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A B S T R A C T   

Objective: This paper introduces a privacy-preserving federated machine learning (ML) architecture built upon 
Findable, Accessible, Interoperable, and Reusable (FAIR) health data. It aims to devise an architecture for 
executing classification algorithms in a federated manner, enabling collaborative model-building among health 
data owners without sharing their datasets. 
Materials and methods: Utilizing an agent-based architecture, a privacy-preserving federated ML algorithm was 
developed to create a global predictive model from various local models. This involved formally defining the 
algorithm in two steps: data preparation and federated model training on FAIR health data and constructing the 
architecture with multiple components facilitating algorithm execution. The solution was validated by five 
healthcare organizations using their specific health datasets. 
Results: Five organizations transformed their datasets into Health Level 7 Fast Healthcare Interoperability Re-
sources via a common FAIRification workflow and software set, thereby generating FAIR datasets. Each orga-
nization deployed a Federated ML Agent within its secure network, connected to a cloud-based Federated ML 
Manager. System testing was conducted on a use case aiming to predict 30-day readmission risk for chronic 
obstructive pulmonary disease patients and the federated model achieved an accuracy rate of 87%. 
Discussion: The paper demonstrated a practical application of privacy-preserving federated ML among five 
distinct healthcare entities, highlighting the value of FAIR health data in machine learning when utilized in a 
federated manner that ensures privacy protection without sharing data. 
Conclusion: This solution effectively leverages FAIR datasets from multiple healthcare organizations for federated 
ML while safeguarding sensitive health datasets, meeting legislative privacy and security requirements.   
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1. Introduction 

1.1. Background 

Health data is accumulated through extensive use of digital tech-
nologies in healthcare, offering diverse opportunities for applications 
[1–3]. However, stringent privacy and security measures, such as the 
Health Insurance Portability and Accountability Act (HIPAA) [4] in the 
United States and the General Data Protection Regulation (GDPR) [5] in 
the European Union, and equivalent regulations in other countries 
[6–9], have been established. 

Machine learning algorithms greatly benefit from high-quality 
health data [10]. However, conventional methods necessitate central-
izing data, posing conflicts with privacy regulations [11]. Federated 
machine learning emerged to tackle these challenges by enabling model 
training without the need to exchange or transfer sensitive data [12,13]. 
This field stands as a distinct research area, marked by its advancements 
and ongoing challenges [14–16]. 

Data preparation stands as one of the most challenging and labor- 
intensive phases in machine learning [17]. For this reason, achieving 
health data interoperability is a significant step towards successful 
machine learning applications beyond health data sharing and other 
purposes of clinical informatics. The FAIR (Findable, Accessible, Inter-
operable, Reusable) guiding principles were introduced to formally 
outline guidelines for achieving machine-accessible and actionable 
interoperability [18,19]. The health informatics community leads the 
adoption of FAIR principles to facilitate health data interoperability [20, 
21], presenting numerous valuable opportunities for healthcare [22]. In 
a prior study, the authors introduced a FAIRification workflow [21] to 
formalize the steps for creating FAIR health datasets and developed an 
open-source software toolset to implement these steps [23]. 

1.2. Objective 

This paper aims to outline the design of a privacy-preserving feder-
ated machine learning architecture built upon FAIR health datasets. This 
includes detailing the implementation decisions, deployment, and vali-
dation across five distinct hospital and health research institute settings 
spread throughout Europe. Following the FAIRification workflow [21], 
datasets of various healthcare and health research organizations were 

transformed into FHIR resources, adhering to the FAIR principles, using 
open-source FAIRification software tools [23]. Upon achieving FAIR 
compliance and conformance to HL7 FHIR, the data harmonization and 
preparation phase for machine learning purposes was nearly completed. 
However, due to restrictions on dataset exchange or transfer among 
organizations, a novel approach was necessary. Hence, the authors 
designed and implemented a federated machine learning architecture 
that maintains datasets within their respective locations, trains models 
locally on each FAIR dataset, and transfers only the trained local models 
to a trusted third party acting as the manager. This process facilitates the 
merging of local models into a global model capable of making 
predictions. 

