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Abstract

DNA barcoding can identify biological species and provides an important tool in diverse

applications, such as conserving species and identifying pathogens, among many others. If

combined with statistical tests, DNA barcoding can focus taxonomic scrutiny onto anoma-

lous species identifications based on morphological features. Accordingly, we put nonpara-

metric tests into a taxonomic context to answer questions about our sequence dataset of

the formal fungal barcode, the nuclear ribosomal internal transcribed spacer (ITS). For

example, does DNA barcoding concur with annotated species identifications significantly

better if expert taxonomists produced the annotations? Does species assignment improve

significantly if sequences are restricted to lengths greater than 500 bp? Both questions

require a figure of merit to measure of the accuracy of species identification, typically pro-

vided by the probability of correct identification (PCI). Many articles on DNA barcoding use

variants of PCI to measure the accuracy of species identification, but do not provide the vari-

ants with names, and the absence of explicit names hinders the recognition that the different

variants are not comparable from study to study. We provide four variant PCIs with a name

and show that for fixed data they follow systematic inequalities. Despite custom, therefore,

their comparison is at a minimum problematic. Some popular PCI variants are particularly

vulnerable to errors in species annotation, insensitive to improvements in a barcoding pipe-

line, and unable to predict identification accuracy as a database grows, making them unsuit-

able for many purposes. Generally, the Fractional PCI has the best properties as a figure of

merit for species identification. The fungal genus Ramaria provides unusual taxonomic diffi-

culties. As a case study, it shows that a good taxonomic background can be combined with

the pertinent summary statistics of molecular results to improve the identification of doubtful

samples, linking both disciplines synergistically.
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Spouge JL (2020) Figures of merit and statistics

for detecting faulty species identification with DNA

barcodes: A case study in Ramaria and related

fungal genera. PLoS ONE 15(8): e0237507. https://

doi.org/10.1371/journal.pone.0237507

Editor: Ruslan Kalendar, University of Helsinki,

FINLAND

Received: November 5, 2019

Accepted: July 28, 2020

Published: August 19, 2020

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files. GenBank contains all sequences

used, and the Supporting Information specifies the

relevant accession numbers. UNITE numbers are

available in S1 Table.

Funding: The author(s) received no specific

funding for this work.

Competing interests: DL Erickson is the founder

and previously the Chief Operating Officer of the

company DNA4Tech. There are no patents,

http://orcid.org/0000-0001-6207-1419
https://doi.org/10.1371/journal.pone.0237507
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237507&domain=pdf&date_stamp=2020-08-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237507&domain=pdf&date_stamp=2020-08-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237507&domain=pdf&date_stamp=2020-08-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237507&domain=pdf&date_stamp=2020-08-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237507&domain=pdf&date_stamp=2020-08-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0237507&domain=pdf&date_stamp=2020-08-19
https://doi.org/10.1371/journal.pone.0237507
https://doi.org/10.1371/journal.pone.0237507
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


Introduction

Increasingly, scientists use DNA barcoding to identify the species of biological specimens.

First, they extract short, standardized DNA sequences from the specimen [1]. Next, they com-

pare the sequences to databases containing orthologous sequences from known species [2],

with close matches indicating the taxonomy of the unidentified specimen. DNA barcoding has

become important in many applications relating to the sustainability of natural resources, such

as monitoring water quality (e.g. [3]), protecting endangered species (e.g. [4]), controlling agri-

cultural pests (e.g. [5]), and identifying diseases (e.g. [6]), among many others (e.g., www.

boldsystems.org).

Implicitly, any study estimating the accuracy of species identification by DNA barcoding

relies on the choice of a taxonomic species concept [7, 8]. Traditionally, morphological fea-

tures resolve the boundaries between neighboring species. If expert taxonomists disagree on

species boundaries, however, the ability to quantify the accuracy of species identification with

DNA barcoding is confounded. Correct identification is relative to some “gold standard”, itself

subject to possible errors, so the standards themselves often need to be subject to scrutiny.

Many papers on barcoding methodology choose to focus on issues other than the species con-

cept, e.g., on the quality of primer annealing to DNA, the different strategies for matching an

unknown query sequence with sequences in a reference database, the use of BLAST scores, etc.

[4], but the species definition lies at the heart of DNA barcoding. For general reference sets of

sequence data, however, investigators often turn to GenBank [9], where non-experts may have

submitted the species annotations (e.g., [10]). In many cases, therefore, the estimated accuracy

of a species identification tool based on DNA barcoding contains unquantified uncertainties

about taxonomic identifications in GenBank or other DNA databases [11], and possibly even

methodological errors [12]. Our previous study within the fungal family Xylariaceae [13] men-

tioned some of these issues, e.g., while discussing the advantages and limitations of sequence-

based fungal identification [14]. Statistical criteria for flagging questionable species identifica-

tions could help clean taxonomic datasets and could even help taxonomists to delineate species

boundaries. In addition, in difficult cases statistical tests provide objective evidence in support

of subjective taxonomic judgments about species boundaries.

