listed respectively. It is clear that the HD
improvement in lung is the biggest, reaching a value around
90%. The HD improvement in spinal cord can reach nearly
40%. On the contrary, for tumor, the HD improvements have
a different representation. Its maximum HD improvement
has, respectively, reached 90%, 45%, and 72%, according to
the different tumor location. These results can be considered
as a great progress in segmentation with no distinctive local
feature.
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Table 2: HD comparison between the proposed method and the
Flood fill method.

Target Lung Spinal
cord

Tumor
1 2 3 4 5

HD
Flood fill 54.21 6.07 3.23 9.18 2.23 20.42 6.18
Proposed 5.04 3.45 3.35 2.53 2.15 5.84 4.85
Improvement
(%) 90.70 43.16 −3.72 72.44 3.59 71.40 21.52

Mean HD
Flood fill 7.58 1.71 0.63 2.85 0.83 3.38 2.61
Proposed 0.91 0.92 0.59 1.09 0.68 1.67 1.83
Improvement
(%) 87.99 46.20 6.35 61.75 18.07 50.59 29.89

4. Discussions

In this work, a feature-based recursive deformable registra-
tion strategy was proposed. In routine clinical procedure, tar-
get volume andOAR for lung cancer aremanually delineated.
Therefore, reliable automatic contour delineation may have
a substantial impact on treatment planning. The proposed
method takes a manual delineated slice as prior knowledge
to recursively propagate the contour slice by slice. Here, the
middle slice of the whole lung has been chosen as an initial
manual delineated slice; this choice doubles the propagation
distance. The total 2D delineation time can be dramati-
cally reduced compared with the conventional 3D contour
segmentation. Since the initial propagated contour’s quality
largely depends on the similarity between two adjacent slices,
slice thickness turns to be a critical factor for autodelineation.

Feature-based deformable registration [30] is used to
propagate the contour since it contains both local and global
feature information and can overcome the low resolution
of CT image. SURF is a popular local feature detection
method, which has a good robustness to variation of the
scale, luminance, rotation, and blurring. After registration,
an adapted Snake is employed to refine and modify the
rough outline.The proposedmethod outperforms other fully
automatic segmentation algorithms, such as the classical
water-based and extensional active contour approach, as
shown in Figure 5. In the picture, it also can be seen that the
hilus pulmonis near themediastinumwas surrounded by our
autopropagated contour as shown in Figure 4.

However, the proposed method still presents some weak-
ness. For example, itmuch relies on the slice thickness. In fact,
if the thickness is set excessively large, the quality of registra-
tion would decline, directly influencing the autodelineation.
According to experiment measurements, 3mm is suggested
as the maximum thickness for achieving good performance.
The adapted Snake should be further optimized, since the
deformation still causes some instabilities. In addition, as
the influence of prior knowledge would decrease with the
propagation distance, the length of the propagation routine
becomes more and more limited. For lung delineation, the
maximum propagation distance with 20 slices has given

optimal results. All in all, the delineation time was reduced
drastically, while the accuracy remains high.

5. Conclusion

Automatic accurate target delineation plays an important
role in radiotherapy allowing escalating tumor doses without
increasing the toxicity of critical normal structures, especially
in pulmonary treatment planning. The proposed method
provides a novel approach combining the delineation expe-
rience from the physicists with high speed and reliability
from the automatic algorithm. The advantages of the pro-
posed method are as follows. Firstly, it largely reduces the
delineation time by automatic contour propagation com-
pared to manual delineation slice by slice. Secondly, the
prior knowledge is well preserved by SURF-TPS registration
increasing the accuracy of contour propagation. Thirdly, the
refinement and modification by adapted Snake are beneficial
for further precision upgrade.The proposedmethod will find
practical and useful application in clinical treatment planning
in radiotherapy.
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