This paper introduces an architecture featuring a federated machine 
learning agent constructed and deployed on top of the FHIR repositories, 
housing FAIRified datasets within each participating organization. 
Additionally, a trusted federated machine learning manager was 
developed and deployed in the cloud to communicate with the agents 
and orchestrate the federated machine learning process. A browser- 
based graphical user interface (GUI) was developed on top of the man-
ager to facilitate user interaction. This interface empowers data scien-
tists to seamlessly design and execute federated machine learning 
algorithms. Users can access the platform through the GUI to perform 
the following actions:  

• Design their features/variables and create corresponding feature 
sets.  

• Create federated datasets based on these feature sets by defining 
eligibility criteria.  

• Choose from available machine learning algorithms and fine-tune 
various parameters.  

• Train machine learning models in a federated manner.  
• Utilize the trained models for future predictions. 

2. Methods 

2.1. Federated ML architecture 

The federated ML architecture presented in this study comprises two 
main components: the Federated ML Manager and the Federated ML 
Agent. The Federated ML Manager (the “manager”) encompasses a set of 

Fig. 1. Graphical representation of the Federated ML Architecture: components, subcomponents, and main interactions among them.  
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services responsible for managing the projects, feature sets, and data-
sets. It orchestrates federated machine learning operations by connect-
ing to the Federated ML Agents, querying results, aggregating local 
machine learning models to generate a global model, and conducting 
predictions in prospective studies using the global model. On the other 
hand, the Federated ML Agent (the “agent”) consists of components that 
enable health institutions to perform machine learning operations on 
FAIR health data. 

Fig. 1 illustrates the components of the manager and the agent, 
depicting the high-level communication between them. The numbers in 
the figure outline the general execution flow within the architecture. 
The flow commences with the project concept, overseen by the Project 
Controller, which holds machine learning resources like features, data-
sets, and models within a unified framework. Each distinct use case can 
be represented by a separate project. 

The Featureset Controller functions as a feature registry, facilitating 
the creation and management of features. A feature is defined by a 
combination of a FHIR search query and FHIR path scripts. These indi-
vidual features are then organized into groups known as feature sets, 
enhancing the reusability of these features. This process is indicated by 
number 1 in Fig. 1. The subsequent numbers in the figure show the 
sequence in which the components interact with each other. The man-
ager maintains a database known as the Model repository, responsible 
for persisting resources such as projects, feature sets, datasets, and ML 
models. Upon defining a feature set, the architecture allows for the 
creating datasets in a federated manner with respect to a feature set 
definition. 

2.1.1. Data preparation 
The methodology of this study is based on the utilization of FAIR 

data, achieving FAIRness through the adoption of the HL7 FHIR stan-
dard. In the preparation of FAIR data for a federated learning pipeline, 
we rely on standard data access mechanisms within HL7 FHIR, such as 
FHIR search and FHIR path. These mechanisms provide a standardized 
approach to data preparation, ensuring verifiability and repeatability 
across different settings. This standardized approach to data preparation 
enables the transfer of trained models to various settings, facilitating 
validation and utilization for online predictions. These models can be 
effectively transferred and utilized in settings where the same method-
ology is employed for data preparation, ensuring consistency and reli-
ability in predictions across different environments. 

The Dataset Controller functions by interfacing with the Data 
Extraction Engine of each agent and submitting the dataset generation 
request (represented as number 3 in the process flow). This request 
prompts the extraction of datasets from the FHIR repositories indepen-
dently at each agent. Within the agent, the Data Extraction Engine re-
ceives the request, containing eligibility criteria along with a specified 
feature set. Eligibility criteria consist of a set of FHIR search query 
scripts allowing both inclusion and exclusion criteria to be specified.  
Table 1 showcases three example criteria along with their descriptions, 
illustrating their relationship with the FAIR data. 

