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Abstract: The current study presents the effect of naked Fe3O4@Carbon nanoparticles obtained
by the combustion method on primary human gingival fibroblasts (HGFs) and primary gingival
keratinocytes (PGKs)—relevant cell lines of buccal oral mucosa. In this regard, the objectives
of this study were as follows: (i) development via combustion method and characterization of
nanosized magnetite particles with carbon on their surface, (ii) biocompatibility assessment of the
obtained magnetic nanoparticles on HGF and PGK cell lines and (iii) evaluation of possible irritative
reaction of Fe3O4@Carbon nanoparticles on the highly vascularized chorioallantoic membrane of a
chick embryo. Physicochemical properties of Fe3O4@Carbon nanoparticles were characterized in
terms of phase composition, chemical structure, and polymorphic and molecular interactions of the
chemical bonds within the nanomaterial, magnetic measurements, ultrastructure, morphology, and
elemental composition. The X-ray diffraction analysis revealed the formation of magnetite as phase
pure without any other secondary phases, and Raman spectroscopy exhibit that the pre-formed
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magnetic nanoparticles were covered with carbon film, resulting from the synthesis method employed.
Scanning electron microscopy shown that nanoparticles obtained were uniformly distributed, with a
nearly spherical shape with sizes at the nanometric level; iron, oxygen, and carbon were the only
elements detected. While biological screening of Fe3O4@Carbon nanoparticles revealed no significant
cytotoxic potential on the HGF and PGK cell lines, a slight sign of irritation was observed on a limited
area on the chorioallantoic membrane of the chick embryo.

Keywords: magnetite; combustion synthesis; Raman spectroscopy; magnetic measurements; HGF;
cytotoxicity; HET-CAM assay

1. Introduction

Nowadays, nanotechnology is defined as a science of technology, which refers to
the ability to engineer and utilizes materials as well as devices, at the nanometer level,
with dimensions between 1–100 nm. On the other hand, nanotechnology includes the
synthesis, characterization, and application of new materials with advanced properties
and production of devices, as well as the study of material ultrastructure and morphology
at the molecular and atomic scales [1–4]. Of great interest to most researchers dealing
with nanotechnology science are nanoparticles due to the fact that the most of the research
works reported in the literature have focused to interconnect the engineered science of
these nanomaterials with medical problems. Nanoparticles are broadly used in all areas of
medicine from drug development [5–7] to magnetic resonance imaging and hyperthermia
for the treatment of cancer [8–11], targeted drug delivery [12,13], computer tomograf
(CT) and optical imaging [14,15], cellular therapy [16,17], tissue repair [18], and gene
manipulations [19,20].

In the last ten years, a huge interest in the development of new nanomaterials ad-
dressing dental applications has emerged. Due to the growing interest in designing new
nanoscale materials for dentistry, a new field of research has been implemented, the so-
called nano-dentistry [21–25]. Nano-dentistry refers to the development of new nanoma-
terials or devices which are planned to be in the first place in contact with buccal cavity
flavoring the unpleasant breath, then in contact with the teeth, cleaning them, chang-
ing their appearance, thus preserving and improving dental health. Moreover, due to
their unique and distinct biological properties, such as antimicrobial, antifungal, and an-
tiviral properties, nanomaterials, more exactly nanoparticles, can be used in restorative
dentistry, prosthetic dentistry, endodontics, implantology, biomineralization, oral can-
cers, and periodontology [26]. There are various dental nanomaterials suitable for all the
above complications such as (i) organic (polymeric or lipid-based nanomaterials—e.g.,
polyethyleneglycol, solid-lipids, nanogels, dendrimers, chitosan); (ii) inorganic (metal,
metal oxides, ceramics or semiconductors nanomaterials—e.g., zirconia, silica, titanium
dioxide, hydroxyapatite, quantum dots), and (iii) nanocarbons, which comprise fullerenes,
graphene, carbon nanotubes, carbon nanofiber or carbon black, which have been suc-
cessfully used in therapeutic dentistry [26,27]. Carbon-based nanomaterials, particularly
carbon nanotubes, have generated interest in the dentistry field because they lead to an
improvement of strength of implants and composite materials, increase cell adhesion
and proliferation, and provide protection against bacteria [28]. Graphene oxide, another
nanocarbon material, is also a useful nanomaterial for regenerative dentistry and bone
tissue engineering due to its physicomechanical properties; antimicrobial properties; low
toxicity; ability to act as drug carriers toward specific organs and antitumor agents for oral
cancer [29]. In addition to the many benefits that these nanomaterials possess, there are
still growing concerns about the toxicological aspects of their use in dentistry. For example,
the toxicity of silver nanoparticles is due to the activity of free silver ions released into the
medium [30]; ZnO nanoparticles show cytotoxicity against human gingival fibroblasts,
human embryonic lung fibroblasts, and gastric epithelial and neural stem cells [31,32]; gold



Materials 2021, 14, 3556 3 of 24

nanoparticles seem to have prolonged retention within cells, and elimination difficulty by
the kidney [33] associated with nanocomposites increases concerns regarding the inhalation
of released nanoparticles during abrasive procedures [34].

Among the broad spectrum of nanoparticles, magnetic nanoparticles are promising
nanomaterials in the field of biomedicine due to their excellent biocompatibility and
biodegradability, non-toxicity, superparamagnetic properties, and solubility/stability in
biological environments under physiological conditions [35,36]. In order to obtain these
biomedical characteristics, it is necessary to choose a synthesis method which offers several
advantages. To this end, from the myriad of synthesis methods that can be applied, the
simplest and most economically advantageous and environmentally friendly proved to
be the combustion method [37–41]. The interest in the combustion method is highlighted
by the possibility of obtaining various nanomaterials with tailored properties, only by
changing the synthesis conditions and controlling the parameters of the reaction [42], these
representing the highest advantages of the combustion method. Another great advantage
of the combustion method is the reaction time (several minutes) and the fact that the
magnetic nanoparticles are obtained directly after combustion, without other subsequent
process, therefore without energy consumption [43–45].

With applications in the dentistry field, research studies focus on the combination
of magnetic nanoparticles with inorganic metals (such as silver) [46] used for endodontic
disinfection or chitosan [47,48] for prednisolone delivery to the dental pulp, but none of
these studies refers to the use of magnetic nanoparticles per se. Even so, the use of silver
nanoparticles imposes significant drawbacks and must be avoided due to toxicity issues
and the prolonged contact time required.