As a case study, we considered the fungal genus Ramaria (Gomphales; Basidiomycota,

described in SI Appendix Text 1), which contains many species with poorly defined bound-

aries when based on morphological features alone. Accordingly, we collected a sequence data-

set of the formal fungal barcode, ITS [15], including both GenBank and a separate set of

specimens with expert taxonomic identification. Our dataset also included a few ITS sequences

from genera close to Ramaria.

With the dataset in hand, while exploring taxonomy specific to Ramaria, we pursued the

following general aims in DNA barcoding. First, bioinformatics pipelines in barcoding are

often subject to “tweaking”, i.e., the pipelines undergo subtle variations intended to improve

barcoding analyses. The probability of correct identification (PCI) is a figure of merit for com-

paring variant pipelines for taxonomic identification [15–17]. Several types of PCI appear in

the barcoding literature, without specific names for the different types (e.g., [18]). The present

paper therefore initiates a methodical study of PCI properties by bestowing names on four of

them.

To avoid confusion, the reader should note at the outset that the four PCIs are not algo-

rithms for assigning species, such as a k-nearest-neighbor match to a sequence database, or a

Bayesian probability that a sample belongs to a given species, etc. A PCI provides a method for

evaluating how well a species-identification algorithm agrees with a “gold standard” taxonomy.

In fact, the Ramaria genus is narrow enough taxonomically that most computer algorithms for
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species identification by DNA sequence should usually agree. For simplicity, therefore, this

article takes nearest-neighbor matching as its species-identification algorithm. This article

then examines in different scientific contexts, which of the four variant PCIs is the best figure

of merit for evaluating the algorithm. The choice of the figure of merit is important, because it

will evaluate progress as scientists develop algorithms for taxonomic identification.

The Theory section considers identification at the species level, although its ideas apply to

other taxonomic levels. It contains formal mathematical definitions for the four PCIs, but the

following set-up defines them informally for non-mathematical readers.

To begin, consider a species identification pipeline consisting of: a reference database of

taxonomic sequences, a set of query sequences derived from taxonomic samples, and an algo-

rithm for identifying a sample’s species. Several figures of merit (e.g., PCI, or perhaps the

fraction of query sequences correctly identified, etc.) can quantify the accuracy of species iden-

tification. This article proposes several desirable properties that an appropriate figure of merit

should possess.

As a simplifying approximation, our analysis assumes that for each query, the algorithm

returns a list of equally likely species. The species list may contain the same species several

times, or it may contain one or zero species. If it contains zero species, query identification has

failed. If the list contains only the correct species, we say identification is unanimous (i.e.,

unanimously correct).

Many practical algorithms (e.g., species identification by nearest database neighbor) satisfy

the assumption. In practice, even if an identification algorithm returns a probability or score

with each species identification for a query (e.g., [19]), it might still accord with the assump-

tion, if it were followed by a post-processing step that decided for each species identification,

“yes or no?”

The following defines informally the four PCIs for a given species. The Theory section

shows that they correspond to progressively more optimistic definitions of correct identifica-

tion within a species. To begin, for each species under scrutiny, determine whether it has a bar-

code gap, i.e., whether its maximum intraspecies distance is strictly less than its minimum

interspecies distance. The Barcode Gap species PCI is then either 1 or 0, depending on whether

a barcode gap exists. Second, determine whether every query from a species under scrutiny

produces an unanimously correct list of species. Accordingly, the Unanimous species PCI is

then either 1 or 0. Third, determine the fraction of queries from a species under scrutiny pro-

duces an unanimously correct list of species. The fraction lies between 1 and 0, inclusive, and

it is Average Unanimous species PCI. Fourth and finally, for each query from a species under

scrutiny, determine the fraction of species in the output list that are the query’s species. Aver-

age the fractions for each query in a species to derive the Fractional species PCI.

Given a species identification algorithm, each of the four PCI measures (Barcode Gap,

Unanimous, Average Unanimous, and Fractional) is a potential measure of its taxonomic

accuracy. This article examines the strengths and weaknesses of each measure.