The eligible FHIR resources are queried from the FHIR repository 
through the Eligibility Query Handler (number 4 & 5). Subsequently, 
these results undergo conversion into a machine learning (ML)-ready 
format based on predefined feature definitions. The conversion process 
involves extracting the value of each feature from eligible resources 
using the corresponding FHIR search query and FHIR path script pair 
associated with the feature. This pair serves as an extraction specifica-
tion [24] that transforms the FHIR resources into a tabular format 
suitable for ML algorithms, aligning with the predefined feature defi-
nitions. For example, the following pair selectively retrieves Patient 
resources and further extracts the gender value by evaluating the asso-
ciated FHIR path script. 
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(FHIRsearchquery, FHIRpathscript) = (“/Patient”, “value

: Patient.gender”)

Each FHIR resource resulting from the search query corresponds to a 
row. The features represent the columns, and each feature yields a single 
value, populating the respective cell in this tabular conversion. Algo-
rithm 1 shows the steps of the data preparation process, which are 
executed by different components as depicted in Fig. 1. 

Algorithm 1. Data Preparation on FAIR Health Data. 

2.1.2. Model training 
Once the datasets are generated at each agent, the orchestrator co-

ordinates the federated model training process using the ML Engine and 
Data Analysis Handler components of the agents (denoted as numbers 6 
to 8). Within the Data Analysis Handler, categorical values undergo 
encoding, and various strategies are employed to handle empty values 
through different imputing methods. Following the local models’ 
training and cross-validation, the manager collects and builds a boosted 
global model using the Aggregator. Subsequently, this model is persisted 
in the manager for future predictions (indicated by numbers 9 to 11). All 
communication between the manager and agents is asynchronous, 

allowing the manager to submit requests to agents without being 
blocked for a response. Requests are concurrently sent to agents, and the 
manager periodically polls the agents to check whether the results are 
ready. 

2.2. Federated ML algorithm 

2.2.1. Data preparation 
The authors propose a novel data preparation methodology that 

utilizes FHIR search and FHIR path statements on top of an HL7 FHIR 
endpoint. This methodology allows the same data preparation pipeline 
to be employed across various settings without necessitating additional 
custom development efforts. The Dataset Controller within the manager 
triggers data preparation at each agent by interfacing with Data 
Extraction Engine endpoints. Within each agent, the Eligibility Query 
Handler queries eligible records from the FHIR repository using the 
provided FHIR search statements within dataset definitions. Following 
that, the Data Extraction Engine executes the FHIR search and FHIR path 
statements of each feature to extract the corresponding from each 
eligible FHIR resource. This process culminates in the generation of an 

Fig. 2. Training phase of the federated ML algorithm.  
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ML-ready dataset in a tabular format, where each column represents the 
value of a feature, and the rows correspond to eligible FHIR resources. 

2.2.2. Model training 
The privacy-preserving federated ML algorithm proposed in this 

study generates a global predictive model in four steps, utilizing the ML- 
ready tabular datasets prepared by each agent. Unlike existing federated 
learning algorithms such as Federated Averaging (FedAvg) [25], which 
update model parameters over several communication rounds between 
participants and a central server, the proposed algorithm creates a 
federated model in only two communication rounds by calculating 
weights for each local model. In the first step, the training phase begins 
with the Federated ML Orchestrator sending a training request to each 
agent. This request includes the name of the classification algorithm to 
be executed and the user-defined parameter values for the algorithm. 
Upon receiving this training request, the ML Engine within an agent first 
splits the data into training and test sets, allocating 80% for training and 
20% for testing. Next, it trains a local model on the training set. It sends 
both the local model and its statistics, encompassing the confusion 
matrix (CM) containing true positive (TP), false positive (FP), true 
negative (TN) and false negative (FN) values, back to the Federated ML 
Orchestrator. Fig. 2 visually represents the training step within a 
federated setting involving three agents. 

