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Abstract: Poplar (Populus) is one of the most important woody plants worldwide. Drought,
a primary abiotic stress, seriously affects poplar growth and development. Multiple organellar
RNA editing factor (MORF) genes—pivotal factors in the RNA editosome in Arabidopsis thaliana—are
indispensable for the regulation of various physiological processes, including organelle C-to-U RNA
editing and plasmid development, as well as in the response to stresses. Although the poplar genome
sequence has been released, little is known about MORF genes in poplar, especially those involved
in the response to drought stress at the genome-wide level. In this study, we identified nine MORF
genes in the Populus genome. Based on the structural features of MORF proteins and the topology of
the phylogenetic tree, the P. trichocarpa (Ptr) MORF family members were classified into six groups
(Groups I–VI). A microsynteny analysis indicated that two (22.2%) PtrMORF genes were tandemly
duplicated and seven genes (77.8%) were segmentally duplicated. Based on the dN/dS ratios, purifying
selection likely played a major role in the evolution of this family and contributed to functional
divergence among PtrMORF genes. Moreover, analysis of qRT-PCR data revealed that PtrMORFs
exhibited tissue- and treatment-specific expression patterns. PtrMORF genes in all group were
involved in the stress response. These results provide a solid foundation for further analyses of the
functions and molecular evolution of MORF genes in poplar, and, in particular, for improving the
drought resistance of poplar by genetics manipulation.

Keywords: Populus trichocarpa; multiple organellar RNA editing factor; drought stress; RNA editing;
genome

1. Introduction

Poplar (Populus) has enormous economic and ecological benefits. It has a relatively small genome
(485 ± 10 Mb; 2n = 38) and is the model forest species for genomic and genetic studies of woody plants
owing to the relative ease of experimental manipulation and range of available genetic tools [1,2]. It is
characterized by its height, thickness, and rapid growth, but biotic and abiotic stresses have limited
its growth [3,4]. Among these stresses, drought is commonly pervasive with the characteristics of
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repressing stomata, photosynthesis, respiration, altering gene expression, and reducing biomass [5,6].
Drought is destructive and economically damaging for poplar, with important research and economic
values [1,2,7,8]. Accordingly, investigating the stress resistance mechanisms of poplar has research and
practical implications.

RNA editing primarily occurs in mitochondria and plastids of land plants and plays an important
role in transcript maturation by insertions/deletions and conversion editing [9–11]. Conversion
editing includes C-to-U, U-to-C, and A-to-I editing. U-to-C and A-to-I editing are likely less than
C-to-U, which account for the vast majority of RNA editing events [12,13]. The cis-regulatory
region, between nucleotide positions −40 and −5 of upstream of the edited site, interacts with
trans-regulatory elements involved in identifying the site and catalyzing the conversion, from cytidine
to uridine [14]. The organelle RNA recognition motif-containing protein (ORRM), organelle zinc
finger (OZ), protoporphyrinogen IX oxidase (PPO), pentatricopeptide repeat (PPR), and RNA editing
factor interacting protein (RIP)/multiple organellar RNA editing factor (MORF) families are key
trans-acting elements for RNA editing [11,15,16]. The ORRM genes are required for RNA editing;
the family contains six genes named ORRM1 to ORRM6. Plastid and mitochondrial editing sites are
impaired in almost all orrm-mutants [16–20]. OZ1 and PPO1 have also recently been implicated in
RNA editing and are all located in plastids [21,22]. PPR proteins include many family members and
have been studied extensively [23]. Several PPR functions are in a broad range of events, including
developmental and physiological processes and response to various biotic and abiotic stresses [24].
For instance, a PPR96 deficiency in A. thaliana is associated with insensitivity to ABA and oxidative
stress [23]. Mutations in SLO2 of the E+ subclass of the P-L-S subfamily of PPRs retard leaf emergence,
restrict root growth, and result in late flowering, and these parameters are enhanced in the absence
of sucrose. Additionally, four RNA editing defects and reduced editing at three sites in slo2 mutants
have been identified [25]. The conversion of nucleotides can not succeed without protein–protein
interactions between certain PPRs and MORFs. (PLS)3PPR and LPA66—two PPR genes—are associated
with increased RNA-binding activity based on the presence of MORF9 binding in A. thaliana [26].
MORF proteins interact with specific PPR proteins based on pull down in vivo and yeast two-hybrid
assays [15].

MORFs are a small protein family in land plants (nine members in A. thaliana and seven members
in maize) [27,28]. The name of DAG-like (DAL) gene family in maize was previously adopted based
on the first identified member (DAG) of the gene family in Antirrhinum majus [27,28]. In A. thaliana,
MORF proteins were also named RNA editing factor interacting proteins (RIP). There are nine members,
defined as MORF1–9, while there are ten RIPs. RIPs or MORFs have been used interchangeably, except
for RIP1, which corresponds to MORF8, and RIP8, which has been referred to MORF1. Only one gene,
RIP10 (At1g53260), was specially not defined as belonging to the MORF family [9]. In A. thaliana,
all MORF proteins have no annotated domains but shared a similarly conserved domain. MORF2
and MORF9 are targeted to plastids, and MORF8 is located in chloroplasts and mitochondria, and the
others are located in mitochondria. Some MORF genes work together and influence each other
during some RNA editing events, i.e., they exhibit homo- and heteromeric interactions. For example,
both mitochondrial MORF1 and plastid MORF2 proteins can interact with the dual-targeted MORF8
protein. MORF2 and MORF9 are both required for editing at several sites. The presence or absence of
MORF8 influences edited sites targeted by MORF2 and/or MORF9 [27,29].

