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The intestinal microbiota is a major factor in human health and disease. This microbial community includes autochthonous
(permanent inhabitants) and allochthonous (transient inhabitants) microorganisms that contribute to maintaining the integrity
of the intestinal wall, modulating responses to pathogenic noxae and representing a key factor in the maturation of the immune
system. If this healthy microbiota is disrupted by antibiotics, chemotherapy, or a change in diet, intestinal colonization by
pathogenic bacteria or viruses may occur, leading to disease. To manage substantial microbial exposure, epithelial surfaces
of the intestinal tract produce a diverse arsenal of antimicrobial peptides (AMPs), including, of considerable importance,
the β-defensins, which directly kill or inhibit the growth of microorganisms. Based on the literature data, the purpose of this
work was to create a line of intestinal epithelial cells able to stably express gene encoding human β-defensin-2 (hBD-2) and
human β-defensin-3 (hBD-3), in order to test their role in S. typhimurium infections and their interaction with the bacteria of
the gut microbiota.

1. Introduction

The gastrointestinal tract is the most important immune
organ of the human body. The intestinal surface has a strate-
gic position at the interface between the antigenic luminal
environment and the internal milieu of the host and is
constantly exposed to various antigens from food or from
different pathogens.

The human intestine hosts a large and diverse microbial
community and contains approximatively 400–1000 differ-
ent species of bacteria, virus, and fungi. These microbes are
collectively referred to as the commensal microbiota.

The importance of the homeostatic maintenance of
human health by the intestinal microbiota has become a
topic of great interest [1–4]. Commensal bacteria modulate

the expression of genes involved in several major intestinal
and extraintestinal functions, including the xenobiotic
metabolism, postnatal intestinal maturation, nutrient
absorption, and fortification of the mucosal barrier, and
inhibit the growth of pathogenic species through the produc-
tion of antimicrobial substances. In addition, the human
microbiota is involved in the synthesis of essential amino
acids and vitamins (K, B2, B1, B6, B12, folic acid, biotin,
and pantothenic acid) in the absorption of calcium, magne-
sium, and iron, in the extraction of energy from components
in the diet, and in the regulation of fat storage [5, 6].

The genus Enterococcus is a group of lactic acid bacteria
(LAB) whose use as probiotic microorganisms is controver-
sial [7] as they are sometimes associated with infections in
humans [8–11]. However, it has been shown that several
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enterococcal strains, which may rebalance the intestinal bac-
terial flora in antibiotic-induced dysbiosis [12], can intervene
in the antitumoral protective response [13] and can have
antiviral activity [14].

Of great interest is Enterococcus faecium, for which the
European Food Safety Authority (EFSA) has recently estab-
lished new guidelines for distinguishing between beneficial
or potentially pathogenic strains based on their susceptibility
to ampicillin and on the presence of specific genetic markers
of virulence (esp, hylEfm, IS16).

It has been demonstrated that the culture supernatant of
the E. faecium strain in the human intestinal epithelial cells
has a strong bactericidal effect on enteroaggregative Escheri-
chia coli, including the induction of membrane damage and
cell lysis [15]. The ability of these bacteria to produce enter-
ocins is remarkable, and these instead can be applied as food
biopreservatives [16, 17]. In fact, E. faecium RZS C5, a natu-
ral cheese isolate, has a strong activity against Listeria mono-
cytogene adhesion and invasion of Caco-2 cells [18].

E. faecium SF68® (NCIMB 10415) is present in pharma-
ceutical preparations as a feed additive for different animals
[19, 20], since it is capable of lowering the bacterial concen-
tration of E. coli and stimulates an anti-inflammatory
response [21].

Therefore, the human intestinal microbiota contributes
to maintaining the integrity and impermeability of the intes-
tinal wall, which represents the first line of defense against
pathogens. Among these, Salmonella enterica serovar typhi-
murium (S. typhimurium) is one of the most common nonty-
phoidal Salmonella (NTS) considered a major cause of acute
food infection [22]. This Gram-negative bacillus can cause
severe diarrhoea, vomiting, fever, and death in severe cases,
especially in children, the elderly, and immunocompromised
patients.

S. typhimurium can survive and replicate within host
macrophages and induces the activation of NF-kB and the
secretion of proinflammatory cytokines, such as interleukin-
(IL-) 8 [23] and tumor necrosis factor alpha (TNF-α) [24].
This inflammation also helps it to compete with the microor-
ganisms of the host microbiota [25].