The purpose of the present study was as follows: (i) the manufacture of biocompatible
magnetic nanoparticles via the combustion method; (ii) the evaluation of physicochemical
features of the as-synthesized magnetic nanoparticles through the most used methods;
(iii) assessment of the biological profile by employing an in vitro model based on relevant
cells of buccal oral mucosa, using primary human gingival fibroblasts (HGFs) and primary
gingival keratinocytes (PGKs) as the in vitro model and basic in vitro toxicological assays,
such as cell viability quantification by means of the Alamar blue proliferation test and
lactate dehydrogenase release method, along with cell morphology assessment at 24 h and
48 h post-stimulation, and iv) determination of the toxicological profile as a preclinical
tool by assessment of the potential irritability of the Fe3O4@Carbon nanoparticles as well
as their biocompatibility in an in vivo setting by employing the HET-CAM (hen’s egg
chorioallantoic membrane) assay. The in vitro methods were selected based on previous
research published by our group, where these types of techniques have already been
employed successfully either for the biological assessment of Fe3O4 material [49–51] or for
the evaluation of the biosecurity profile of different dental devices [52–54].

2. Materials and Methods
2.1. Chemicals and Reagents

The reagents used for the synthesis of Fe3O4 (magnetite) nanoparticles were iron
nitrate nonahydrate—Fe(NO3)3·9H2O with a ≥96% purity, acquired from Carl Roth (Karl-
sruhe, Germany)—employed as oxidizing agent; citric acid monohydrate—C6H8O7·H2O,
with a 99.5% purity, purchased from Silal Trading (Bucuresti, Romania)—employed as fuel;
and distilled water—H2Od, acquired from Chemical Company SA (Iasi, Romania).

2.2. Cell Line and Cell Culture Protocol

The cell lines used in the current study are represented by primary human gingival
fibroblasts (HGFs) and primary gingival keratinocytes (PGKs). The cells were obtained
from the American Type Culture Collection (Manassas, VA, United States), code no. ATCC®

PCS-201-018TM and ATCC® PCS-200-014TM (LGC Standards GmbH, Wesel, Germany) as
frozen vials. The specific reagents used for the HGF cell line growth were supplied by
ATCC, as follows: the cell culture medium—fibroblast basal medium, code no. ATCC®
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PCS-201-030™, fibroblast growth kit-low serum, code no. ATCC® PCS-201-041™, and 0.1%
antibiotic mixture of penicillin–streptomycin–amphotericin B solution, code no. ATCC®

PCS-999-002™. The reagents used to culture the PGK cell line were the growth medium—
dermal cell basal medium, code no. ATCC® PCS-200-030TM, keratinocyte growth kit, code
no. ATCC® PCS-200-040 TM, and 1% antibiotic mixture of 100 U/mL penicillin:100 µg/mL
streptomycin. The cells were maintained in a Steri-Cycle i160 incubator (Thermo Fisher
Scientific, Inc., Waltham, MA, USA) at 37 ◦C under a humidified atmosphere with 5% CO2.
All in vitro techniques were conducted under sterile conditions using the MSC Advantage
biosafety cabinet (12 model, Thermo Fisher Scientific, Inc., Waltham, MA, USA).

2.3. Synthesis of Magnetic Nanoparticles

The magnetite nanoparticles used in the current study were synthesized using an
environmentally friendly method, simple and versatile, which involves low-cost raw mate-
rials, namely, the combustion method, according to the procedure thoroughly described
by Ianos et al. [43]. The procedures involves the mixture of the iron nitrate nonahydrate—
Fe(NO3)3·9H2O (0.09 mol) and citric acid monohydrate—C6H8O7·H2O (0.08 mol), in 25 mL
distilled water, in order to yield 0.03 mol of Fe3O4. After complete dissolving of the reagents,
the clear aqueous solution was rapidly heated using an in house built equipment, in the
absence of air, consisting of a round bottom flask and a heating mantle, up to 400 ◦C for
several minutes [43]. The combustion reaction was considered finished when the large
amounts of gases that evolved during the combustion process stopped. Finally, a fluffy
nanopowder, obtained after cooling to ambient temperature (24 ◦C), was hand ground and
washed three times with hot distilled water (60–70 ◦C), magnetically decanted using a Nd-
FeB block magnet (www.supermagnete.com (24.11.2020), Gottmadingen, Germany), and
dried at 70 ◦C in an oven (POL-EKO Aparatura, Wodzisław Śląski, Poland). Throughout
the cooling process of the fluffy nanopowder, the contact between the air and nanopowder
was prevented, thus avoiding the oxidation of the magnetite nanoparticles.

2.4. Characterization of the Pre-Formed Magnetic Nanoparticles via the Combustion Method

The resulting magnetic nanoparticles were characterized by employing the following
methods: X-ray diffraction, Brunauer, Emmett, Teller nitrogen gas adsorption technique,
Raman Spectroscopy, Vibrating Sample Magnetometry, dynamic light scattering (DLS),
and Scanning Electron Microscopy analysis.

2.4.1. X-ray Diffraction (XRD)

XRD was used to establish the phase composition, purity, and degree of crystallinity,
determined by a Rigaku Ultima IV diffractometer (Tokyo, Japan), with monocromated Cu-
Kα radiation (1.5406 Å), operating at 40 kV and 40 mA. For peak assignment, we used only
the PDF file specific for magnetite (1011032), from the International Centre for Diffraction
Data Powder Diffraction File (ICDD PDF) 4+ 2019 data. By using the Debye-Sherrer’s
equation, Equation (1), we calculated the crystallite size of the magnetic nanoparticles:

D =
0.9 · λ

β · cos θ
(1)

where: D—the crystallite size (nm), λ—radiation wavelength (nm), β—the full width at
half of the maximum in the 2θ scale (radians), θ—the Bragg angle.

2.4.2. Brunauer, Emmett, Teller (BET) Nitrogen Gas Adsorption Technique

Using the BET nitrogen gas adsorption technique, we measured the specific surface
area (SBET) of the magnetic nanoparticles, using a Micromeritics ASAP 2020 instrument

www.supermagnete.com
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(Micromeritics Instrument Corporation, Norcross, GA, USA). By applying Equation (2), we
calculated the equivalent diameter:

DBET =
6000

ρFe3O4 · SBET
(2)

where: DBET—the grain size (nm), ρFe3O4 —the theoretical density of magnetite (5.2 g/cm3),
SBET—the BET surface area (m2/g).