Several members of the RNA editosome interacted with MORF family genes towards their
important roles in plant growth, development, and RNA editing efficiency [30,31]. Plant development
would be negatively affected without MORF proteins. In rice, owing to impaired chloroplast
development, the wsp1 mutant has the variegated phenotype and reduced chlorophyll content. Further,
photosynthetic efficiency, CO2 gas conductance, and transpiration rate of wsp1 plants are lower than
those of the wild type [32]. In A. thaliana, morf2 and morf9 mutants show a lack of chlorophyll in leaves,
and the T-DNA insertional rip1 (RIP1 also named as MORF8) mutant demonstrates dwarfism [27,33].
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In poplar, functional studies of MORF proteins focused on biotic and abiotic stresses are sparse.
In this study, we predicted nine putative MORF genes in the P. trichocarpa genome. A comprehensive
analyses of the poplar MORF family, including phylogenetic, gene structure, chromosomal distribution,
and synteny analyses, were performed. The expression profiles of PtrMORF genes under drought were
determined using public microarray and quantitative RT-PCR data. Our results provide insight into the
fascinating properties and biological functions of MORF genes in response to drought stress in poplar.

2. Results

2.1. Identification and Sequence Analysis of the PtrMORF Gene Family

We searched the poplar genome with known A. thaliana MORF proteins as queries. Initially,
nine putative PtrMORF genes were obtained—PtrMORF1.1, PtrMORF1.2, PtrMORF1.3, PtrMORF2.1,
PtrMORF2.2, PtrMORF3, PtrMORF8.1, PtrMORF8.2, and PtrMORF9 based on a phylogenetic analysis
using the amino acid sequences of all MORFs of P. trichocarpa as well as those of A. thaliana (Figure 1A).
Poplar MORF proteins were predicted using TargetP and Wolf PSORT to enter mitochondria,
chloroplasts, or nuclei, like their homologs in A. thaliana (Figure 1A). No known motif in poplar MORF
proteins was found in the PFAM and INTERPRO databases, but the MORF box was identified, as in
previous studies [27,28,33]. Novel putative motifs were explored using the MEME server. By selecting
a motif length of between 15 and 50 aa, we identified four conserved motifs located in the MORF
domain (Figure 1B–D).
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using MUSCLE, and the Neighbor-Joining (NJ) tree was built using MEGA v7.0. And the chloroplast, 
mitochondrial or nuclei transit peptides of poplar MORF proteins were predicted using TargetP 
(http://www.cbs.dtu.dk/services/TargetP/) and Wolf PSORT (http://wolfpsort.org/). M, mitochondria; 
C, chloroplast; Nucl, nuclei. Green diamond, MORF9 and PtrMORF9; Blue triangle, MORF1, 
PtrMORF1.1, PtrMORF1.2 and PtrMORF1.3; Red circle, MORF2, PtrMORF2.1 and PtrMORF2.2; 

Figure 1. Poplar multiple organellar RNA editing factor (MORF) proteins and their conserved
motifs. (A) Multiple sequences alignment of A. thaliana and P. trichocarpa MORF proteins was carried
out using MUSCLE, and the Neighbor-Joining (NJ) tree was built using MEGA v7.0. And the
chloroplast, mitochondrial or nuclei transit peptides of poplar MORF proteins were predicted
using TargetP (http://www.cbs.dtu.dk/services/TargetP/) and Wolf PSORT (http://wolfpsort.org/).
M, mitochondria; C, chloroplast; Nucl, nuclei. Green diamond, MORF9 and PtrMORF9; Blue triangle,
MORF1, PtrMORF1.1, PtrMORF1.2 and PtrMORF1.3; Red circle, MORF2, PtrMORF2.1 and PtrMORF2.2;
Orange circle, MORF3 and PtrMORF3; Orange diamond, MORF8, PtrMORF8.1 and PtrMORF8.2. Local
meant the gene where was located in (B). Alignment of conserved MORF domains in poplar MORF
proteins was conducted using DNAMAN (https://www.lynnon.com/). Lake blue, Motif1; purple,
Motif2; red, Motif3; green, Motif4. (C,D) Putative motifs were explored using the MEME server with the
parameters of between 15 and 50 aa in length and sharing of each motif among all PtrMORF proteins.
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We further analyzed the sequence structures of the nine PtrMORF genes. An alignment of the
genomic sequences to predicted CDS sequences of PtrMORF genes, showed that PtrMORF genes had
a conserved gene structure. The PtrMORF genes had three introns with intron phases 0, 1, and 2. In all
PtrMORF genes, motif 1 was encoded by exon 1, motif 2 was encoded by exon1 and exon 2, and motif
3 was encoded by exons 3 and 4, but motif 4 was only located in exon 4 of PtrMORF1.1 (Figure 2A,B).
The nine PtrMORF genes ranged from 1515 to 4441 bp and contained four or five exons (Figure 2A).
All identified poplar MORF genes encoded proteins ranging from 229 to 470 amino acids, and their
sequences contained zero to two transmembrane domains (TMDs). The molecular weight (MW) of
the nine putative proteins ranged from 26.0 to 51.7 kDa. The GRAVY values of putative MORFs were
negative and ranged from −1.382 to −0.602 (Table S1).
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Figure 2. Gene structures of poplar MORF genes. (A,B) The gene structures of PtrMORF genes
were built using GSDraw (http://wheat.pw.usda.gov/piece/GSDraw.php) by submitting both
genomic sequences obtained from PopGenIE (http://popgenie.org/) and coding sequences (CDS) of
PtrMORF genes.