After receiving the local models and confusion matrices from all 

agents, the Federated ML Orchestrator distributes these models and 
matrices to every other agent. This enables each agent to independently 
validate the local models of other agents using their own training data 
and calculate the corresponding confusion matrices. Consequently, the 
agents forward these calculated matrices back to the Federated ML 
Orchestrator, as depicted in Fig. 3. 

Following the training and validation process involving N agents, the 
Federated ML Orchestrator possesses N ML models and N * N confusion 
matrices. In the third step, all models and confusion matrices are for-
warded to the Aggregator for generation of the global federated model. 
During the aggregation phase, illustrated in Fig. 4, the Aggregator 
combines the numbers within confusion matrices by summing up the TP, 
FP, TN, and FN values from each model. This process results in the 
generation of an aggregated confusion matrix (ACM) for each local 
model, simulating the scenario where all the data is centralized in a 
single data store. 

Once the ACMs are calculated for each model, the Aggregator pro-
ceeds to generate the global model. To do this, in this algorithm, the 
boosting approach is adapted to create a strong model from multiple 
local models by assigning a weight to each of these local models. In 
contrast to the traditional boosting approach, where weak classifiers are 
assigned weights in several iterations based on their performance on the 
weighted data, in the proposed approach weights are assigned based on 
the accuracy metric derived from the aggregated TP, FP, TN, FN values 

Fig. 3. Validation phase of the federated ML algorithm.  

Fig. 4. Aggregation phase of the federated ML algorithm.  

A.A. Sinaci et al.                                                                                                                                                                                                                                



Computational and Structural Biotechnology Journal 24 (2024) 136–145

141

within the corresponding ACM. In this way, if a local model performs 
well in all participating sites, it gets greater weight. Likewise, if a local 
model performs well in one site, but it underperforms in other sites, it 
gets lower weight. 

wi =
TP + TN

TP + TN + FP + FN 

The calculated weights are normalized before assignment. The global 
model, or aggregated model, is then constituted by the weighted sum of 
the local models. This process can be mathematically expressed as fol-
lows: 

∑N

i=1
wi ∗ modeli 

When the Federated ML Orchestrator receives the aggregated model, 
it initiates the fourth and last step, the testing phase. The primary 
objective of this phase is to assess the performance of the global model 
on the data of agents, in comparison to their respective local models. 
This phase does not influence the global model itself. During this phase, 
the aggregated model, comprising various local models and their 
assigned weights, is disseminated to all agents for testing. Unlike con-
ventional machine learning applications, where positive predictions are 
labeled as + 1 and negative predictions as 0, this algorithm uses + 1 for 
positive predictions and − 1 for negative predictions. Employing this 
approach, the algorithm computes the weighted sum based on the for-
mula. If the result is a positive value, it predicts 1; otherwise, it predicts 
0. For instance, consider an aggregated model with the formula 
(0.2 ∗ A) + (0.55 ∗ B) + (0.25 ∗ C), where the predictions of A, B, and C 

are negative, negative, and positive, respectively. The algorithm com-
putes the formula as the following and generates an output of 0. 

(0.2 ∗ ( − 1))+ (0.55 ∗ ( − 1))+ (0.25 ∗ (+ 1)) = − 0.5 

However, if the predictions for A, B, and C are negative, positive, and 
negative, respectively, the resulting output prediction would be 1. This 
calculation is derived as follows: 

(0.2 ∗ ( − 1))+ (0.55 ∗ (+ 1))+ (0.25 ∗ ( − 1) ) = + 0.1 

The pseudocode of the proposed privacy-preserving federated ma-
chine learning algorithm on FAIR health data is presented in Algorithm 
2. 