After considering each species PCI, the Consortium for the Barcode of Life Plant Working

Group used the Barcode Gap PCI to select rbcL and matK as botanical barcode markers [16];

its Fungal Working Group followed by using the Barcode Gap PCI to select ITS as a mycologi-

cal barcode marker [15]. Each of the four PCIs may be appropriate to different purposes, how-

ever. We show, e.g., that despite its use in selecting the formal barcode markers, the Barcode

Gap PCI has some undesirable properties for detecting subtle improvements in barcoding

pipelines for species identification.

Second, an investigator may wish to know when problematic taxonomy (e.g., non-expert

species identification) or technical difficulties (e.g., truncated sequences) have intervened to

lower PCIs spuriously. Based on its study of the Average Unanimous PCI, this article derives
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an objective criterion, a p-value based on an accepted statistical test [20], to flag species identi-

fications that are problematic relative to an accepted reference or to detect systematic technical

difficulties.

Third, sequence databases with taxonomic annotations are growing at unprecedented

rates. Ideally, an estimated PCI predicts future accuracies of species identification, and it fails

as a predictor, if its value changes drastically as a database grows. By resampling our database

to produce smaller databases with a variant of the bootstrap [21]), we simulate how the four

different PCIs change as a taxonomic database grows, showing that some PCIs are better

than others in predicting their future values as a database grows. The Discussion points out

that all four PCIs have another desirable property, taxonomic normalization, which compen-

sates for datasets with overrepresented species. Some other measures of the accuracy of spe-

cies identification, e.g., fraction of correctly identified query sequences, lack taxonomic

normalization.

The article has the usual Results, Discussion, and Materials and Methods sections. In addi-

tion, a Theory section precedes our Material and Methods. The Theory section is not necessary

to the detailed understanding of the rest of the article, but its mathematical results are univer-

sally applicable across taxonomy. It also describes a statistical test, a loose taxonomic analog of

the log-rank test in the analysis of survivorship in clinical trials. The statistical test has many

possible uses in taxonomy, e.g., it can decide whether species identification by taxonomic

experts is significantly more accurate than inexpert identification.

To delineate the taxonomic species boundaries in Ramaria, we collected ITS nrDNA

for comparison with orthologous sequences from GenBank and UNITE databases. While

contrasting the utility of each PCI variant in different contexts, we evaluated the putative

taxonomy of samples using formal statistics to augment DNA barcoding with parsimony

and Bayesian phylogenetic analyses. The indistinct species boundaries make the dataset a

good test case for quantifying the possible influence of uncertain taxonomy, incomplete spe-

cies boundaries, and other factors (e.g., DNA sequence length and the presence of ambigu-

ous nucleotides) on the apparent accuracy of DNA barcoding, as measured by different

PCIs.

Results

Morphological analyses

Fig 1 illustrates the morphological diversity of Ramaria species. S1 Text describes the morpho-

metric analyses.

Sequence analyses

Our TOTAL DATASET contained 647 ITS sequences, with 231 sequences as “Ramaria sp.” S1

Table lists the PCI DATASET used in the barcode analysis, which contained the remaining 416

sequences, with 382 unique sequences and 416–382 = 34 replicates. Our LONG DATASET was the

subset of the PCI DATASET whose sequences had length at least 500 bp. It contained 381

sequences, with 347 unique sequences and 34 replicates. Our SHORT DATASET was the comple-

ment of the LONG DATASET within the PCI DATASET. Our TAXONOMIC DATASET was the subset of

the PCI DATASET whose sequences had expert taxonomic species identification. It consisted of

153 samples (107 samples that we identified, plus 46 GenBank sequences annotated as species

types), with 151 unique sequences and 2 replicates. S2 Text contains “Sequence analyses” with

summary statistics of the sequence length and nucleotide compositions of subsets of the PCI

DATASET. S1 Table lists the PCI DATASET highlighting its TAXONOMIC and SHORT subsets
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Fig 1. Morphological diversity of Ramaria species: (A) R. abetonensis AH 48006; (B) R. arcosuensis MA-Fungi 48049;

(C) R. bataillei MA-Fungi 49453; (D) R. broomei MA-Fungi 79903; (E) R. cedretorum MA-Fungi 48074; (F) R. cokeri
MA-Fungi 79893; (G) R. fennica var. fumigata AH 47767; (H) R. flavescens AH 48029; (I) R. ignicolor MA-Fungi

47978; (J) R. mediterranea MA-Fungi 39877; (K) R. praecox AH 47804; (L) R. rubrievanescens AH 47481; (M) R. stricta
MA-Fungi 48068; (N) R. subbotrytis MA-Fungi 48088; (O) R. subdecurrens AH 48370; (P) Ampulliform septum of R.