2.2. Phylogenetic Comparison of the MORF from Different Species

To investigate their molecular evolution and functions in poplar, a phylogenetic analysis of MORF
proteins was performed. We used the HMMER 3.0 package to build a Hidden Markov Model (HMM)
file (morf.hmm) with 19 MORF domain sequences of MORF proteins from A. majus, P. trichocarpa,
and A. thaliana (Table S2). To mine additional MORF domain-encoding genes in other plants, we used
the morf.hmm algorithm to query the genomes of six species, representing major evolutionary lineages,
including Arabidopsis lyrata, Brachypodium distachyon, Glycine max, Oryza sativa Japonica, Prunus persica,
and Vitis vinifera. The numbers of MORF genes in eight species were comparable, ranging from six (in
P. persica) to 11 (in A. lyrata and G. max).

In total, 69 MORF genes were identified in eight plant genomes to build an unrooted tree using
MEGA7.0 by employing the neighbor-joining (NJ) method. As shown in Figure 3, sequences were
classified into six groups (I, II, III, IV, V, and VI). Each group included MORF genes from diverse
plant taxa. Among these, classes III and VI were larger than the others, containing 30 members and
accounting for 42.5% of all predicted MORF genes. PtrMORF genes were found in all classes other
than group III.

http://wheat.pw.usda.gov/piece/GSDraw.php
http://popgenie.org/
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Arabidopsis lyrata, Arabidopsis thaliana, Brachypodium distachyon, Glycine max, Oryza sativa Japonica,
Prunus persica, and Vitis vinifera. The phylogenetic tree was constructed with MEGA 7.0 (http://www.
megasofware.net/mega.html/) program by the neighbor-joining method.

2.3. Chromosomal Distribution, Synteny, and Evolution of PtrMORF Genes

Figure 4 showed that the genes were distributed on six poplar chromosomes, including
chromosomes 1, 3, 4, 8, 10, and 11. Half of the chromosomes had two PtrMORF members and
the other half had a single MORF. Tandem duplication was defined as different members of the gene
family occurring within the same or neighboring intergenic region [34]. One tandem duplication event
involving two MORF genes (PtrMORF1.2/PtrMORF1.3) was identified by BLASTP and MCScanX
methods. In addition to the tandem duplication, seven PtrMORF genes were assigned to three
segmental duplication events (PtrMORF1.1/PtrMORF1.2/PtrMORF1.3, PtrMORF2.1/PtrMORF2.2,
and PtrMORF8.1/PtrMORF8.2) in Populus linkage groups 1, 3, 4, 8, 10, and 11. Notably, PtrMORF1.2
and PtrMORF1.3 occurred in both tandem and segmental duplications. A cross-matching event was
also found in three doubling blocks of PtrMORF genes; the chromosomal fragment in which a gene
was located was identical to more than one nonself chromosomal segment. PtrMORF1.1, PtrMORF1.2,
and PtrMORF1.3 synteny blocks corresponded to the third, fourth, and fourth chromosomes,
respectively (Figure 5A and Table S3). Figure 5B showed five of the nine MORF genes were involved
in three segmental duplication events (MORF1/MORF4, MORF5/MORF6, and MORF8/AT1G53260) in
A. thaliana. It was worth noting that the gene, AT1G53260, was not included in the scope of MORF
genes because of partial MORF box in our research [27]. The MORF gene of A. thaliana was also shown
to be highly segmental duplicated, which was similar to that in poplar.
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Figure 5. Interchromosomal relationships of MORF genes. (A) Interchromosomal relationships of
MORF genes in poplar. (B) Interchromosomal relationships of MORF genes in A. thaliana. Black lines
indicated all synteny blocks in the Populus or A. thaliana genome and the red indicated synteny blocks
where MORF duplicated gene pairs were. The chromosome number was indicated at the bottom of
each chromosome and each cell on the outside of chromosomes represented 5 Mbp in Populus and
1.5 Mbp in A. thaliana.

We further inferred the phylogenetic relationships of PtrMORFs, based on the diverse roles of
DYW-PPR protein binding to MORFs on RNA editing sites in A. thaliana [9]. We constructed two
syntenic maps of poplar with A. thaliana and rice. A total of four PtrMORF genes showed syntenic
relationships with MORFs in A. thaliana (Figure 6A,C and Table S3). However, no synteny was in rice
(Figure 6B). We performed phylogenetic analyses of these MORF proteins in Populus and A. thaliana.
The ratio of nonsynonymous/synonymous substitution rates of PtrMORFs and MORFs in A. thaliana
was determined to evaluate the selection pressure on amino acid substitutions (ω = dN/dS) and the role
of Darwinian positive selection in driving gene divergence after duplication [35–37]. Generally,ω > 1
indicates positive selection, ω < 1 provides evidence for negative or purifying selection, andω = 1
supports neutral evolution.
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7 members of four pairs. (D) The Bayes Empirical Bayes (BEB) probabilities for sites in the positively
selected class (ω > 1). The x-axis denotes position in the amino acid alignment.