2.4.3. Raman Spectroscopy

In order to determine the vibrational modes of molecules contained in magnetic
nanoparticles as well as other low-frequency modes of the magnetic sample, Raman
Spectroscopy was used. Spectra with visible excitation were acquired using the Renishaw
InVia Reflex confocal Raman microscope system (Wotton-under-Edge, UK). Samples of
magnetic nanoparticles were deposited on a glass microscope slide and excited with a
532 nm laser line set to an output power of 10 mW, under a 20× objective (NA 0.35). Spectra
were recorded on this device through the Wire 3.4 software, with a spectral resolution of
0.5 cm−1. As a supplementary analytical procedure, Fourier transform Raman spectra were
recorded on a Bruker Equinox 55 spectrometer (Karlsruhe, Germany) with an integrated
FRA 106/S Raman module. A Nd:YAG laser (Alphalas GmbH, Göttingen, Germany)
emitting at 1064 nm with an output power of 350 mW was used for excitation, with the
spectral resolution of 4 cm−1 recorded in a liquid nitrogen-cooled Ge detector.

2.4.4. Scanning Electron Microscopy (SEM) Analysis with EDX Detectors

SEM analysis, a qualitative and semi-quantitative technique, was employed to estab-
lish the morphology of magnetic nanoparticles. The analysis was carried out on a Hitachi
SU8230 cold field emission gun STEM (Chiyoda, Tokyo, Japan) scanning electron micro-
scope with an EDX detector X-MaxN 80 from Oxford Instruments (Abingdon, UK). For
better conductivity, in order to acquire high-resolution SEM imaging, the magnetic nanopar-
ticles were sputter-coated with gold (6 nm) (Agar Automatic Sputtercoater, Stansted, UK).
The parameters set for SEM analysis were HV (high vacuum) mode, 30 kV, acceleration
voltage, secondary electron detectors (upper and lower), and two magnification orders,
one to highlight the general aspect of magnetic nanoparticles and the other to show the
nanomaterial surface topography. The identified chemical species were expressed both in
atomic relative percent (At %) and weight relative percent (Wt %).

2.4.5. DLS Technique

In order to establish the Fe3O4@Carbon particle size in suspension, we employed a
precise measurement technique—DLS technique. The hydrodynamic diameter (Hd), poly
dispersity index (PDI), and Zeta potential were measured by DLS using a Delsa Nano C
particle analyzer from Beckman Coulter (Brea, CA, USA). By using the photon correlation
spectroscopy, the particle size of Fe3O4@C was measured in aqueous suspension in a range
from 0.6 nm to 7 µm. Zeta potential was measured by an electrophoretic light scattering
technique using a flow cell. The measurement conditions were as follows: temperature
25 ◦C, distilled water (as a dispersant medium) with a refractive index of 1.3328, viscosity
0.8878 cP, and scattering intensity 9964 cps.

2.4.6. Vibrating Sample Magnetometry

The obtained Fe3O4 nanoparticles were evaluated for their magnetic properties at
room temperature (24 ◦C), using Vibrating Sample Magnetometry analysis (VSM), using a
VSM 880 ADE/DMS magnetometer (DMS/ADE Technologies, Westwood, MA, USA). The
external magnetic field applied ranged from 0 to 9·102 kA/m.
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2.5. Cell Morphology Evaluation

The morphological aspects of the HGF monolayer were monitored by taking pictures
of the cells exposed to different concentrations (25, 50, 100, 125 µg/mL) of Fe3O4@Carbon
nanoparticles. The pictures were taken using an Olympus IX73 inverted microscope with
DP74 integrated camera (Olympus, Tokyo, Japan) at magnification 20×, immediately (0 h)
after exposure of the cells to test samples and at 24 h and 48 h post-treatment.

2.6. Cell Viability Assessment by Means of the Alamar Blue Proliferation Test

In order to quantify the effect induced by Fe3O4@Carbon nanoparticles at concentra-
tions of 25 µg/mL, 50 µg/mL, 100 µg/mL, 125 µg/mL on the viability of primary human
gingival fibroblasts (HGFs) and primary human keratinocytes (PGKs), the Alamar blue
colorimetric assay was applied. In brief, the protocol consisted of seeding the cells to an
initial density of 104 cells/well into 96-well plates. Further, the cells were incubated until a
confluence of 80% was achieved, the old medium was removed, and the cells were treated
with the test sample at concentrations of 25 µg/mL, 50 µg/mL, 100 µg/mL, 125 µg/mL
for 24 h and 48 h. The control cells were treated only with cell culture medium and were
maintained under the same conditions as the exposed cells.

The cell viability percentage was determined by reading the absorbance of the wells
at least 3 h post-addition of the Alamar blue reagent. The absorbance was measured
spectrophotometrically at two wavelengths of 570 nm and 600 nm, by using the microplate
reader (xMarkTM Microplate, Bio-Rad Laboratories, Hercules, CA, USA). To quantify the
cell viability percentage based on the determined absorbances, a previously published
formula was used [54].

2.7. Cytotoxicity Assay via the LDH Release Method

To assess the cytotoxic activity induced by Fe3O4@Carbon nanoparticles at different
concentrations (25 µg/mL, 50 µg/mL, 100 µg/mL, 125 µg/mL) on HGF and PGK mono-
layers, the lactate dehydrogenase release method was employed. The protocol used for this
method is very similar to the one performed for the Alamar blue test. However, at the end
of the stimulation period, 50 µL/well medium containing the LDH release was transferred
in a new 96-well plate and then a 50 µL/well reaction mixture was added for 30 min and
the plate was maintained at room temperature in a dark chamber. In the end, the reaction
was stopped by addition 50 µL/well stop solution provided by the manufacturer (LDH
assay kit, Code no 88954, Thermo Fisher Scientific, Boston, MA, USA).

To quantify the cytotoxic effect, the absorbance of each well was measured at 490 and
680 nm wavelengths by employing a microplate reader (xMarkTM Microplate, Bio-Rad
Laboratories, Hercules, CA, USA).

2.8. HET-CAM Assay

The HET-CAM (hen’s egg chorioallantoic membrane) assay was performed in order
to assess the potential irritability of the as-synthesized Fe3O4@Carbon nanoparticles as
well as their biocompatibility in an in vivo setting, as a preclinical tool for the toxicologic
profile of such a material. The HET—CAM test was performed, respecting the guideline
of the Interagency Coordinating Committee on the Validation of Alternative Methods
(ICCVAM) [55]. In brief, fertilized eggs were disinfected and incubated at 37 ◦C under
controlled humidity. On the 10th day of development control (distilled water as a negative
control, sodium lauryl sulphate (SLS) 0.5% in distilled water as a positive control) or test
sample (125 µg/mL of Fe3O4@Carbon nanoparticles) was inoculated in volumes of 300 µL,
and the reactions were monitored using CAM by means of stereomicroscopy (Discovery 8
Stereomicroscope, Zeiss, Stuttgart, Germany) for a duration of 300 s. Relevant images were
captured (Axio CAM 105 color, Zeiss) before the application and after 5 min of contact
with the sample. All images were processed using Zeiss ZEN software, Gimp 2.8, and
ImageJ software.