Algorithm 2. Privacy-Preserving Federated Machine Learning Algo-
rithm on FAIR Health Data. 

3. Application & results 

3.1. Datasets & FAIRification 

The existing healthcare and health research datasets from the 
following five organizations have been FAIRified and prepared for use in 
this study. Ethical Board (EB) approvals were obtained in all countries, 
and the protocol numbers corresponding to each organization are listed 
below:  

1. Andalusian Health Service – Virgen del Rocío University Hospital 
(SAS) from Spain: 1269-M1-20  

2. Health Sciences Institute of Aragón (IACS) from Spain: 1269-M1-20  
3. Geneva University Hospital (UNIGE) from Switzerland: 2020-02683 

A.A. Sinaci et al.                                                                                                                                                                                                                                



Computational and Structural Biotechnology Journal 24 (2024) 136–145

142

4. University of Porto (UP) from Portugal: PARECER A-13/2020  
5. Catholic University of the Sacred Heart (UCSC) from Italy: 1066/20- 

12/05/2020 

The FAIRification workflow [21] provides a step-by-step guide 
tailored to making existing health data sets FAIR, specifically designed 
to meet the unique needs and requirements of health data. The Data 
Curation Tool, an open-source standalone software [23], addresses data 
curation and validation within this FAIRification workflow. This tool 
aids data owners in transforming their health datasets into HL7 FHIR 
resources. It accomplishes this through a user-friendly graphical user 
interface (GUI), providing features for terminology translations [26]. 
Moreover, onFHIR is an open-source implementation of the HL7 FHIR 
standard, serving as a versatile FHIR repository [27]. 

The datasets from the five distinct health organizations underwent 
transformation into HL7 FHIR resources through the same FAIRification 
workflow and the same set of software, resulting in the creation of FAIR 
datasets. Notably, this transformation process was independently con-
ducted at each deployment site. To establish a FHIR repository, an 
instance of onFHIR [27] was deployed, serving as the platform for FHIR 
profiles constituting a common data model [23]. Utilizing the Data 
Curation Tool, corresponding FHIR resources were created, and stored 
in the FHIR repository. Table 2 provides insight into the quantity of 
FHIR resources available at the FHIR repository instances across 
participating organizations. These resources served as the foundational 
data used for training federated machine learning models in this study. 

3.2. Deployment 

The FHIR repository endpoints of the organizations were exclusively 
accessible within their local networks, solely by authenticated applica-
tions. As depicted in Fig. 5, a Federated ML Agent was deployed within 
the secure networks of each organization. This allowed the agent to 
access the FHIR repository and conduct the training of local models 
using the FAIRified data. In addition, a single trusted Federated ML 
Manager was deployed in the cloud. This manager was authorized by 
each organization to access its respective agent. Furthermore, each 
Federated ML Agent was accessible solely from the trusted Federated ML 
Manager, and the communication between the manager and the agents 
was encrypted to ensure security. Moreover, a web-based GUI was 
provided to the data scientists, enabling them to be authenticated by the 
manager and authorized to use the system via their web browsers. 

3.3. Experiment setup 

Having the FAIR datasets and software deployed as per the experi-
ment setup, data scientists from participating organizations conducted 
system testing based on a specific use case: predicting the risk of read-
mission among COPD patients within 30 days following hospital 
discharge. To represent this use case, a single project was established, 
ensuring every user worked within the same project through the web 
GUI of the Federated ML Manager. For this predictive analysis, 60 
distinct features were defined using FHIR search queries and FHIR Path 
scripts to represent the independent variables. Additionally, one feature 
was created as the dependent variable to indicate whether readmission 
occurred within the 30-day period after discharge. 