Using the maximum likelihood method and codon substitution models implemented in PAML,
the selection pressure in the four groups of MORF genes was evaluated by likelihood ratio tests (LRTs).
The estimatedω value for all MORF genes was 0.055 using a one-ratio model (M0). We then detected
the positive selection acting on particular groups using a branch model in which each clade had its
own ω value. The LRT statistic suggested that the ω values for groups II, III, and IV were significantly
different from that of group I, and the ω estimates for all groups other than group I still suggested
purifying selection (Table 1).

Thus, we estimated the evolutionary forces acting on individual codon sites using site-specific
likelihood models of codon substitution because positive selection was unlikely to affect all sites over
prolonged time periods. Three pairs of models—M1 (neutral) and M2 (selection), M0 (one ratio) and
M3 (discrete), and M7 (beta) and M8 (beta &ω)—formed three LRTs. As shown in Table 2, model M1
was not significantly worse than M2, although it suggested that 6.6% of sites were nearly neutral with
ω = 1. Model M3 with K = 8 suggested that 0.7% of sites were under positive selection, and model
M3 was significantly better than the one rate model. Model M8, in which an additionalω ratio was
estimated from the data, was not significantly better than M7, indicating that no sites were under
positive selection.

To better detect positive selection, the branch-site model was also applied to evaluate selection
on all amino acids of MORF proteins in specific groups (Table 3). LRT showed that model A fitted
the data significantly better than the site-specific model M1 (p < 0.01) in group II, implying positive
selection on 29.7% of sites in group II. At the posterior probability (p) > 95%, four sites were likely to
be under positive selection in group II. Referring to first sequence in group II, MORF8, these positively
selected sites were 8T, 33R, 78D, and 83V (Figure 6D). However, no positive selection was found in the
branch including PtrMORFs.
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Table 1. Parameter estimates and likelihood ratio tests for the branch model.

Model P a LnL b Estimates of Parameters ∆LRT c df p Positively Selected Sites

M0 (one ratio model) 1 −1366.204 ω = 0.055 - - - None

Branch-specific model (Model 2: two ratios)
Estimateω for I 2 −1366.136 ωI1 = 0.067,ω0 = 0.051 Model 2 vs. M0: 0.136 1 0.712 -
Estimateω for II 2 −1357.726 ωII1 = 0.177,ω0 = 0.028 Model 2 vs. M0: 16.956 1 0.000 -
Estimateω for III 2 −1361.616 ωIII1 = 0.018,ω0 = 0.079 Model 2 vs. M0: 9.176 1 0.002 -
Estimateω for IV 2 −1363.519 ωIV1 = 0.010,ω0 = 0.083 Model 2 vs. M0: 5.370 1 0.002 -

a: The number of free parameters for theω ratios; b: lnL value; c: likelihood ratio test.

Table 2. Parameter estimates and likelihood ratio tests for the site model.

Model P a LnL b Estimates of Parameters ∆LRT c df p Positively Selected Sites

M0 (one ratio model) 1 −1366.204 ω = 0.0546 - - - None

Site-specific models
M1 (K = 2) 1 −1363.770 p0 = 0.926, (p1 = 0.074) - - - Not allowed
M2 (K = 3) 4 −1363.770 p0 = 0.926, p1 = 0.008, (p2 = 0.066),ω2 = 1.000 M2 vs. M1: 0.000 2 1.000 None

M3 (K = 8) 5 −1346.619

p0 = 0.485, p1 = 0.001, p2 = 0.192, p3 = 0.174, p4 = 0.029,
p5 = 0.040, p6 = 0.074, p7 = 0.007;ω0 = 0.006,
ω1 = 0.062,ω2 = 0.062,ω3 = 0.062,ω4 = 0.266,

ω5 = 0.266,ω6 = 0.266,ω7 = 0.266

M3 vs. M0: 39.170 14 0.000 None

M7 2 −1347.154 p = 0.441, q = 6.096 - - - Not allowed
M8 4 −1347.154 p0 = 0.999, p = 0.441, q = 6.096, (p1 = 0.000),ω = 1.000 M8 vs. M7: 0.000 2 1.000 None

a: The number of free parameters for theω ratios; b: lnL value; c: likelihood ratio test.
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Table 3. Parameter estimates and likelihood ratio tests for the branch-site model.