Materials 2021, 14, 3556 7 of 24

The observation time of the produced reactions was 5 min (300 s), and the time at
which the occurrence of a particular reaction was noted in seconds: hemorrhage—H (blood
vessel bleeding), vascular lysis—L (disintegration of blood vessels), coagulation—C (intra-
or extra- vascular protein denaturizing). With the registered data, an irritation score (IS)
was calculated using the following equation:

IS = 5 × 301 − Sec H
300

+ 7 × 301 − Sec L
300

+ 9 × 301 − Sec C
300

(3)

where: H = hemorrhage; L = vessel lysis; C = coagulation; Hemorrhage time (Sec H) = onset
of hemorrhage reactions on CAM (in seconds); Lysis time (Sec L) = onset of vessel lysis on
CAM (in seconds); Coagulation time (Sec C) = onset of coagulation formation on CAM (in
seconds). Means values were obtained. The IS values range on a scale between 0 and 21, as
indicated by Luepke [56].

3. Results
3.1. XRD Analysis

The structure of magnetic nanoparticles was established by determining the phase
composition and crystallite size estimation, using XRD analysis. The XRD pattern of the
as-synthesized magnetic nanoparticles is shown in Figure 1, which exhibits the character-
istic diffraction peaks for the formation of magnetite as a phase pure without any other
secondary phases. The XRD pattern of the magnetite nanoparticles prepared via the com-
bustion method exactly matched the parent pattern of magnetite (JCPDS file no. 1011032)
from the International Centre for Diffraction Data Powder Diffraction File (ICDD PDF) 4+
2019 data.
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The intense diffracted peaks were recorded at 2θ = 18.24◦; 29.97◦; 35.32◦; 36.99◦;
42.95◦; 53.29◦; 56.82◦; 62.42◦; 71.25◦; 74.10◦, and 78.93◦, which denotes the formation of
magnetite as a phase pure with a spinel structure. Using the Debye–Sherrer equation
(Equation (1)), we were able to calculate the diameter of the magnetic nanoparticles crys-
tallites, at room temperature (24 ◦C), according to broadening of the most intense peak
(311–35.32◦) recorded on the XRD graph (Figure 1). According to the XRD data obtained,
the width (FWHM) and position (2θ) of peaks, crystallite size (D), lattice constant (a), and
distance between crystal planes (dhkl) were calculated for the most intense peak (311) at
35.32◦ on the 2θ axis, and the results are summarized in Table 1.

Table 1. Structural parameters of XRD analysis.

2θ [deg.] FWHM [deg.] D [nm] dhkl [Å] a [Å]

Fe3O4@Carbon
nanoparticles 35.32 0.283 20 2.5391 8.3200

It is worth noting the larger specific surface area of Fe3O4@Carbon nanoparticles
(SBET = 62 m2/g) with an equivalent diameter of DBET = 19 nm. This result is in agreement
with the smaller crystallite size of the obtained nanoparticles, calculated using the Debye–
Sherrer equation (Equation (1))—D = 20 nm (Table 1).

3.2. Raman Spectroscopy

Figure 2A–D shows the Raman spectra acquired from different locations on the mag-
netic nanoparticles deposited on a glass slide and excited under the 532 nm laser line.
Considering that the laser spot size on the sample surface was around 1.8 µm under our
acquisition configuration, the spectra indicated an apparent local variation in the sample
composition at the micrometer scale. The bulk magnetite (Fe3O4) core was revealed by
the band around 647–656 cm−1 [57], while the amorphous carbon coating was revealed
by the carbon D (disordered) and G (graphite) bands [58]. Traces of other iron oxide and
hydroxide phases, namely, hematite (α-Fe2O3) and goethite (α-FeOOH), were revealed by
the bands at 213–218 and 273–286 cm−1, and 386 cm−1 [59,60]. Magnetite is known for
its wide and low intensity bands [57], while hematite with better crystallinity gives much
stronger bands, which may shift slightly to higher wavenumbers due local temperature [59].
Thus, the Raman spectra indeed indicated the synthesis of magnetite nanoparticles with
amorphous carbon coating. The optical micrographs taken at the same region of the sample
before (Figure 2E) and after (Figure 2F) showed that this nanomaterial in dry powder form
was sensitive to laser excitation, changing its appearance after Raman measurements.

The near-infrared laser line at 1064 nm used with the FT-Raman instrumentation did
not deliver enough energy to excite the vibrations, including the heavy iron atoms. Hence,
only the signal of the graphitic layer covering the iron oxide core could be recorded under
the FT-Raman setup.
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Figure 2. Typical Raman signal collected from different regions of the Fe3O4@Carbon nanoparticle powder samples (A–D)
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3.3. SEM-EDX Analysis

Figure 3 shows the representative images of Fe3O4@Carbon nanoparticles obtained at
different orders of magnitude (10 µm—to highlight the general aspect of Fe3O4@Carbon
nanoparticles and 100 nm—to highlight the surface topography). As can be seen, at higher
magnification (300 kx—Figure 3B), the Fe3O4@Carbon nanoparticles obtained via the
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combustion method were highly dense in nature, uniformly distributed, with nearly a
spherical shape, and size was in the nanometric scale.
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magnitude: (A)—10 µm; (B)—100 nm; (C)—EDX spectrum with the atomic percentage of the elements recorded, and
(D)—EDX spectrum with the weight percentage of the elements recorded.

The chemical composition of the element was determined by EDX analysis, and
according to Figure 3C,D, the Fe3O4@Carbon nanoparticles contained only Fe, O, and C,
expressed both as atomic percentage and weight percentage values for the elements. Based
on the EDX spectrum and the weight percentage values, the iron element was recorded in
large quantities. The oxygen was in a slightly higher amount than iron, possible due to the
copper of the oxidized grid.

3.4. DLS Measurements

In order to assess the particle size and distribution, we prepared an aqueous suspen-
sion according to the method described in previous research published recently by our
group [61]. The hydrodynamic diameter of the Fe3O4@C nanoparticles was determined
at 25 ◦C, and from Figure 4 it can be observed that the nanoparticles were monomodal
in nature. In addition, the nanoparticle suspension had a narrow size distribution with a
mean hydrodynamic diameter of 81.9 nm. The zeta potential obtained (ζ = −47.48) indi-
cated a good stability of Fe3O4@C nanoparticles in an aqueous medium carrier. Moreover,
regarding the heterogeneity of aqueous nanoparticle suspension, the PDI obtained was
0.170. According to the International standard organization (ISO standards ISO 22,412:2017
and ISO 22,412:2017) [62], we can conclude that the Fe3O4@C nanoparticles were monodis-
persed in aqueous suspension.
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Figure 4. The intensity distribution of the particle size (DLS) of the Fe3O4@C suspension.