aff. capucina AH 48381; (Q) Cystidium on rhizomorphs from R. quercus-ilicis MA-Fungi 47984; (R) Bipyramidal

crystal on tomentum from R. mediterranea MA-Fungi 39877; (S) Rosette crystals on rhizomorph hyphae from R.

comitis MA-Fungi 47970; (T) Star-shaped crystals on rhizomorph hyphae from R. flaccida MA-Fungi 48020; (U)

Spores of R. comitis MA-Fungi 47970; (V) Spores of R. cokeri MA-Fungi 79893; (W) Spores of R. praecox AH 47732;

(X) Spores of R. botrytis MA-Fungi 48056. Scale bar = 5 μm.

https://doi.org/10.1371/journal.pone.0237507.g001
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Barcode analysis

Call a sample or species a “singleton”, if the relevant dataset contains only a single DNA

sequence from the species. The PCI DATASET retained singletons, because they provide decoys

that complicate the species identification of other samples, mimicking practical difficulties in

barcoding [16]. To quantify barcoding accuracy, the present article defines four variants of the

probability of correct identification (PCI), all of which are averages of species PCIs over non-

singleton species. The Methods section describes the four PCIs, and the Theory section defines

them mathematically.

The PCI DATASET had 416 samples, distributed among 75 singletons and 71 non-singleton

species. Of these 75 singletons, two were from the genus Gloeocantharellus; one, from the

genus Gomphus; and one, from the genus Schildia. None of these singletons shared its

sequence with another species. The PCI DATASET also contained four samples from Gomphus
clavatus; two, from Gomphus ludovicianus; and three, from Turbinellus floccosus, so these non-

singleton species contributed to PCIs. Ramaria samples contributed all other Species PCIs for

the PCI DATASET.

Presented as mean ± one standard error mean, the PCIs averaged over the n = 71 non-sin-

gleton species in the PCI DATASET were: the Barcode Gap PCI pB = 0.324±0.056; the Unanimous

PCI pU = 0.451±0.059; the Average Unanimous PCI pA = 0.691±0.040; and the Fractional

PCI pF = 0.731±0.038. On any fixed dataset like the PCI DATASET, the PCI inequality

0�pB�pU�pA�pF�1 always holds (as demonstrated by the mathematical “Proof of the PCI

Inequality” in the Theory section). As the PCIs increase, they convey increasingly optimistic

assessments of the same set of species identifications. Thus, the PCI inequality shows that the

PCIs reflect progressively weaker criteria for correct species identification.

To assess annotations misidentifying species within the PCI DATASET, we partitioned the

PCI DATASET into two non-overlapping sets: a TAXONOMIC DATASET (153 samples, distributed

among 74 singletons and 26 non-singleton species) and a GENBANK DATASET (263 samples). The

GENBANK DATASET consisted of every GenBank sequence not annotated as having derived from

a species typus. We then modified the log-rank test in survival analysis for taxonomic purposes

(see details under “A Taxonomic Unanimity Test” in S2 Text). The data for the unanimity test

are a series of 2x2 tables. In the context of survival analysis, each table represents a different

time of observation, and the table for each time counts the patients in each of the control and

treatment groups that survived or died since the previous observation. In contrast, the taxo-

nomic unanimity test does not impose any temporal relationships among the 2x2 tables of the

log-rank test. It retains, however, the formal mathematical manipulations of the log-rank test

to produce a z-score with an approximately Gaussian distribution. In our taxonomic applica-

tion, each table represents a different species, and it counts the samples in each of the TAXO-

NOMIC and GENBANK DATASETs that were correctly or incorrectly identified (i.e., the

identifications agreed or disagreed with annotation). Applied to the 71 non-singleton species,

the taxonomic unanimity test gave a continuity-corrected z-score Z = 1.055–0.260 = 0.795

(written as uncorrected z-score minus its continuity correction) with a one-sided p-value

p = 0.213. If the p-value fell below a significance threshold, we could declare at that threshold

that the TAXONOMIC DATASET contained significantly better species identifications than the GEN-

BANK DATASET. Within our PCI DATASET, therefore, GenBank identifications were not signifi-

cantly worse than expert taxonomy. The implicit species structure of the statistic suggests the

explicit construction of S3 and S4 Tables in S2 Text, where barcoding results highlight possibly

misannotated samples for further taxonomic scrutiny.