The users responsible for defining the features by providing FHIR 
search query and FHIR path scripts were required to possess a funda-
mental understanding of the FHIR standard. They needed to compre-
hend how the FAIRified datasets were represented by the FHIR resources 
and code systems specified in the FHIR profiles. Table 3 presents a few 
examples of the features defined in the experiments. For instance, in the 
Gender variable, the value is extracted directly from the gender field 
within the FHIR Patient resource. In the Smoking Status, Coronary heart 
disease, and Corticosteroids, the FHIR Path of “value:exists” examines the 
existence of a resource to be queried by the given FHIR search query. 

Similarly, in the Hemoglobin, the value is derived from the value field of 
valueQuantity field within the FHIR Observation resource. In these queries, 
standardized code systems such as LOINC (Logical Observation Identi-
fiers Names and Codes) for smoking status (72166–2) and laboratory 
tests like hemoglobin (718− 7), SNOMED-CT (Systematized Nomencla-
ture of Medicine – Clinical Terms) for concepts such as Yes 
(373066001), No (373067005) and Unknown (261665006), ICD-10 
(International Classification of Diseases 10th Revision) for conditions, 
and ATC (Anatomical Therapeutic Chemical) for medications were uti-
lized. These code systems were semantically encoded within the FAIR 
datasets. 

For this specific use case, a dataset was generated utilizing the 
aforementioned featureset in a federated ML environment, engaging 
SAS, IACS, UNIGE, UP, and UCSC, as depicted in Fig. 5. The use case was 
constrained to patients aged older than 18 years and diagnosed with 
COPD. Consequently, two eligibility criteria were established: “/Pa-
tient?birthdate=le2004″ and “/Condition?code=J44,J44.0,J44.1, 
J44.9″. The former criteria in the FHIR Search Query identifies patients 
with a birthdate on or before 2004, while the latter filters patients whose 
condition records include at least one of the specified ICD-10 codes for 
COPD. 

After creating the dataset in the federated environment, multiple 
federated machine learning models were generated using different base 
algorithms, including Logistic Regression, Support Vector Machine 
(SVM), Decision Trees, and Random Forest. These models employed 
various algorithm parameters such as threshold, regularization param-
eter, number of trees, maximum depth of a tree, and feature subset 
strategy. Among them, Random Forest yielded the most favorable 
outcome, which was somewhat anticipated due to significant data 
imbalance in certain agents (e.g., IACS, 98%), because tree-based al-
gorithms, like Random Forest, are known to be resilient to data imbal-
ances, outliers, and noise [28]. During the training phase, diverse values 
were provided for the maximum depth of a tree (5, 10, 15), minimum 
information gain (0.0, 0.2, 0.5), impurity metrics (gini, entropy) and 
number of trees (25, 50, 100) to the agents for testing while generating 
their respective local Random Forest models. Each agent’s ML Engine 
explored all combinations of these values and created the 
best-performing local model. Subsequently, the Aggregator aggregated 
these local models to generate a global federated model. 

3.4. Results 

The performance evaluation of the federated model took place in a 
prospective study involving patients from Andalusian Health Service – 
Virgen del Rocío University Hospital, Spain (SAS) (EB approval: 1269- 
M1–20) and the Institute for Pulmonary Diseases of Vojvodina, Serbia 
(IPBV) (EB approval: 110-V/10). This study focused on predicting the 
30-day risk of readmission due to COPD following discharge for 100 
recruited patients, comprising 22 from SAS and 78 from IPBV. The ac-
curacy of the federated model’s predictions was assessed by comparing 
its forecasts to the actual outcomes observed 30 days post-discharge. The 
federated model’s predictions were accurate in 87% of cases within this 
prospective study. 

It is important to note that this study primarily emphasizes the design 
and implementation of the federated architecture on FAIR health data. 

Table 2 
Total number of FHIR resources by resource type at each FAIR dataset.  