Probiotics attenuate NF-kB activation and inflammatory
cytokine production in the intestinal epithelial cells in vitro
[26, 27] and in vivo [28–30].

In addition to serving as a protective barrier, the intes-
tinal epithelium plays an active role in the intestinal
immune response through the secretion of inflammatory
cytokines, chemokines, and antimicrobial peptides such
as β-defensins [31].

The family of β-defensins is composed of small cationic
peptides produced by epithelial cells, Paneth cells, neutro-
phils, and macrophages, constitutive or induced by microor-
ganisms or cytokines that contribute to the broad spectrum
innate immunity.

Human β-defensin-2 (hBD-2) is an inducible antimicro-
bial peptide with a molecular mass of 4–6 kD and acts as an
endogenous antibiotic in the defense against Gram-negative
bacteria, among which the potential pathogenic microbes of
the gut [32, 33], and can be induced by endogenous stimuli,
infections, or wounds.

Human β-defensin-3 (hBD-3) is identified in psoriatic
scales [34] and is expressed in the skin, placenta, and oral
tissue [34, 35] and shows antimicrobial activity against
Gram-positive and Gram-negative bacteria and fungi. Being
insensitive to high salt concentrations, its antimicrobial
activity results to be greater than that of hBD-2 [36].

Both hBD-2 and hBD-3 are chemoattractants for neutro-
phils [37] and memory T-cells, induce histamine release
from mast cells and prostaglandin synthesis, and play a role
also in allergic responses.

In the light of the growing interest of the use of antimi-
crobial peptides as natural defense molecules against patho-
gens and due to the increased antibiotic resistance by a
number of pathogenic bacteria, this study aims to create a
line of intestinal epithelial cells expressing high concentra-
tions of the antimicrobial peptides hBD-2 and hBD-3 and
to assess their role in the host inflammatory response result-
ing from bacterial infections.

2. Materials and Methods

2.1. Cloning. Total RNA was extracted using a High Pure
RNA Isolation Kit (Roche Diagnostics) from primary cul-
tures of human keratinocytes stimulated with the LPS of
Pseudomonas aeruginosa and TNF-α in order to obtain a
high production of antimicrobial peptides. It was subse-
quently transcribed into complementary cDNA using ran-
dom hexamer primers (Random hexamers, Roche) at 42°C
for 45 minutes, according to the manufacturer’s instructions.
Two pairs of degenerate primers, designed on their specific
amino acid sequence (hBD-2 for 5′-CCAGCCATCAGC-
CATGAGGGT-3′, hBD-2 rev-5′-GGAGCCCTTTCTGA
ATCCGCA-3′ 254 bp; and hBD-3 for 5′-CGGCAGC
ATTTTGCGCCA-3′, hBD-3 rev 5′-CTAGCAGCTAT-
GAGGATC-3′), were used to amplify, by RT-PCR, gene cod-
ing hBD-2 and hBD-3 with FastStart High Fidelity (Roche
Diagnostics). The amplification programs were the following:
35 cycles at 94°C for 1′, 63°C (for hBD-2) or 58°C (for hBD-3)
for 1′, and 72°C for 1′; the PCR products were 254 and 206
base pairs.

The amplified DNA fragments were subjected to restric-
tion and sequencing analysis and cloned into the pEF/V5-
HIS TOPO (Invitrogen) vector using the T4 DNA ligase
(Invitrogen), in accordance with the manufacturer’s proto-
col, and then transformed into E. coli TOP 10 (Invitrogen).

The cloning vectors, pEF/V5-HIS TOPO-hBD-2 and
pEF/V5-HIS TOPO-hBD-3, were extracted from the bacte-
rial culture and amplified using a QIAprep Spin Midiprep
Kit (QIAGEN).

2.2. Transfection. Caco-2 cells were transfected using the
IBAfect reagent (IBA), according to the manufacturer’s man-
uals. Briefly, 3× 105 cells were seeded in 6-well plates, and
immediately after seeding, plasmids conjugated with the
transfection reagent were added. The mixture was incubated
for 24 and 48 hours. After incubation, the success of the
experiment was verified by the extraction of mRNA from
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treated cells and by the amplification of hBD-2 and hBD-3
genes by PCR.