In comparing barcoding pipelines for species identification, the taxonomic unanimity test

can also indicate when a pipeline significantly improves species identification. Short ITS
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sequences might have degraded species identification, so we considered removing them from

our analysis pipeline. To assess the degradation, we partitioned the PCI DATASET into a LONG

DATASET (381 samples, distributed among 73 singletons and 67 non-singleton species) and a

SHORT DATASET (35 samples). The SHORT DATASET contained every non-singleton sample

sequence with length less than 500 bp. The resulting continuity-corrected z-score Z = 0.509–

0.301 = 0.208 (again, written as uncorrected z-score minus its continuity correction) from the

taxonomic unanimity test yielded a one-sided p-value p = 0.418. If the p-value fell below a sig-

nificance threshold, we could declare at that threshold that the LONG DATASET contained signifi-

cantly better species identifications than the SHORT DATASET. The actual p-value shows that the

estimated barcoding accuracy of species identification (using the fixed sampling density of

the PCI DATASET) did not differ significantly between the SHORT and LONG DATASETs. Like

S3 Table in S2 Text for the GENBANK DATASET, S4 Table in S2 Text lists the samples in the SHORT

DATASET, where barcoding results single out possibly misannotated samples for further taxo-

nomic scrutiny.

Implicitly, the taxonomic unanimity test on the SHORT DATASET above used the following

bioinformatics pipeline A&E (“align and extract”): (1) perform a multiple sequence alignment

of the PCI DATASET; and then (2) extract the LONG DATASET while maintaining the original multi-

ple sequence alignment. We had concerns, however, that pipeline A&E might be inferior and

degrade species identification relative to another pipeline, E&A, which: (1) extracts the LONG

DATASET first; and only then (2) aligns the extracted sequences. Accordingly, we performed a

Wilcoxon matched-pair signed-rank test [22, p. 75–83] on the pairs of Species PCIs for each

species from the two pipelines, A&E and E&A.

Table 1 shows the (Overall) PCIs under the headings Pipeline A&E and for Pipeline E&A
(an Overall PCI is the average of Species PCIs over all species). The column headed by n counts

the number of species where each pipeline produced a different Species PCI from the other

(e.g., for the Fractional PCI pF, the pair of Species PCIs pF,s was different for 18 species). None

of the PCIs showed any statistical significance, so reusing sequence alignments from the PCI

DATASET did not significantly reduce the accuracy of species identification within the LONG

DATASET. In fact, PCIs decrease from pipeline A&E to pipeline E&A, suggesting that reusing

sequence alignments from the PCI DATASET may be a better bioinformatics strategy than

realigning subsets.

Just as with the LONG DATASET, pipelines A&E and E&A may both be applied to the TAXO-

NOMIC DATASET. S5 Table in S2 Text gives results for the TAXONOMIC DATASET in the same format

as Table 1. In fact, the PCIs there increase from pipeline A&E to pipeline E&A, so the reuse of

sequence alignments from the PCI DATASET is not a consistently superior strategy.

To quantify the effect of database size on our four PCIs, we resampled subsets of different

sizes from the PCI DATASET under uniform sampling without replacement (for details, see

“Resampling the PCI DATASET” in S2 Text). In Fig 2, the squares correspond to average PCIs in

the resampled datasets of 50, 70, 90, . . ., 390 samples. Error bars display the sample standard

error of each resampled PCI. They decrease to 0 as the resampled size approaches the size of

Table 1. Comparison of different pipelines on the LONG DATASET.

PCI Align & Extract Pipeline A&E Extract & Align Pipeline E&A Signed-rank Test

n p-value

Fractional (pF) 0.769±0.036 0.768±0.037 18 0.915

Average Unanimous (pA) 0.725±0.037 0.722±0.038 16 0.450

Unanimous (pU) 0.522±0.061 0.493±0.061 6 1.000

Barcode Gap (pB) 0.418±0.060 0.403±0.060 3 1.000

https://doi.org/10.1371/journal.pone.0237507.t001
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the PCI DATASET (416) because sampling without replacement becomes less random (e.g., at a

size of 416, resampling without replacement simply selects the PCI DATASET every time). Fig 2

complies with the PCI inequality 0�pB�pU�pA�pF�1 and displays a partition of the PCIs

into two groups: (1) the Fractional PCI pF and the Average Unanimous PCI pA; and (2) the

Unanimous PCI pU and the Barcode Gap PCI pB. Compared to pU and pB, pF and pA remain

relatively constant as the resampled dataset increases in size; moreover, their error bars exhibit

progressively less random variation.

During analysis, the PCI DATASET underwent a small revision (with S1 and S2 Tables giving

the final datasets). After completion of the barcode analysis (with results given verbatim

above), e.g., the species Ramaria rubribrunnescens provided a concrete example of the effects

of misannotation on barcode analysis. All its six samples in the PCI DATASET were from Gen-

Bank. We discovered, however, that another GenBank sample (KY354750) was in fact from

Ramaria rubribrunnescens and had been misannotated as Ramaria rubribrunescens. Under

barcode computations, therefore, it was a singleton sample from a non-existent species.