3.5. VSM Analysis

The VSM data of Fe3O4@Carbon nanoparticles are shown in Figure 5, and it can be
observed that the magnetic nanoparticles synthesized via the combustion method exhibited
superparamagnetic behavior at room temperature (24 ◦C). The saturation magnetization
recorded was 54.94 emu/g at maximum field (Hc = 900 kA/m). The values recorded for
remanent magnetization (Mr = 2.7 emu/g) and coercivity (Hc = 2.4 kA/m) were very small,
which confirms the superparamagnetic behavior.
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3.6. Biological Profile

In order to evaluate the biosafety profile of Fe3O4@Carbon nanoparticles, the most
used in vitro and in ovo methods were performed, such as (i) cell morphology assessment;
(ii) cell viability by means of the Alamar blue assay; (iii) cytotoxicity evaluation by the
LDH release method, and (iv) assessment of a possible irritative effect by applying the
HET-CAM test. By corroborating the results obtained from the above-mentioned methods,
a preliminary biosecurity profile of the Fe3O4@Carbon nanoparticles can be provided.

3.6.1. Cell Morphology Evaluation

The control cells were represented by the cell monolayer treated with cell culture media
and were maintained under the same conditions as the cells exposed to the Fe3O4@Carbon
sample. Thus, the control cells represent the etalon for any morphological alterations that
could be induced by Fe3O4@Carbon nanoparticles.

As presented in Figure 6, the control HGF cells manifested the specific morphological
aspects for fibroblasts such as elongated shape with a spindle-like feature and high adher-
ence to the cell culture plate. Regarding the confluence of control cells, it was observed
that the confluence increased gradually depending on the incubation time interval, the
highest percentage of confluence being recorded after 48 h. Nevertheless, HGF cells treated
with the Fe3O4@Carbon sample at concentrations of 25 µg/mL, 50 µg/mL, 100 µg/mL,
125 µg/mL presented similar morphological aspects as the control cells and no detectable
morphological alterations. In addition, the proliferative feature of the HGF cells was not im-
paired by exposure to Fe3O4@Carbon nanoparticles, even when the highest concentration
of 125 µg/mL was administrated.
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Figure 6. Morphological aspects of the primary human gingival fibroblast (HGF) monolayer—initially (0 h) and at 24 h and
48 h post-exposure to the Fe3O4@Carbon sample at different concentrations (25 µg/mL, 50 µg/mL, 100 µg/mL, 125 µg/mL).
Pictures were taken at a magnification of 20×; the scale bars represent 50 µm. The black particles observed in the images
represent the Fe3O4@Carbon sample.

As shown in Figure 7, the control PGK cells presented an epithelial-like morphology
with a cobblestone aspect and rounded features, rather than a flat appearance.
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Figure 7. Morphological aspects of primary human gingival keratinocyte (PGK) monolayer—initially (0 h) and at 24 h
and 48 h post-exposure to the Fe3O4@Carbon sample at different concentrations (25, 50, 100, 125 µg/mL). Pictures were
taken at a magnification of 20×; the scale bars represent 50 µm. The black particles observed in the images represent the
Fe3O4@Carbon sample.

The confluence of PGK cells developed with the incubation time until a cell density
of 95–100% was reached at 48 h post-stimulation. However, exposure of the PGK cell line
to the Fe3O4@Carbon nanoparticles at concentrations of 25 µg/mL and 50 µg/mL did
not induce significant cell morphological alterations. Nevertheless, when the PGK cell
line was treated with concentrations of 100 µg/mL and 125 µg/mL, several cells become
rounded and detached from the culture plate (specific signs of apoptosis), especially at 48 h
post-stimulation, but the percentage of apoptotic cells was very low.

3.6.2. Cell Viability Assessment

The viability percentages (%) of both HGF and PGK cell lines at 24 h and 48 h post-
exposure to the 25 µg/mL, 50 µg/mL, 100 µg/mL, and 125 µg/mL Fe3O4@Carbon samples
are presented in Figure 8. As an overview observation, the HGF and PGK cell lines
manifested a slight dose-dependent reduction of the cell viability rate; however, the viability
of both cell lines did not decrease below 89% after 24 h exposure time. At 48 h post-
treatment, the viable HGF population was slightly reduced to a percentage of 86.93%, when
125 µg/mL Fe3O4@Carbon nanoparticles was applied, while the PGK cell line was more
sensitive to Fe3O4@Carbon nanoparticle treatment, especially when the concentrations
of 100 µg/mL and 125 µg/mL were used; in this case the cell viability was 87.47% and
85.2%, respectively.

Nevertheless, no concentration induced an important cell viability decrease of pri-
mary human gingival fibroblasts and primary gingival keratinocytes under the current
experimental setup.
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Figure 8. Cell viability percentage of primary human gingival fibroblasts (HGFs) and primary gingival keratinocytes (PGKs)
at 24 h and 48 h post-stimulation with the Fe3O4@Carbon sample at different concentrations (25, 50, 100, 125 µg/mL).
The results are presented as mean values of the cell viability percentage (%) normalized to control cells (treated with cell
culture media) ± Standard Deviation (SD). One-way ANOVA was applied to determine the statistical differences between
test-treated cells and the control, followed by Tukey’s multiple comparisons test (* p < 0.05; ** p < 0.01; *** p < 0.001 versus
control cells).

3.6.3. Cytotoxic Effects by Means of the LDH Assay

In order to provide a more complex biological profile regarding the impact of
Fe3O4@Carbon samples (25 µg/mL, 50 µg/mL, 100 µg/mL, 125 µg/mL) on both cell
lines, the LDH release method was also performed to complete the biosecurity portrait of
test samples.