Cell-free supernatants of the transfected cells were recov-
ered by centrifugation and assayed for the hBD-2 and hBD-3
concentration by an enzyme-linked immunosorbent assay
(Phoenix Pharmaceuticals Inc.).

For blasticidin selection, untransfected and transfected
cells were cultured at 37°C and 5% CO2 for 14 days in the
presence of the following increasing concentrations of blasti-
cidin S (Sigma-Aldrich): 5, 10, 20, 50, 100, and 200 μg/ml.
Then, MTT-labelling reagent was added at a final concentra-
tion of 0.5mg/ml. After 4 hours, a solubilization solution was
added to each well and the plates were incubated overnight.
Spectrophotometric absorbance was measured using a
microplate (ELISA) reader at a wavelength of 570nm.

2.3. Bacterial Strains. S. enterica subsp. enterica serovar typhi-
murium (ATCC® 14028GFP™) was cultured on Luria-
Bertani agar (Oxoid, Unipath, Basingstoke, UK). E. faecium
(ATCC 27270™) was cultured on Bacto Tryptic Soy agar
(TSA, Difco Laboratories). These strains were grown at
37°C for 18h.

2.4. Cell Culture and Infection. Caco-2 cells (human Cauca-
sian colon adenocarcinoma cells) were routinely cultured in
Dulbecco’s modified eagle medium (DMEM, Gibco) supple-
mented with 1% Penstrep, 1% glutamine, and 10% fetal calf
serum (Invitrogen) at 37°C at 5% CO2. After transfection,
the cells were grown in a sterile 75 cm2

flask at a concentra-
tion of 3× 105 to confluence for 21 days to reach full differen-
tiation and polarization. The culture medium was changed
every two days.

Subsequently, fully differentiated cells were seeded into
six-well plates and then infected with exponentially growing
bacteria at a multiplicity of infection (MOI) of 100 for 6
hours (for gene expression analysis) and 24 h (for ELISA
assay) at 37°C in 5% CO2 in DMEM without antibiotics. In
the case of coinfection, preincubation of one hour with E. fae-
cium was followed by the addition of S. typhimurium without
the removal of the probiotic bacterium.

At the end of the experiment, bacteria present in the
supernatants of infected and coinfected cells were counted
(CFUs) by spreading serial dilutions on selective medium
HiCrome™ E. faecium Agar Base (Sigma-Aldrich) and
Brilliance Salmonella agar (OXOID) and were incubated
at 37°C overnight.

2.5. Real-Time PCR. In order to evaluate the expression of
pro- and anti-inflammatory cytokines, the cells at the end
of treatments were washed three times with sterile PBS, and
the total RNA was extracted using High Pure RNA Isolation
Kit (Roche Diagnostics).

Two hundred nanograms of total cellular RNA were
reverse transcribed (Expand Reverse Transcriptase, Roche)
into complementary DNA (cDNA) using random hexamer
primers (Random hexamers, Roche) at 42°C for 45 minutes,
according to the manufacturer’s instructions [38]. Real-time
PCR for IL-6, IL-8, TNF-α, IL-1α, IL-1β, and TGF-β was car-
ried out with the LC FastStart DNA Master SYBR Green kit
using 2 μl of cDNA, corresponding to 10 ng of total RNA
in a 20ml final volume, 3mM MgCl2, and 0.5mM sense
and antisense primers (Table 1). After amplification, melting
curve analysis was performed by heating to 95°C for 15 s with
a temperature transition rate of 20°C/s, cooling to 60°C for
15 s with a temperature transition rate of 20°C/s, and then
heating the sample at 0.1°C/s to 95°C. The results were then
analyzed using LightCycler software (Roche Diagnostics).
The standard curve of each primer pair was established
with serial dilutions of cDNA. All PCR reactions were
run in triplicate. The specificity of the amplification prod-
ucts was verified by electrophoresis on a 2% agarose gel
and visualization by ethidium bromide staining.

2.6. ELISA Assay for Pro- and Anti-Inflammatory Cytokines.
Caco-2 cell monolayers were infected with S. typhimurium
and/or E. faecium for 24h at 37°C, as described above. At
the end of the experiment, supernatants were harvested and
the presence of cytokines IL-6, IL-8, IL-1β, TNF-α, and
TGF-β was analyzed by enzyme-linked immunosorbent
assay (ELISA, ThermoFischer Scientific Inc.).

Table 1: Primer sequences and amplification programs.