Model P a LnL b Estimates of Parameters ∆LRT c df p Positively Selected Sites

M1: Neutral 1 −1363.770 p0 = 0.926, (p1 = 0.074) - - - -

Branch-site models
Model A (I) 3 −1361.803 p0 = 0.929, p1 = 0.000, (p2a + p2b = 0.071),ω2 = 1.706 Model A vs. M1: 3.934 2 1.40 × 10−1 -

Model A (II) 3 −1346.578 p0 = 0.684, p1 = 0.018, (p2a + p2b = 0.297),ω2 = 1.053 Model A vs. M1: 34.384 2 3.40 × 10−8 Site for foreground
lineage: 4 (at p > 0.95)

Model A (III) 3 −1363.521 p0 = 0.927, p1 = 0.057, (p2a + p2b = 0.015),ω2 = 17.935 Model A vs. M1: 0.500 2 7.78 × 10−1 -
Model A (IV) 3 −1363.522 p0 = 0.925, p1 = 0.064, (p2a + p2b = 0.012),ω2 = 2.630 Model A vs. M1: 0.496 2 7.81 × 10−1 -

a: The number of free parameters for theω ratios; b: lnL value; c: likelihood ratio test.
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2.4. Expression of PtrMORF Genes and Six Genes from Chloroplasts and Mitochondria under Drought Stress

Although the role of MORF proteins in plastid development and RNA editing in A. thaliana and
rice have been studied, little is known about how MORFs respond to abiotic stimuli, such as drought
stress, particularly in poplar [27,32].

Quantitative real-time reverse transcription-PCR (qRT–PCR) for long-term water deficiency stress
in black poplar (Populus × euramericana cv. ‘Neva’) was further performed to evaluate the differential
expression of each PtrMORF gene. Nine genes exhibited significantly different expression under limited
water stress except PtrMORF2.1, and these could be preliminarily considered as drought-responsive
genes. Among them, the two PtrMORF genes PtrMORF1.3 and PtrMORF8.1 were highly expressed
followed by low expression. The expression levels of PtrMORF1.1 and PtrMORF1.2, PtrMORF2.2,
PtrMORF3, and PtrMORF8.2 under drought conditions were significantly lower than those in control
conditions. The mRNA accumulation of MORF9 fluctuated obviously, exhibiting decreased expression
after 3-day and 9-day drought, but increased approximately 1.5-fold after 6-day and 12-day drought.
However, the pattern of the response to drought was not consistent. For example, the expression level
of PtrMORF1.1 had downregulated after 3-day drought stress. At the same time, PtrMORF1.2 and
PtrMORF8.2 were significantly downregulated until 12 days of limited water stress. Furthermore,
PtrMORF genes that belonged to the same group in the phylogenetic tree had different expression
patterns under stress treatment. For instance, PtrMORF1.1 and PtrMORF1.3 were downregulated and
upregulated in 3-day drought treatments, while PtrMORF1.2, also orthologous to group I members
and MORF1 in A. thaliana, was not affected by limiting water until 12 days post-treatment (Figure 7).
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Figure 7. Quantitative RT-PCR analysis of PtrMORF genes expression in response to drought stress.
0d, 3d, 6d, 9d, and 12d, drought for 0, 3, 6, 9, and 12 days in a greenhouse environment, respectively.
Data were normalized to UBQ gene. The sample without drought treatment was defined as 1 in the
figure. The data were presented as the mean ± SE of three separate measurements. Asterisks denote
significant differences: * p < 0.05; ** p < 0.01.

In order to further explore the possible relationship between RNA editing and plant stress,
we selected a total of six genes from chloroplasts and mitochondria to evaluate their expression,
based on previous studies [27,38,39]. The RPS14 gene represented important chloroplast proteins,
and the fluctuant editing efficiency and gene expression of RPS14 were associated with cytokinins



Int. J. Mol. Sci. 2019, 20, 1425 11 of 19

against stress [39,40]. Under salt stress, PSBF and NDHB likely showed an elevated editing percentage,
linked to PSII repair and increase in NDHB gene translation [39]. In rice, atp6, atp9, and ccmC were
related to mitochondrial electron transport chain and had been selected to test RNA editing during
stress exposure [38]. In our study, these reported genes in poplar were obtained from National Center
for Biotechnology information and showed different expression owing to drought. Six genes, except
PSBF, were significantly upregulated or downregulated after drought stress (Figure 8). The three
mitochondrial genes—atp6, atp9, and ccmC—were significantly downregulated after 3-day drought.
The level of RPS14 was highly expressed on 3-day drought followed by a low expression on 6-day
drought, and the expression of poplar NDHB was significantly increased under 12-day drought.
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Data were normalized to UBQ gene. The sample without drought treatment was defined as 1 in the
figure. The data were presented as the mean ± SE of three separate measurements. Asterisks denote
significant differences: * p < 0.05; ** p < 0.01.