As presented in Figure 9, the cytotoxicity rate manifested by both cell lines through
lactate dehydrogenase (LDH) quantification into cell culture media followed the same dose-
dependent pattern as the one observed for cell viability quantification; the cells presented a
slightly increased cytotoxic activity depending on the administrated dose of Fe3O4@Carbon
nanoparticles. For both cell lines—HGF and PGK, the highest percentages of cytotoxic
reactions were recorded when the concentration of 125 µg/mL Fe3O4@Carbon sample was
administrated for 48 h; HGF cells manifested a cytotoxic rate of 3.928%, while PGK cells
exhibited a cytotoxicity percentage of 5.51%. Nevertheless, this cytotoxic percentage is still
extremely low, as compared to the LDH amount released by control cells.
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Figure 9. Cytotoxicity rate of primary human gingival fibroblasts (HGFs) and primary gingival keratinocytes (PGKs) at 24 h
and 48 h post-treatment with Fe3O4@Carbon nanoparticles at concentrations of 25, 50, 100, 125 µg/mL. The results represent
the mean values ± Standard Deviation (SD) of three individual experiments. One-way ANOVA test was performed to
determine statistical differences of sample-treated cells compared to control cells, followed by Tukey’s multiple comparisons
analysis (* p < 0.05; ** p < 0.01; *** p < 0.001 versus control cells).
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3.6.4. Irritation Potential Using the HET-CAM Assay

Fe3O4@Carbon nanoparticles at a concentration of 125 µg/mL induced a slight reac-
tion in the vascular plexus of the developing CAM (IS = 4.71) compared to the massive
impairment induced by the positive control, SLS (IS = 17.63).

According to the irritation scale recommended by Luepke, (0–0.9—non-irritant; 1–
4.9—weak irritant; 5–8.9—moderate irritant; 9–21—strong irritant) [56] the Fe3O4@Carbon
nanoparticles can be considered weak irritants at a concentration of 125 µg/mL (Figure 10
and Table 2).
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Figure 10. The irritation potential using the HET-CAM method. Stereomicroscope images show the chorioallantoic
membrane before (t0) and 300 s after application (t5) of 300 µL of the test sample of Fe3O4@Carbon nanoparticles at a
concentration of 125 µg/mL and control samples (distilled water as a negative control, SDS 0.5% as a positive control); scale
bars represent 500 µm. The black particles observed in the images represent the Fe3O4@Carbon sample.

Table 2. Irritation score and type of effect induced by Fe3O4@Carbon nanoparticles at a concentration
of 125 µg/mL.

Test Compound and Controls Irritation Score (IS) Irritation Category

Distillate water (negative control) 0 Non irritant
SLS 0.5% (positive control) 17.63 Strong irritant

Fe3O4@Carbon nanoparticles 125 µg/mL 4.71 Weak irritant

4. Discussion

Nanotechnology provides new perspectives in dental medicine to overcome challeng-
ing issues caused by complex human diseases and a huge opportunity for the development
of new dental products that could be applied in restorative dentistry, implantology, pe-
riodontics, edentulism, and even in oral cancers. Of all the nanomaterials suitable for
dentistry, magnetic nanoparticles are very seldom studied. In the literature, studies that de-
scribed the efficient use of magnetic nanoparticles are reported [47,48,63,64], but none refers
to the use of magnetic nanoparticles per se. However, Gao and co-workers [65] reported
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that biocompatible Fe3O4 nanoparticles exhibited potent anti-biofilm properties without
deleterious effects on oral tissues in vivo. Based on this preliminary study, two years later,
Bukhari and colleagues [63] developed new disinfection technologies based on iron oxide
nanoparticles activated with H2O2 to enhance antibacterial activity on root canal surfaces
and in dentinal tubules. Results have shown that iron oxide nanoparticles that were H2O2
activated were capable of binding to the infected canal surface and inhibited E. faecalis
presence on canal surfaces and also at different depths of dentinal tubules compared to all
other experimental groups. In another research study, Xia and colleagues [64] successfully
developed novel iron oxide nanoparticles that were incorporated into calcium phosphate
cement scaffolds. They used maghemite and hematite as a source of magnetic material and
investigated the effect of the novel calcium phosphate cement scaffolds functionalized with
magnetic nanoparticles on human dental pulp stem cell seeding for bone tissue engineering.
The results demonstrated that the novel magnetic scaffolds substantially enhanced bone
regeneration and osteoinduction, being innovative materials for dental, craniofacial, and
orthopedic applications.

Other nanomaterials suitable for dentistry are carbon-based nanoparticles, which
are abundant elements with important applications in science and technology fields [66].
Many various carbon allotropes can be synthesized, but the most used classes are fullerenes,
nanotubes/nanofibers, and quantum dots. Graphene (an allotrope of carbon) has improved
biocompatibility features compared to other classes of carbon-based nanomaterials, but its
toxicity has yet not be discussed comprehensively [67]. In addition, the synthesis method
involves either mechanical exfoliation/cleavage, chemical vapor deposition or oxidation
of carbon precursors in concentrated sulfuric acid [66]. These methods are complicated
because they involve other subsequent process, are expensive, and require special or
precious materials. Moreover, the quantum dots must be covered with other materials,
preventing leaking of the toxic heavy metals, thus allowing dispersion [68].

The current study presents the synthesis of a nanomaterial that combines all the
biomedical and physicochemical features of a magnetic material [69] with all the biomedi-
cal and mechanical characteristics of graphene [70], more precisely of carbon. In the present
research, the combustion method was applied for manufacturing the magnetic nanoparti-
cles based on iron oxides, which have the features required for biomedical applications,
namely: biocompatibility, non-toxicity, chemical stability, particle narrow size distribution
with a small size resulting in a large surface area, and superparamagnetic behavior [71–74].

The synthesis of magnetic nanoparticles has received tremendous attention over the
years due to the potential applications in nanobiotechnology. For this reason, the employed
synthesis method plays an essential role in obtaining the magnetic nanoparticles with
appropriate properties for their intended utilization. Mahmudi et al. [75] summarized that
the chemical, physical, and biological methods are the three most important published
routes for the synthesis of magnetic nanoparticle-based iron oxides. From the chemical
route of the magnetic nanoparticle preparation, the most used is the co-precipitation from
solution followed by hydrothermal/solvothermal, microemulsion, sonochemical, thermal
decomposition, and electrochemical deposition methods [75]. Even if the precipitation
method is by far the most simple and used, it has some serious limitations such as the
properties of the obtained oxides influenced by many factors such as pH, ionic strength of
the solution, temperature, nature of the salts used, the concentration of the precipitating
agent or the protective atmosphere. Because of the mutual influence of the working
parameters, by using this method, the size distribution of the obtained particles is broad,
and their shape and size are hardly controlled [76–79]. Due to the serious limitations which
limit the ability to obtain magnetic nanoparticles with adjustable properties, developing
new simple, flexible, and inexpensive methods to synthesize magnetic nanoparticles with
tailored properties to provide them with the full potential in biomedical applications is of
extreme importance.
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A very promising alternative to the methods mentioned above is the solution com-
bustion synthesis that offers several advantages over the other methods. Relying on the
exothermic reaction between an oxidizing agent (the desired metal nitrate) and various
reducing agents (fuels), this method is simple, energy saving, has a short reaction time,
is versatile, eco-friendly, and has a low cost of raw materials and equipment. In the last
years, this technique was increasingly used for the preparation of magnetic nanomaterials,
especially magnetic iron oxide nanoparticles [43,80–83]. Magnetite (Fe3O4) and maghemite
(γ-Fe2O3) are two types of iron oxide nanoparticles with all of the above-mentioned char-
acteristics that are widely used in nanomedicine. Besides the physicochemical features,
the magnetic nanoparticles must possess certain biological features, which make them
suitable for all areas of nanomedicine, thus overcoming the side effects related to the
conventional therapies.