KY354750 shared its sequence with JX310406 (also Ramaria rubribrunnescens), and together,

their identical sequences provided the two nearest neighbors of EU652352 (also Ramaria
rubribrunnescens). In fact, barcode species identification within Ramaria rubribrunnescens was

perfect, i.e., the species PCIs for s = Ramaria rubribrunnescens were pB,s = pU,s = pA,s = pF,s = 1

(see “Mathematical Definitions of the Four PCIs” in the Theory section). The misannotated

sample, however, had spuriously reduced the species PCIs to pB,s = pU,s = 0, pA,s = 4/6�0.667,

and pF,s = 4.5/6 = 0.750, with the species PCIs having the most stringent criteria for correct

Fig 2. Resampling PCIs from the PCI dataset. The X-axis shows the number of samples in the dataset after resampling; the Y-axis, the probability

of correct identification (PCI), with the points indicating mean and sample standard deviation of the resampled distribution. The PCIs are the

Barcode Gap PCI pB (bottom, purple), the Unanimous PCI pU (second from bottom, blue), the Average Unanimous PCI pA (second from top,

orange), and the Fractional PCI pF (top, red).

https://doi.org/10.1371/journal.pone.0237507.g002
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species identification, the Barcode PCI pB,s and the Unanimous PCI pU,s, suffering the greatest

distortion. The PCI DATASET had 71 non-singleton species, however so the misannotation per-

turbed overall PCIs by at most (1–0)/71�0.014, well within statistical errors (see the PCIs at

the start of “Barcode analysis” in the Results).

Supplementary parsimony and Bayesian analyses

S1 and S2 Tables list the datasets contributing to the phylogenetic analysis (with the correct

species annotation for KY354750). In our analyses (Fig 3 and S1 Fig), including two Gloeo-
cantharellus as outgroup, 73 clades and 74 singletons were obtained, of which 97 samples

could be assigned to known taxa (3 Gomphus, 92 Ramaria, 1 Turbinellus, and 1 Schildia), and

50 might be undescribed species, but also possibly known species but misidentified, or related

to known taxa (e.g. R. conjunctipes-clade 2, R. gracilis 1, R. thiersii 1, R. neoformosa 1).

As shown in Fig 3 and S1 Fig (the same tree with sample identifiers at its leaves), 31 clades

and 50 singletons (in blue) represent single species; 5 clades (in green) included related infra-

specific taxa; 10 clades (in red) included sequences with different species; and 27 clades and 24

singletons (in orange) belong to 23 taxa that occur in two or more clades.

Some examples of clades with only one species (S1 Fig, in blue) are Ramaria suecica, R.

stuntzii, R. maculatipes or R. amyloidea; and the singletons R. cyanocephala, R. boreimaxima
or R. quercus-ilicis. In the case of green clades, such as R. flavescens, the sequence obtained

from the type of R. flavescens var. suaveolens is included; the other four green clades also

include a species and its varieties. The most significant example of red clades is in the top of S1

Fig, and involve seven names (Ramaria abietina, R. abietina 1, R. apiculata, R. apiculata 1,

Fig 3. The 50% majority rule Bayesian tree inferred from ITS nrDNA assuming HSK+ I + G model of Gomphales included in the PCI analyses. Colors: Blue, unique

species; Green, one species and related infraspecific taxa; Red, clades including two or more species; Orange: species that occur in two or more clades. See S1 Table and S1

Fig for clades and singleton names. In Fig 3, the left circle corresponds to clade identifications before DNA barcoding; the right, after DNA barcoding. Essentially,

therefore, the left circle displays morphological species; the right circle displays the clades after DNA barcoding has increased the apparent number of monophyletic

species.

https://doi.org/10.1371/journal.pone.0237507.g003
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R. apiculata var. brunnea, R. rubella, and R. tsugina). In the case of orange clades, a well-

known species in temperate regions, such as R. abietina, appears not only in the red clades

already mentioned, but also in the red clades named by us as R. flaccida and two orange clades,

one of them the R. abietina sensu stricto. The right of Fig 3 displays how information from

DNA barcoding improved tentative initial morphological identifications shown on the left of

Fig 3 to increase clade consistency, particularly in the final clades belonging to a single species

(in blue).

Of the 35 short sequences included in the analysis, 24 matched with expected clades (single-

tons excluded); and of 12 with ambiguous nucleotides, only one matched with expected clades

(R. argentea JQ408231 from GenBank).