2.5. Expression Profiles of Populus MORF Gene

We then examined the tissue-specific expression of nine Populus MORF genes by qRT-PCR:
we evaluated various tissue types, including buds, freshly expanded leaves, expanding young leaves,
mature leaves, old leaves, cortex, xylem, and roots. The expression levels of PtrMORFs in these
tissues were comparable to those in buds. Some PtrMORF genes exhibited clear tissue-specific
expression (Figure 9). Five PtrMORF genes—PtrMORF1.1, PtrMORF8.1, PtrMORF2.2, PtrMORF3, and
PtrMORF9—were higher or weakly expressed in over four tissues significantly. Among them, the latter
three genes were highly expressed level in almost all leaves types, and PtrMORF8.1 and PtrMORF1.1
had higher expression levels in freshly expanded leaves and old leaves, respectively. All but one
gene—PtrMORF2.1—had higher expression in xylem. PtrMORF1.2, PtrMORF1.3, and PtrMORF8.2
had no significant difference in their expression in leaves and merely higher expressed in xylem
compared to buds. Additionally, The PtrMORF genes with closest evolutionary relationship had
different expression patterns. PtrMORF1.1, PtrMORF1.2, and PtrMORF1.3 had the closest homology
relationship with MORF1 of A. thaliana. Among them, PtrMORF1.1 had high expression levels in old
leaves, cortex, xylem, and roots, while PtrMORF1.2 and PtrMORF1.3 only in xylem. With respect
to PtrMORF2.1 and PtrMORF2.2, which were orthologous to MORF2 of A. thaliana, the latter had
high expression level in four leaves types and the former exhibited high expression only in old leaves.
A similar inconsistency in expression was observed between PtrMORF8.1 and PtrMORF8.2.
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3. Discussion

RNA editing plays an irreplaceable role in plant growth and development and C-to-U RNA
editing events occur frequently in vascular plants. Trans-acting factors (RNA editosome) are required
to recognize nucleotides to be edited, including OZ1, PPR, ORRM, and others. MORF proteins that
interact with these factors have been found in A. thaliana and O. sativa [22,26,32]. MORF genes, which
are important subunits of the RNA editosome, play a vital role in the regulation of RNA editing [11].
It is worth noting that the functions of most MORF proteins in response to stress, especially drought,
remain unclear in woody plant. In this study, we identified the whole MORF gene family in poplar and
examined the expression patterns of these genes in different plant tissues and in response to drought.
The structure of the MORF family, evolutionary events, transcriptional changes responded to drought,
and tissue-specific expression pattern are discussed below.

Members of the MORF family have been identified and characterized in many taxa. For example,
10 MORF genes have been identified in A. thaliana, but At1g53260 (RIP10) may exhibit a partial lack of
partial functionality owing to incomplete MORF box. We focus on nine MORF genes in A. thaliana in
this study [9,27]. In maize, seven putative the DAG-like (DAL) genes have also have been identified.
It is worth noting that DAL, MORF, and RIP genes are the same [28]. We screened the P. trichocarpa
genome for putative MORF genes using a tailor-made HMM file derived from multiple MORF domain
alignments. We identified nine PtrMORF genes consistent with the findings of previous report [28].
Compared with MORF genes in A. thaliana and in maize (Zea mays), the family has not been extensively
studied in poplar, indicating that P. trichocarpa MORF proteins might perform functions similar to
those preformed by their homologs in herbaceous plants.

In our study, to better understand the evolution of the MORF gene family in poplar, the structure,
conserved motifs, phylogenetic relationships, and collinearity of PtrMORF genes were characterized.
Four conserved motifs were located in the MORF domain, suggesting that the MORF domain is
conserved among A. thaliana and Populus proteins. Most of the PtrMORF genes exhibited similar
numbers of exons. A phylogenetic analysis revealed that PtrMORF genes and putative MORF genes
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from other species could be classified into six subgroups. The distribution of genes among the
subclasses indicated that the expansion of the MORF family occurred before the divergence of the
species. Most of PtrMORF genes were grouped with MORF genes from A. thaliana and P. persica
genomes, indicating a close relationship among MORF genes from these species. Gene duplication is a
major mechanism underlying the evolution of novel protein functions. We detected 2 (22.2%) PtrMORF
genes that were tandemly duplicated and seven genes (77.8%) that were segmentally duplicated,
implying low tandem and high segmental duplication rates in PtrMORF genes. Three homologous
pairs of chromosomes included seven of the nine PtrMORF genes, with segmental duplication in the
poplar genome. For example, homologous chromosomes 8 and 10 both contained one MORF gene each;
similar findings were obtained for homologous chromosomes 1 and 11, as well as 3 and 4. Two MORF
genes—Potri.010G007200 and Potri.011G032900—were detected on chromosomes 10 and 11, but their
homologous chromosomes 8 and 1 lacked PtrMORF genes. Tandem duplication was detected (Table S3).
Furthermore, the synteny block including PtrMORF1.1, PtrMORF1.2, and PtrMORF1.3 was attributed
to multiple copies of the chromosome. These results indicated that some PtrMORF genes were possibly
generated by gene duplication and segmental duplication events likely served as driving force in
PtrMORF evolution.

Additionally, synteny maps between two representative species and poplar were constructed to
better understand the phylogenetic relationships. Four pairs were detected in A. thaliana and none was
detected in rice indicating a weak homology relationship between poplar and rice. Theω values for
duplicated gene pairs between PtrMORF genes and MORFs in A. thaliana were calculated to explore
selective pressures (Tables 1–3). In general, the MORF genes in the two plants were under strong
purifying selection using the branch model. Theω values for four groups were less than 1, except for
group II, MORF8 (At3G15000) and At1G53260 (RIP10), indicating that purifying selective pressure
was strong. Positively selected sites might cause adaptive changes after gene duplication and during
the evolution of MORFs in A. thaliana.