Gene Primer sequence Conditions Product size (bp)

IL-6
5′-ATGAACTCCTTCTCCACAAGCGC-3′
5′-GAAGAGCCCTCAGGCTGGACTG-3′ 5″at 95°C, 13″ at 56°C, and 25″at 72°C for 40 cycles 628

IL-8
5′-ATGACTTCCAAGCTGGCCGTG-3′

5′-TGAATTCTCAGCCCTCTTCAAAAACTTCTC-3′ 5″at 94°C, 6″ at 55°C, and 12″at 72°C for 40 cycles 297

IL-1β
5′-GCATCCAGCTACGAATCTCC-3′
5′-CCACATTCAGCACAGGACTC-3′ 5″at 95°C, 14″ at 58°C, and 28″at 72°C for 40 cycles 708

TGF-β
5′-CCGACTACTACGCCAAGGAGGTCAC-3′
5′-AGGCCGGTTCATGCCATGAATGGTG-3′ 5″at 94°C, 9″ at 60°C, and 18″at 72°C for 40 cycles 439

IL-1α
5′-CATGTCAAATTTCACTGCTTCATCC-3′
5′-GTCTCTGAATCAGAAATCCTTCTATC-3′ 5″at 95°C, 8″at 55°C, and 17″at 72°C for 45 cycles 421

TNF-α
5′-CAGAGGGAAGAGTTCCCCAG-3′
5′-CCTTGGTCTGGTAGGAGACG-3′ 5″at 95°C, 6″ at 57°C, and 13″at 72°C for 40 cycles 324
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2.7. Bacterial Internalization Assay. Untransfected Caco-2
cell cultures were infected with S. typhimurium alone or coin-
fected with S. typhimurium and E. faecium as previously
described. In another set of experiments, E. faecium was heat
killed by incubating at 60°C for 45min and subcultured on
TSA plates (Difco Laboratories) overnight at 37°C to prove
that no viable organisms remained. Killed bacterial prepara-
tion was resuspended in DMEM without antibiotics and
added to cell monolayer an hour before the addition of S.
typhimurium. After 2 h of incubation at 37°C, infected mono-
layers were extensively washed with sterile PBS and further
incubated for another two hours in the DMEM medium,
and supplemented with gentamicin sulphate (250 μg ml-1)
(Sigma-Aldrich) in order to kill the extracellular bacteria.
At the end of the experiments, infected monolayers were
extensively washed in PBS then lysed with a solution of
0.1% Triton X-100 (Sigma-Aldrich) in PBS for 10 minutes
at room temperature to count internalized bacteria. Aliquots
of cell lysates were serially diluted and plated on Brilliance
Salmonella agar (OXOID) and incubated at 37°C overnight
to quantify viable intracellular bacteria (CFUs/ml). The
efficiency was calculated as the ratio of the number of cell-

internalized bacteria with the number of bacteria used to
infect the cell monolayers.

2.8. Statistical Analysis. Significant differences among groups
were assessed through two-way ANOVA by using GraphPad
Prism 6.0. The data are expressed as means± standard devia-
tion (SD) of three independent experiments.

3. Results

3.1. Cloning and Transfection. The hBD-2 and hBD-3 genes
were successfully amplified by RT-PCR from a total cellular
RNA. As expected, the PCR products were 254 and 206 bp
in length. These products were inserted with high efficiency
in the pEF/V5-HIS TOPO vector.

The success of transfection of the cloning products in
colorectal adenocarcinoma Caco-2 cells was verified after
24 and 48 hours by RT-PCR and after 48 hours by ELISA
assay on cell supernatants (Figure 1).

3.2. Blasticidin Selection and Cellular Viability. The toxicity
curve performed on transfected and untransfected cells
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Figure 1: (a) hBD-2 mRNA expression in untransfected cells (lane 1), 24 hours (lane 2), and 48 hours (lane 3) after transfection; hBD-3
mRNA expression in untransfected cells (lane 4), 24 hours (lane 5), and 48 hours (lane 6) after transfection. (b) hBD-2 concentration in
cell supernatants 48 hours after transfection. (c) hBD-3 concentration in cell supernatants 48 hours after transfection.
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showed that the optimal antibiotic concentration for the
selection of stable clones was 200 μg/ml. These data were
also supported by the results of the cellular viability assay
(see Supplementary Material available online at https://doi.
org/10.1155/2017/6976935). The selected clones were then
cultured for an additional 21 days to obtain their differen-
tiation, which was characterized by polarization and the
formation of microvilli.