Discussion

Barcode analysis

Typically in DNA barcoding, probabilities of correct identification (PCIs) provide the figure of

merit for comparing variant bioinformatics pipelines [17]. The barcoding literature contains

several types of PCI (e.g., [18]), and unjustifiably, some studies have even compared different

types of PCIs directly, as though their status as probabilities permitted direct comparison. The

PCI Inequality 0�pB�pU�pA�pF�1, proved mathematically shows that for a fixed dataset,

some types of PCIs are always larger than others. The type of PCI used is therefore critical in

evaluating the results of a study.

PCIs similar to species PCIs can be calculated at other taxonomic levels like genus, family,

etc. As figures of merit for taxonomic identification, the corresponding overall PCIs have the

property of “taxonomic normalization”, described here only for the species level. In contrast,

several studies [19, 23–25] used a measure related to PCI, namely, the fraction of sequences

with correctly identified species. To demonstrate by exaggeration the defects of the measure, if

75% of samples come from a single species, the figure is thoroughly skewed by the dominant

species. On the other hand, an overall PCI that averages species PCIs automatically normalizes

datasets against overrepresented species [26]. Sometimes, normalization may be undesirable,

e.g., if species have differing importance to the purpose at hand, an explicitly weighted average

of species PCIs may be pertinent. Regardless, the ability of the overall PCI to normalize data-

sets taxonomically and reduce skewing by over-represented species led to its broad acceptance

among botanists [16] and mycologists [15].

Taxonomic normalization has other desirable consequences. Measures without it require

detailed ancillary data to support their relevance, e.g., rather than just a species count or enu-

meration, those measures require a separate demonstration that the sequences are about

evenly distributed across the relevant species. When comparing different datasets, a figure of

merit requiring detailed ancillary data can seriously impede human evaluation (e.g., Section

3.2 in [27] criticizes the ROCn in sequence retrieval because the ROCn requires ancillary infor-

mation to verify its validity). To avoid distracting humans with detailed ancillary data, the fig-

ure of merit then requires a rigid dependence on benchmarking with standard datasets to

ensure scientific progress.

As indicated in the Introduction and Fig 2, a figure of merit should remain stable as a data-

base grows. If adventitious database features like species overrepresentation can profoundly

alter a figure of merit, the figure is not fulfilling its purpose.

For any specific purpose, the four types of PCI may have widely differing utilities. The Bar-

code Gap PCI (pB) reflects the most stringent criterion for correct species identification,

namely, the presence or absence of a barcode gap for a species. Because of its stringency, and

because DNA barcodes might be used to construct phylogenetic trees as well as to identify
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species, botanists [16] and mycologists [15] used the Barcode Gap PCI to select their barcode

markers. Table 1 indicates that compared to other types of PCIs, the Barcode Gap PCI is less

broadly informative of species behavior in a bioinformatics pipeline, however. The column

labeled n in Table 1 shows that only three species had different Species Barcode Gap PCIs for

pipelines A&E and E&A. As criteria for correct species identification became less stringent

(i.e., as PCIs became larger), n also increases, reaching a maximum value n = 18 for the Frac-

tional PCI. S5 Table in S2 Text of the SI displays a similar trend.

The Barcode Gap PCI displays impressive improvements in Table 1 and S5 Table in S2 Text

of the SI, but a single misannotated sample can spuriously destroy the barcode gap in a species

s. The Results for Ramaria rubribrunnescens show that a single sample can change the PCI for

species s violently, from pB,s = 1 to pB,s = 0, so the Barcode Gap PCI displays an undesirable

sensitivity to errors in the data. The Unanimous PCI (pU) suffers a similar defect, because all

samples in a species s are either correctly identified or not (i.e., either pU,s = 1 or pU,s = 0).

Insensitivity to subtle changes across several species and vulnerability to misannotation or

otherwise anomalous taxonomy probably make the Barcode Gap and Unanimous PCIs among

the worst PCIs for assessing gradual improvements in a barcoding pipeline. After the proof of

the PCI inequality, the Theory section contains a second mathematical proof: if the Unani-

mous PCI pU,s can detect that procedural pipeline has improved identification within a species

s, the Average Unanimous PCI pA,s can also. The statement virtually disqualifies the Unani-

mous PCI as a desirable figure of merit when improving barcoding pipelines.

A violent discontinuity in a PCI has other undesirable consequences. Fig 2 shows results

from resampling the PCI DATASET to produce smaller datasets. Resampling (e.g., the bootstrap

[28]) is a popular method to make inferences about complex situations, although its inferences

about maxima and minima carry some caveats (see particularly, counter-example 2 in [29]).