RNA editing could potentially contribute to plant resistance to abiotic tolerance on the basis
of previous studies [38,41,42]. And some genes closely related to RNA editing, such as PPR genes
in A. thaliana or rice, their mutants changed morphological characteristics due to environmental
forces [32,43]. Additionally, MORF genes were interacted with PPR genes to establish complex
editosomes in plant [26,27]. Therefore, we made an attempt to confirm whether the PtrMORF
genes responded to stress. The eight PtrMORF genes distributed in all groups were upregulated
or downregulated significantly under drought treatment. It was indicated that they may respond
to drought stress. Additionally, the sensitivity of PtrMORF genes responding to drought stress was
different. The expressions of PtrMORF1.2, PtrMORF2.2, and PtrMORF8.2 changed significantly after
nine or even 12 days of drought, while the other five genes had lower or higher expression only in
three-day drought restriction. This might implied that the former three genes are less sensitive to
drought than the latter five. However, not all the genes, which were responded to drought on day
three, had consistent response as drought stress increases. This was similar to the response of rice
some PPR genes to drought stress [44]. Additionally, five of the six genes from poplar chloroplasts and
mitochondria showed obviously higher or lower expression compared with no drought treatment,
and the edited site efficiency of these genes were affected when the MORF genes were mutated out in
A. thaliana [27], suggesting that the PtrMORF gene family, as important component of RNA editing,
might be involved in the response to drought stress. However, many questions were worth exploring:
(1) How would RNA editing perform under stress? (2) What were the deeper mechanisms of MORF
genes, as important editosome members of RNA editing?

The functional divergence of MORF genes was speculated depended on their tissue-specific
expression. Firstly identified member in A. majus, the DAG gene is essential for chloroplast
development in the leaves and etioplast formation of cotyledons [45]. In A. thaliana, the DAG-like gene
is involved in early chloroplast differentiation [46]. Our study showed that six PtrMORF genes are
expressed highly in the leaves of black poplar (Populus × euramericana cv. ‘Neva’), suggesting that
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PtrMORFs might play an important role in chloroplast differentiation and development. Some genes
that were highly expressed highly in both the leaves and other tissues, such as the cortex, xylem,
and roots, indicating the expanded function of PtrMORFs. The expression of three genes, merely
higher expressed in xylem compared to buds. There are homologous genes in A. thaliana; MORF1 was
located in both mitochondria and MORF8 in both mitochondria and chloroplasts and possessed an
extended C-terminus with unknown function. In previous reports, glycine-rich regions were observed
in the C-termini of MORF1 and MORF8 in A. thaliana [16]. The genes exhibited glycine-rich regions
may play key roles in the biotic and abiotic stresses [47]. In addition, the firstly discovered glycine-rich
protein—GRP-1—was highly expressed in buds and vascular tissue in the petunia [48]. Taken together,
these reports suggested this hypothesis that glycine-rich regions observed in MORFs might support
them in responding to adversity and be highly expressed in xylem in poplar. Xylem was important for
water transportation in plants and PtrMORF genes expressed highly in xylem might be closely related
to water regulation, making the MORF genes likely respond to drought [49]. However, we had to
point out that the exact roles within PtrMORFs need further experiments. Additionally, there were still
living parenchyma cells in the xylem and the activity of parenchyma cells provided a critical metabolic
and energetic role in woody stem [49]. They played a major role in editing implying that the three
MORF genes in poplar may play unlikely similar roles in annual plants and were probably required in
other critical functions in perennial woody plants.

Therefore, this research preliminarily provided insight into the roles of PtrMORFs in stress
response and investigations of functions for these genes required further experimental validation in
future studies.

4. Materials and Methods

4.1. Plant Materials and Treatments

Black poplar (Populus × euramericana cv. ‘Neva’) were grown in a greenhouse at 25 ◦C under a
16/8 h light/dark cycle. The 3.5-month-old plants were subjected to drought stress. Twelve plants
were encountered water-limited treatment, ranging from 3 to 12 days of drought in which the soil
RWC was reduced from 70%; the other three plants were provided abundant water, with a the soil
RWC of greater than 30% [50]. Three biological replicates were performed.

Total RNA was isolated from poplar mature leaves (sixth to twelfth) after drought stress. Different
organs and tissues of 3.5-month-old plants, including buds, freshly expanded leaves (second to third),
expanding young leaves (fourth to fifth), mature leaves (sixth to twelfth), old leaves (leaves below the
mature leaves), cortex, xylem (the stem without cortex), and roots, were collected at the same time and
immediately immersed in liquid nitrogen.

4.2. Genome-Wide Identification and Sequence Analysis of MORF Genes in P. trichocarpa

The potential MORF genes in P. trichocarpa were queried using a local BLASTP search
with an E-value threshold of <10−10 and a bit score of >100 in poplar genome annotation data
(Ptrichocarpa_210_v3.0.protein.fa.gz downloaded from https://phytozome.jgi.doe.gov/pz/portal.
html) based on preexisting MORF/RIP genes, including At1g11430, At1g32580, At1g72530, At2g33430,
At2g35240, At3g06790, At3g15000, At4g20020, and At5g44780 from A. thaliana, which was then
confirmed in previous studies [27,28]. Multiple sequence alignments of PtrMORF proteins and
the known MORF proteins were generated using DNAMAN. The alignment results were used to
build protein Hidden Markov Models (HMMs) to mine the conserved domain; the file was named
morf.hmm and was generated using the hmmbuild program in the HMMER 3.0 package (version
3.1b2). No known motifs in PtrMORF proteins and MORF proteins of other plants were detected by
screening the PFAM (http://pfam.sanger.ac.uk/) and INTERPRO (http://www.ebi.ac.uk/interpro/)
databases [51,52]. The HMM file was used as a probe to search genome files of representative species
downloaded from Phytozome V11.0, including A. lyrata, B. distachyon, G. max, O. sativa Japonica,