3.3. Evaluation of the Host Inflammatory Response. After the
infection of untransfected and hBD-2- or hBD-3-transfected
Caco-2 cells with E. faecium and/or S. typhimurium, we
examined the host response by evaluating the expression of
proinflammatory cytokines IL-6, IL-8 Il-1α, and IL-1β and
anti-inflammatory cytokine TGF-β by real-time PCR.

Thedataobtainedshowedthatthecells transfectedwiththe
hBD-2 and hBD-3 genes and infected with S. typhimurium
showed a lesser expression of proinflammatory cytokines
compared to the untransfected control. Instead, an infec-
tion of Caco-2 cells with E. faecium resulted only in a
slight increase of expression of proinflammatory cytokines
and an increase in anti-inflammatory cytokine TGF-β,
which was more apparent in the presence of antimicrobial
peptides; these data confirm that E. faecium did not act as
a pathogen and did not induce an increase in the inflam-
matory response (Figure 2).

In addition, during the coinfection with S. typhimurium
and E. faecium, the already significant decrease in expression
levels of proinflammatory cytokines revealed in the trans-
fected cells during infection with S. typhimurium alone is even
more pronounced, indicating that the antimicrobial peptides
have enhanced probiotic antibacterial activity (Figure 3).

These data were also confirmed by ELISA protein assay.

3.4. Evaluation of Bacteria Viability. In order to test the
toxicity of antimicrobial peptides against S. typhimurium
and E. faecium, the supernatants of the coinfected cells were
subjected to serial dilutions and plated on selective media.

Our results indicate that both hBD-2 and hBD-3 possess
selective toxicity towards S. typhimurium and did not inter-
fere with the growth of E. faecium (Table 2).

3.5. Effect of E. faecium and AMPs on S. typhimurium
Invasiveness. Preincubation of untransfected Caco-2 cells
with live E. faecium significantly affected S. typhimurium
internalization, reducing it by 45.8%. Conversely, pretreat-
ment with heat-killed E. faecium does not interfere with the
invasive capacity of the pathogen (Figure 4).

4. Discussion

Innate immunity, in particular through antimicrobial pep-
tides (AMPs), plays a key role in maintaining the balance
between protection against pathogens and normal microbial
tolerance; AMPs are structurally heterogeneous peptides of
amphipathic nature isolated from a wide variety of organ-
isms, plants, insects, amphibians, and mammals that are able
to kill bacteria, fungi, and viruses quickly. Among these, the
human β-defensins have received considerable interest.
These peptides are produced by epithelial cells, constitu-
tively, or as a result of certain stimuli such as microorganisms
or cytokines. Defensins are able to attract inflammatory cells
such as neutrophils, T cells, macrophages, and epithelial
cells capable of releasing inflammatory mediators such as
IL-6, IL-8, and IL-1β, as well as destabilizing microbial
membranes; moreover, they have the ability to remodel
the tissues and bind LPS.
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Figure 2: Comparison between relative gene expression (a) and protein concentration (b) in Caco-2 cells infected with S. typhimurium and
Caco-2 cells infected with E. faecium. Data are mean± SD and are expressed as the percentage of increment compared to uninfected controls.
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In particular, β-defensin-2 (hBD-2) and β-defensin-3
(hBD-3) are present in various epithelia, such as skin [39],
oral cavity [40], paranasal sinuses, gingival [41], corneal
[42], intestinal, respiratory, and urogenital epithelium [31],
and show antimicrobial activity against Gram-positive and
Gram-negative bacteria and fungi.

It has been estimated that the number of microbes
present throughout the human body amounts to approxi-
mately 100 trillion cells, tenfold the number of human
cells, and suggested that they encode 100-fold more

unique genes than our own genome [43]. Most of them
are components of the gut microbiota, which contains
between 1000 and 1150 prevalent bacterial species that
play a central role in human health [43, 44].

This community is defined as a “metabolic organ,” as it
plays a primary role in maintaining homeostasis by interven-
ing in the regulation of metabolism and nutritional, physio-
logical, and immunological functions.