FHIR resource type Total number of FHIR resources 

SAS IACS UNIGE UP UCSC 

Patient 7873 7622 398 1313 1050 
Encounter 11,954 12,106 410 0 0 
Observation 73,817 11,999 2107 11,817 3150 
Condition 118,616 78,040 1113 0 1081 
MedicationStatement 42,164 70,880 2395 0 28,127  
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As such, a clinical evaluation was not conducted as part of this study. 
The authors presented a detailed analysis of the results following a 
clinical evaluation using the proposed architecture in another study [29, 
30]. 

4. Discussion 

The primary advantage of this study lies in demonstrating the 
practical application of a privacy-preserving federated machine learning 
architecture across five distinct healthcare and health research organi-
zations. With the proposed solution, no organization needs to transfer its 
datasets to an off-site location, yet they can still train ML models by 
leveraging others’ datasets. The training of ML models involves 
numerous prerequisites in terms of data preparation, many of which 
were already addressed by having FAIR datasets, despite their diverse 
locations. The proposed methodology capitalizes on these FAIR datasets, 
showcasing the significant promise of FAIR health data for machine 
learning, particularly in a federated execution while ensuring privacy 
preservation with no data sharing. 

One major strength of the proposed methodology is its capacity to be 
applied in different settings given that the data adheres to FAIR through 
HL7 FHIR. In this study’s context, the Institute for Pulmonary Diseases of 
Vojvodina, Serbia (IPBV) effectively generated predictions using a 
federated model trained on datasets from entirely different healthcare 

organizations, and IPBV did not contribute to training this model due to 
the absence of retrospective data for that specific study. 

The architecture developed in this study presents a versatile solution 
akin to a simple, no-code, GUI-based version of data science notebooks. 
It is not confined to a particular use case or set of variables; instead, it 
accommodates various classification scenarios that can be implemented 
by defining and/or reusing features, executing diverse algorithms, and 
adjusting several algorithm-specific parameters and missing data 
handling strategies. This adaptability ensures the reproducibility of the 
study. All agents and the manager operate within a secure environment, 
employing encrypted communication between the agent and manager. 
The agent is equipped with a highly restricted set of services, preventing 
the data from leaving its boundaries. Working in such a secure federated 
environment, both data scientists and clinicians can leverage datasets 
from other organizations to develop their ML models without direct 
access to those datasets. It is reported that studies on ML-based predic-
tion models often exhibit a high risk of bias, primarily attributed to small 
study sizes, inadequate handling of missing data, and susceptibility to 
overfitting [31]. The proposed approach inherently addresses bias risk 
by employing local models from various datasets, potentially expanding 
the study size and mitigating overfitting while preserving privacy. 

The presented methodology is privacy-preserving by design because 
the agents do not share any data, including the models, with each other. 
Instead, the confusion matrices are sent to a trusted orchestrator 

Fig. 5. The deployment setup of the federated machine learning architecture.  

Table 3 
A subset of the variable/feature definitions used in our experiments.  

Variable/ Feature FHIR search query FHIR path 

Gender /Patient value:Patient.gender 
Smoking Status /Observation?code= 72166-2&value-concept= 373066001 value:exists 
Coronary heart disease /Condition?code=I20,I21,I24,I25 value:exists 
Corticosteroids /MedicationStatement?code= R03AK06,R03AK07,R03AK08, R03AK10,R03AK11 value:exists 
Hemoglobin /Observation?code= 718-7 value:Observation.valueQuantity.value  
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operated outside the agents’ domain. Importantly, this orchestrator re-
mains unaware of the agents and their datasets. An alternative approach 
could have been an architecture without a trusted third party (the 
manager), where the agents share the confusion matrices with each 
other using secure multi-party computation techniques. However, this 
approach falls outside the scope of this work, as the authors’ design 
decision focused on achieving privacy through a trusted manager. 