In the current study, various characterization methods have been employed to ana-
lyze the physicochemical features of the obtained Fe3O4@Carbon nanoparticles, namely,
Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), X-ray diffraction
(XRD), Raman spectroscopy, Vibrating Sample Magnetometry, and Brunauer–Emmett–
Teller (BET) techniques.

Following the results obtained after the characterization of the pre-formed magnetic
nanoparticles in terms of phase composition, it has been demonstrated that the Fe3O4
nanoparticles have crystallites size of 20 nm, calculated using the Debye–Scherrer equa-
tion (Equation (1)), and magnetite (Fe3O4) was formed as phase pure without any other
secondary phases. The crystallite size is suitable for biomedical application considering
the fact that sizes below 100 nm possess lower sedimentation rates, improving tissular
diffusion [84]. According to Figure 1, the Fe3O4@Carbon sample recorded 11 peaks on the
XRD pattern at a 2θ scale, representing the corresponding indices of (111), (220), (311), (222),
(400), (422), (511), (440), (620), (533), (444) [85]. Our results are in agreement with those
obtained by the BET technique, meaning that the equivalent diameter that resulted from
the BET method (19 nm) is approximately equal to the diameter of the crystallites (20 nm)
after applying the Scherrer equation (Equation (1)). Such results were also reported in the
literature, obtained by [47,86]. The phase composition and specific surface area are two
parameters that are extremely important because the obtained Fe3O4@Carbon nanopar-
ticles can be functionalized by combining their surface with biomolecules, materials or
drugs, thus enhanced mechanical properties and improving osteogenic potential in vitro
and in vivo.

The structural analysis by Raman spectroscopy shows the nanomaterial consisting
of an iron oxide (magnetite) core with the amorphous carbon coating that was obtained.
The broader Raman band at 647–656 cm−1 is characteristic of Fe-O vibration within the
tetrahedral sites of magnetite [57], while the larger carbon D and G bands testify the
presence of abundant carbon material [58]. Hematite and goethite exhibit a higher scatter-
ing cross-section, and hence stronger Raman bands, than magnetite due to their greater
crystallinity [59], even if they are present in trace concentrations. The lack of XRD peaks
of hematite and goethite suggests that these phases are present in quantities below the
instrumental detection limit and thus may only be introduced during Raman analysis due
to the laser heat input [59].

The medical applications of magnetic nanoparticles also require other parameters
which must be controlled in regard to some specific properties. Besides their composition,
small crystallites size, and large surface area, the size, morphology, and ultrastructure
of nanoparticles have to be even more carefully controlled. Alongside the preparation
method employed, the reagent concentration, temperature of the reaction, and stagnation
time are of the most critical factors in controlling the size, crystallinity, and shape of
the obtained nanoparticles [69]. In this study, nanosized Fe3O4@Carbon particles with
a nearly spherical shape, highly dense in nature, and uniformly distributed (Figure 3B)
were obtained. The EDX analysis confirmed the presence of Fe, O, and C in the sample
(Figure 3C,D). Nanoparticle stability, an important feature for biomedical applications, was
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investigated in the current work by measuring the Zeta potential using the DLS technique.
According to literature data [87], the closer the Zeta potential is to 0, the more unstable
the nanoparticle suspension. The Fe3O4@C aqueous suspension was highly negatively
charged (−47.48 mV) with a narrow size distribution and a single family of nanoparticles.
Our results are in agreement with other research studies [61,88–90].

Other extremely important characteristics for medical applications, especially for
drug delivery, are the magnetic properties and magnetic behavior. Regarding this aspect,
Fe3O4@Carbon nanoparticles with high saturation magnetization were obtained. The neg-
ligible values for coercivity and remanence indicate that the Fe3O4@Carbon nanoparticles
obtained exhibited a superparamagnetic behavior. Our findings are in in good agreement
with other research studies [91–93].

Nevertheless, a preliminary biosecurity profile assessment of the Fe3O4@Carbon
sample, employing a suitable in vitro model, plays an essential role in establishing the
clinical potential of these Fe3O4@Carbon nanoparticles for dental applications.

In vitro models are preferred over in vivo models due to several advantages presented
by the cell lines, such us controllable parameters, facile interpretation, reduced expenses,
the overcoming of ethical regulations related to animal use for research [52,94].

In the current study, primary human gingival fibroblast and primary gingival ker-
atinocyte cell lines were selected as an in vitro model due to the high percentage of these
types of cells in the gingival area and also due to the ability of these cells to simulate reac-
tions observed in in vivo models [95,96]; thus, this in vitro model could provide responses
closer to the in vivo oral microenvironment.

Moreover, after reviewing the literature data, no research study has focused on the
cytotoxicity evaluation of magnetic nanoparticles with carbon on their surface obtained per
se from the synthesis method for relevant cells of oral mucosa, such as primary HGF and
PGK cell lines. Thus, the current study provides new relevant data regarding the impact of
Fe3O4@Carbon nanoparticles at the buccal oral mucosa level.