In the first phase of this work, we worked on creating,
by cloning and gene transfection techniques, a line of
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Figure 3: Comparison between relative gene expression (a) and protein concentration (b) in Caco-2 cells infected with S. typhimurium alone
and Caco-2 cells coinfected with S. typhimurium and E. faecium. Data are mean± SD and are expressed as the percentage of increment
compared to uninfected controls.
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intestinal epithelial cells (Caco-2 cells) that expresses hBD-
2 and hBD-3 genes. This allowed us to evaluate the role of
these peptides in protecting the intestinal epithelium
against S. typhimurium, alone or in cooperation with E.
faecium, which is one of the major components of the
human gut microbiota [45, 46].

The first data obtained from the CFUs/ml counts follow-
ing infection and coinfection showed that there was a marked
reduction in the number of colonies of S. typhimurium com-
pared to untransfected cells in transfected cells, while the
number of colonies of E. faecium remained unchanged,
which shows that the antimicrobial peptides selectively car-
ried out their microbicidal activity against the pathogen.

Mucosal surfaces are lined with epithelial cells that form a
barrier between potentially pathogenic microorganisms and
the host tissues. Penetration of this layer by invasive bacteria
initially leads to an acute inflammatory response, a hallmark
of which is the local accumulation of polymorphonuclear

leukocytes. After the infection with pathogenic bacteria,
epithelial cells at mucosal surfaces can secrete chemical
mediators, such as proinflammatory and chemoattractant
cytokines constituting surveillance and warning system for
the immune and inflammatory cells present in the underly-
ing mucosa [47]. However, in sites where there is a physio-
logically high bacterial concentration due to the resident
microbial flora, that is, the colon, cytokine production is
closely dependent on bacterial invasiveness, as only invasive
bacteria induce cytokine secretion [48–50].

Among these, IL-6, IL-1, and TNF-α are highly expressed
in most inflammatory states so as to often be considered a
target of therapeutic intervention.

IL-8 chemokine is also thought to be an early signal of
acute inflammation, as it is secreted by the intestinal epithe-
lial cells following bacterial invasion, and accumulates in
the mucosa underlying the epithelial cell layer where the
IL-8 responsive effector cells reside. In addition, it has been
shown that the presence of the IL-8 in serum is a diagnostic
marker for neonatal bacterial infection [51, 52].

The results obtained show that the inflammatory
response in hBD-2- and hBD-3-transfected cells is modified
with respect to untransfected cells, since the expression of
proinflammatory cytokines IL-6, IL-8, TNF-α, IL-1α, and
IL-1β is greatly reduced, while the expression of anti-
inflammatory cytokine TGF-β is increased. These data
indicate that the invasive and inflammatory potential of
S. typhimurium is significantly reduced in the presence of
antimicrobial peptides.

Experiments of coinfection of untransfected cells with
S. typhimurium and probiotic E. faecium showed that in
the presence of E. faecium, Salmonella infection caused a
much less intense inflammatory response, and this data
is confirmed by invasive assays in which the presence of
E. faecium results in a reduction in the internalization of
S. typhimurium by 45.8%. However, the more interesting
result is that the decrease in the level of inflammatory
response due to the presence of E. faecium is further
reduced in the transfected cells, that is, in the presence
of high concentrations of antimicrobial peptides, suggest-
ing that antimicrobial peptides may enhance the beneficial
probiotic activity.

In our experimental system, the ability of AMPs to sig-
nificantly reduce the inflammatory response in infected
and coinfected cells is also due to their killing activity
against Salmonella, as also demonstrated by the count of
CFUs/ml following coinfection, in which the concentration
of pathogen is considerably reduced in the presence of
AMPs with respect to untransfected cells. AMPs could be
considered, in the future, as a new class of therapeutics
since they are able to induce lesser resistance and have a
selective antimicrobial activity to protect the host without

Table 2: CFUs/ml of S. typhimurium and E. faecium in supernatants of coinfected cells.

Inoculum Untransfected hBD-2-transfected hBD-3-transfected

S. typhimurium 1× 107 2× 106 5× 104 4,3× 103

E. faecium 3× 108 3× 108 3× 108 2× 108
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Figure 4: S. typhimurium internalization assay. Untransfected
Caco-2 cells were infected with S. typhimurium alone or
coinfected with live or heat-killed E. faecium for 4 hours. The
number of internalized bacteria was determined by host cell lysis,
plating, and counting CFU/well. The data shown are
representative of three different experiments± SD. Error bars
represent standard deviations.
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the need for the immune system memory [53]. Having an
in vitro system that will produce these proteins will allow
us to better clarify the mechanisms underlying these differ-
ent behaviors.
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