In the literature, only a few studies addressed the challenges of 
federated machine learning with health datasets while preserving pri-
vacy. The Personal Health Train (PHT) aims to establish a framework 
that integrates access-restricted data from multiple parties with different 
data governance policies in a privacy-preserving manner [16]. Despite 
applying strict de-identification and encryption measures within a 
secure environment, the PHT necessitates the transfer of datasets out of 
owner organizations into a central data store. In contrast, the proposed 
approach prohibits dataset transfers and implements federated versions 
of classification algorithms within a highly secure and trusted environ-
ment. Another approach, DataSHIELD (Data Aggregation Through 
Anonymous Summary-statistics from Harmonized Individual levEL Da-
tabases) [32], focuses on analyzing distributed data without granting 
the analyzer unrestricted access. Although DataSHIELD is a proven and 
widely used approach in epidemiological studies, it has limitations due 
to its reliance on the Opal data warehouse and a modified R statistical 
environment. The proposed methodology centers on FAIR datasets using 
the HL7 FHIR standard, a well-established standard widely used by 
various software vendors and organizations. Despite enabling the entire 
process through a GUI, the authors’ design does not impose 
library-related restrictions, allowing for the incorporation of new clas-
sification or other ML algorithms. Two other studies apply federated 
learning to healthcare datasets, but each concentrate on specific prob-
lems and the results of trained models for those issues [33,34]. Notably, 
they do not rely on a standardized approach for data preparation; 
instead, they design their data transformation mechanisms and custom 
data models, which lack detailed explanations in their methods. In 
contrast, the proposed solution adheres to the standards of a FAIR-
ification workflow centered around HL7 FHIR. 

The presented methodology does not offer a specific framework 
tailored explicitly for time-series data. Feature definitions within the 
proposed approach are constrained by the availability of values in the 
FHIR repository and are subject to limitations based on FHIR path 
evaluation capabilities. Consequently, creating time-series for feature 
definitions becomes restricted within these confines. Additionally, the 
federated ML approach presented in this paper is limited to binary 
classification algorithms. Extensions to the presented methodology 
would be required to incorporate correlation or deep learning methods. 

5. Conclusion 

This paper presents the design for a privacy-preserving federated ML 
architecture and the algorithm for executing the federated learning 
process within this architecture. The system was deployed on top of 
already-FAIRified health data from five distinct healthcare and health 
research organizations across Europe, and an experimental evaluation 
was conducted in real-life settings. Data scientists defined several fea-
tures and utilized them to extract datasets and train ML models 
employing various strategies and algorithm-specific parameters. The 
best-performing classification model was employed in a prospective 
study aimed at predicting the 30-day readmission possibilities of pa-
tients with COPD. 

Irrespective of the positive results observed in the prospective study 
or the test statistics derived from the trained ML models, the experi-
ments showed that the proposed solution can successfully utilize FAIR 
datasets from multiple health organizations for ML processes while 
preserving privacy within a trusted environment. Adherence to FAIR 
principles and adopting standards like HL7 FHIR in the health domain 
create new prospects for secondary use, such as federated ML. This 

approach assists healthcare and health research organizations in safely 
leveraging datasets from other entities to build more accurate models for 
classification problems. The utilization of FAIR datasets, which are 
generated through the FAIRification workflow, simplifies the process of 
data extraction and preparation for clinical study analyses for data 
teams of health data controllers, including hospitals. Datasets can be 
prepared for machine learning applications through a standardized and 
machine-processable pipeline. 

Code availability 

The source code for the FAIRification of health data and federated 
machine learning platform on top of the FAIR health data is provided as 
open source on GitHub. The same software was deployed during the 
evaluation after completing formal bilateral agreements for data access.  

• The agents and the central orchestration server backend of the 
federated learning platform software can be found at https://github. 
com/fair4health/ppddm  

• The frontend software of the federated learning platform can be 
found at https://github.com/fair4health/f4h-portal-ui  

• The FAIRification tools can be found at https://github.com/fair4h 
ealth/common-data-model, https://github.com/fair4health/data 
-curation-tool, https://github.com/fair4health/data-privacy-tool 
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