https://phytozome.jgi.doe.gov/pz/portal.html
https://phytozome.jgi.doe.gov/pz/portal.html
http://pfam.sanger.ac.uk/
http://www.ebi.ac.uk/interpro/
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P. persica, and V. vinifera [53]. Protein hits with an E-value of <10−10 and sequence score of “best 1
domain” >100 were collected.

MEME (http://meme.nbcr.net/meme/cgi-bin/meme.cgi) was used to investigate the putative
conserved motifs among PtrMORF proteins with the following parameters: length between 15 and
50 aa, maximum number of motifs = 4, and one per sequence. To obtain the intact conserved
MORF domain, different limits for the length of each motif were used between 100 and 120 aa [54].
In addition, TargetP, and Wolf PSORT were used to predict the putative organelle localization of
PtrMORF proteins [55,56].

4.3. Phylogenetic Analysis

A multiple sequence alignment of 69 MORF proteins from P. trichocarpa and other species including
A. lyrata, A. thaliana, B. distachyon, G. max, O. sativa Japonica, P. persica, and V. vinifera was generated
using the MUSCLE method. A phylogenetic tree was constructed by using the NJ method implemented
in MEGA V7.0 [57]. The parameters for tree construction were as follows. Phylogeny test and options:
bootstrap (1000 replicates); gaps/missing data: pairwise deletion; model: Dayhoff model; pattern
among lineages: same (homogeneous); and rates among sites: uniform rates. Finally, the phylogenetic
tree was visualized using itol (http://itol.embl.de/) [58].

4.4. Chromosome Location and Gene Structure Analysis

Positional information and gene structures of PtrMORF genes on chromosomes of P. trichocarpa
were obtained from the PopGenIE database [59]. The chromosomal locations were displayed with
MapDraw program [60]. The numbers and organization of introns and exons and gene structures were
drawn and displayed using the online PIECE2 server of GSDraw [61].

4.5. Colinearity of PtrMORF Gene

The chromosomal locations of PtrMORF genes were obtained from PopGenIE. Multiple
Collinearity Scan Toolkit (MCScanX) was used to analyze gene duplication events with the default
parameters and the colinearity information was showed by Circos [62,63]. Using Dual Systeny Plotter
software (https://github.com/CJ-Chen/TBtools), the synteny relationships of orthologous MORF
genes among poplar, A. thaliana, and rice were evaluated [64]. Nonsynonymous (dN) and synonymous
(dS) substitutions, as well as dN/dS ratio (ω) for duplicated MORF genes, were calculated, using
branch-specific, site-specific (one, neutral, selection, discrete, beta, and beta &ω > 1), and branch-site
(Model A) of codon substitution models, as implemented in PAML version 4 [65–67]. Likelihood ratio
tests (LRTs) were used to compare model fits. The sites under positive selection were identified using
Bayesian methods [68].

4.6. RT-PCR and qRT-PCR Analyses

Total RNA was extracted using a Plant RNA EASYspin Plus Kit (Aidlab, Beijing, China) and
first-strand cDNA synthesis was performed using approximately 2 µg of RNA using the FastQuant
RT Kit (with gDNase) (TIANGEN, Beijing, China) following the manufacturer’s protocols. qRT-PCR
was conducted on the ABI StepOnePlus Real-Time PCR System (ABI, Foster City, CA, USA) based on
the SYBR Green II method. Twenty microliters of cDNA was diluted 1:10 with nuclease-free water.
Each reaction contained 10 µL of SYBR Green qPCR Mix (Aidlab), 0.2 µL of ROX Reference Dye (Aidlab),
1 µL of cDNA (corresponding to 10 ng of total RNA), 7.8 µL of nuclease-free water, and 0.25 µM each
primer. The thermal profile for qRT-PCR: 3 min at 94 ◦C, 40 cycles of 10 s at 94 ◦C, 20 s at 60 ◦C,
and 72 ◦C for 30 s. Primers were designed using Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/) [69].
A list of primers used was given (Table S4). Each experiment was performed in three biological
replicates. The poplar housekeeping gene, UBQ, was used as an internal control. Relative expression
was calculated by the 2−∆∆Ct method [70]. A Student’s t-test was used to generate every p-value for
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statistical analyses, and R project was used to identify significant variance (R version 3.5.1, one sample
and two sample t-test: * p < 0.05; ** p < 0.01).

5. Conclusions

Genome-wide identification and evolutionary, gene structure, and expression analyses under
drought stress of poplar MORF genes provide a deep insight into the gene family. Moreover, analyses
of MORF genes based on qRT-PCR validation of poplar tissues provide functional information.
Our results provide an important resource for advancing our understanding of the roles of MORF
genes in poplar.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/6/
1425/s1.
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