The in vitro results obtained in the present study revealed that the Fe3O4@Carbon
nanoparticles did not induce important cytotoxic effects on the HGF and PGK cell lines
under the experimental setup employed (test concentrations of 25, 50, 100, 125 µg/mL
and time interval exposure of 24 h and 48 h, where the effect was normalized to control
cells). Based on both in vitro colorimetric assays performed (Alamar blue and LDH release
methods), the test sample induced a dose-dependent reduction of the viable HGF and
PGK cell line populations; the cells exhibiting the most damaging effect when the highest
concentration of 125 µg/mL Fe3O4@Carbon nanoparticles was tested; the HGF cell line
manifested a viability rate of 90.46% and a cytotoxic percentage of 1.975%, for a period of
24 h exposure time, while after a contact time of 48 h, the cell viability of HGF cells was
86.93% and the cytotoxic rate was 3.928%. Regarding the biological response manifested
by the PGK cell line, according to the current results (Figures 8 and 9), primary gingival
keratinocytes seemed to be slightly more sensitive to the Fe3O4@Carbon nanoparticle
treatment, with the PGK cell line exhibiting a cell viability of 89.50% and a cytotoxic
rate of 2.027%, when the cells were exposed for 24 h to a concentration of 125 µg/mL
Fe3O4@Carbon nanoparticles and a viability percentage of 85.2%, and a cytotoxicity rate
of 5.51% when the same concentration of 125 µg/mL was applied for 48 h. However,
by comparing the data resulting from the cell morphology assessment (especially in the
case of PGK cell line) with the results obtained from Alamar blue and LDH tests, it
can be observed that the cell density developed as the concentration of Fe3O4@Carbon
nanoparticles increased (Figure 7), while the cell viability percentage was slightly reduced
when high concentrations of Fe3O4@Carbon nanoparticles were used (Figure 8), and also,
several cytotoxic events were quantified (Figure 9). This phenomenon may be related to the
high Fe3O4@Carbon concentration-treated cells that reached full confluence, in which case
the further development of the cell monolayer was compromised, leading inevitably to the
cell death of the new cells resulting after full confluence achievement. Thus, this aspect can
be translated into a slight cell viability decrease and a quantification of the low cytotoxic
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rate when compared to control cells, revealing that the toxicological activity noticed was
not probably caused by the high concentrations of Fe3O4@Carbon nanoparticles.

Nevertheless, according to ISO Standard 10993-5:2009 [97], which refers to the bio-
logical evaluation of medical devices, one compound could be considered cytotoxic if the
viable cell population of the treated cells was reduced by more than 30%. Thereby, the
Fe3O4@Carbon sample could not be labeled as cytotoxic when applied to human gingival
fibroblasts and human gingival keratinocytes at concentrations up to 125 µg/mL for an
interval of maximum 48 h.

Moreover, the cell morphology assessment of the HGF cell line (Figure 6) revealed
that the Fe3O4@Carbon nanoparticle-treated cells manifested no cytopathic features, as
compared to control HGF after 24 h and 48 h post-exposure to all test concentrations (25,
50, 100, 125 µg/mL). Moreover, the proliferative characteristic of the HGF cell line was
still active even after the cells were exposed to Fe3O4@Carbon nanoparticles for a time
interval of 48 h; this effect indicates that the test sample was not cytotoxic [98]. However,
compared to HGF cells, the PGK cell line exposed to the same treatment conditions (the
same concentrations of the Fe3O4@Carbon nanoparticles—25, 50, 100, 125 µg/mL and
identical time exposure—24 h and 48 h) manifested some apoptotic features only when
concentrations of 100 and 125 µg/mL were applied for 48 h. Nevertheless, the PGK
cell line exhibited no morphological alterations when the cells were treated with these
concentrations (100 and 125 µg/mL) for a period of 24 h, or when PGK was exposed to
lower concentrations (25 and 50 µg/mL) of Fe3O4@Carbon nanoparticles for 24 h and 48 h
(Figure 7). As already hypothesized above, the cytotoxic events developed by the cells
treated with high concentrations of Fe3O4@Carbon nanoparticles may be caused by the
high confluence of the cells that could not further proliferate and may lead to few cell death
events that can be quantified as a slight cell viability decrease and a low cytotoxicity rate as
compared to control cells. Thus, the cytotoxic aspects recorded may not be related to the
impact of Fe3O4@Carbon nanoparticles on the cell monolayer.

Using the highly vascularized chorioallantoic membrane of the chick embryo, the
method involves an evaluation of an inflammatory reaction similar to that induced by
a mucosal irritant; therefore, the assay is used for assessing the degree of irritancy of
different material ophthalmic preparations, surfactants, cosmetics, dental adhesives, and
other various natural compounds and chemicals [50,99–101]. The HET-CAM method, an
optimal prescreening assay for animal models, represents a simple, low cost and short-term
method for predicting the ocular irritant effect of chemicals as an alternative to the classic
Draize test in rabbits. It also offers data regarding safety concerns for materials applied
to highly vascularized mucosa [102]. Fe3O4@Carbon nanoparticles showed a slight sign
of irritation, localized to a limited area, without influencing the short-term toxicity of the
embryo. As shown by our group, a different type of magnetite nanoparticle, a Fe3O4@OA
colloidal suspension, was also found as a moderate irritant in the HET-CAM assay [50],
evaluated as a potential permeation enhancement beneficial feature. The Fe3O4@Carbon
nanoparticles could be considered a good biocompatible material. The IS value is close to
the moderate irritability category; thus, the concentration of such a material should not be
used in a higher concentration for mucosal tissues. The evaluation of nanomaterials by this
assay is valuable in terms of estimating the biocompatibility of mucosal materials, offering
useful information on the vascular safety of such materials.

Based on these results, the biocompatibility feature of these nanoparticles makes them
suitable candidates for various dental applications, such us (i) co-coating material for
dental implants providing osteogenic potential when a magnetic field is applied [47]; (ii)
co-materials for scaffold-type structures to promote odontogenesis through dental pulp
stem cells [64,103]; and (iii) Fe3O4-hydroxyapatite composites to induce hyperthermic
conditions in order to provide a novel approach for malignant bone tumor treatment [104].
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5. Conclusions

Herein, we proposed the manufacturing of a nanomaterial, obtained in a single step
process, in several minutes, at a low cost, with potential use in dentistry, more precisely in re-
generative dentistry and bone tissue engineering, drug delivery, and oral cancer treatments.
The nanomaterial obtained has both the biomedical features of magnetite and carbon due
to the synthesis method employed—the combustion method. The Fe3O4@Carbon nanoma-
terial has high specific surface area, suitable for attaching biomolecules or drugs, with a
nanoparticle narrow size and a high saturation magnetization, which makes it suitable for
targetable drug delivery in oral cancers. Regarding the biosecurity profile, Fe3O4@Carbon
nanoparticles induced no significant cytotoxic effect on human gingival fibroblast and
human gingival keratinocyte populations. Regarding the evaluation of the inflammatory
reaction, it was found that the Fe3O4@Carbon nanoparticles induced a slight sign of irrita-
tion, localized to a limited area, without influencing the short-term toxicity of the embryo.
Based on the in vitro and in ovo methods performed, a preliminary biosafety profile of the
Fe3O4@Carbon was acquired within the limitations of the experimental setup employed.
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