When querying a barcode database with a new sample, many practical computer algorithms

for species identification depend on the new sample’s nearest neighbors, database sequences

that minimize some distance to the sample sequence. This article measured genetic variation

between two aligned DNA sequences with p-distance [30], the fraction of unambiguous nucle-

otide pairs that were mismatches. Caveats notwithstanding, Fig 2 indicates that the present val-

ues of pB and pU are less predictive than pA and pF of their future values as a barcoding

database grows. As new samples enter a barcoding database, a single sample in a species s can

reduce the Barcode Gap or Unanimous PCI for species s (pB,s or pU,s) violently, from 1 to 0,

whereas its effects on the other PCIs are more gradual (e.g., see again the Results for Ramaria
rubribrunnescens).

When evaluating a pipeline for taxonomic identification, a singleton species may cause dif-

ficulties if only one sequence dataset must serve both as a reference database and a source of

queries. Following the pattern of previous studies [15, 16], our PCIs considered only non-sin-

gleton species and omitted each query in turn from the reference database. Each query then

had a species representative in the reference database available as a possible nearest neighbor.

Consequently, the evaluation of the pipeline conferred a special status on singletons, not our

identification algorithm. At first, the distinction between evaluating a pipeline and the pipeline

itself can be subtle, and the reader should reread this paragraph if its point is unclear. The early

paragraph in the Introduction, starting “To avoid confusion. . .” is also relevant.

When the evaluation of a pipeline uses a single dataset as a reference database and a source

of queries, PCIs should be accompanied by a separate count of species singletons having

unique sequences. There is nothing objectionable in counting the singletons separately, but

calculating a single combined PCI from non-singleton species and the singletons [25] has the

undesirable consequences mentioned during the discussion of resampling: violent change and

lack of predictability as a barcoding database grows. In particular, a single PCI combined with
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singletons typically views a singleton as correctly identified if its sequence is unique within the

database. Another sample from the same species entering the reference database then lowers

the species PCI from 1 to 0, and no third sample from its species modulates the change.

On one hand, although we examined the genus Ramaria as a case study, we expect our

observations to be most pertinent to other taxa with relatively low PCIs. On the other hand, if

taxonomic identification is straightforward, then methodology becomes less important.

The present article also introduced a taxonomic unanimity test. The tests and tables of sam-

ples derived from the test (e.g., S3 and S4 Tables in S2 Text of the SI) may help when cleaning

taxonomy from and reporting errors to a database like GenBank or allaying fears about using

sequences with ambiguous nucleotides. Similarly, the signed-rank test applied species by spe-

cies showed that expedients like reusing sequence alignments did not significantly worsen

results. With other datasets, it might have shown that improvements to a barcoding pipeline

are statistically significant. We chose to use it, because it has greater statistical power than its

competitor, the sign test, making it an orthodox choice. In a taxonomic context, however, the

signed-rank test gains its power by using ranks to break the symmetry of the species under

scrutiny. Studies rarely sample species evenly, however, so sampling biases can subtly and sys-

tematically influence the ranking of species, and therefore the ranked-sign test. Sampling

biases do not affect the sign test, which maintains symmetry between species throughout the

analysis. In the taxonomic context, therefore, the sign test has some features to recommend it,

but its use would not have changed the scientific conclusions in this article.

In addition, although not performed here because of insufficiently deep sampling of two

closely related species, a Fisher exact test for individual 2x2 tables (two species, two experts)

could flag statistically significant expert disagreement on species boundaries, prompting closer

examination of systematic expert disagreement on characters defining the species. The basic

motivation for all statistical tests suggested here is that non-parametric tests [31] are readily

applied to taxonomic groups of equal weight (here, each species PCI contributes equally to the

p-value).

Statistical findings were uniformly negative within Ramaria. Within the PCI DATASET, bar-

coding species identification was not significantly worsened by: (1) non-expert annotations in

GenBank; or (2) short sequences (less than 500 bp). For both the TAXONOMIC and LONG DATA-

SETs, the pipeline reusing the sequence alignment from the PCI DATASET did not have signifi-

cantly worse species identification than the pipeline that extracted the datasets and then

aligned them. The negative statistical findings therefore allayed our initial concerns that the

PCI DATASET required further filtering before barcoding analysis. In addition, they confirmed

that the difficulties that Ramaria present to taxonomists extend to the nucleotide realm.

Parsimony and Bayesian analyses

About a third part of the accepted Ramaria species (96/300) were included in our analyses,

and 50 clades could be related to cryptic, misidentified or unknown species. As in other

groups, some of them are known species, but they do not appear with the correct name in Gen-

Bank: in 2003, about 20% of the named sequences were misidentified [7, 32, 33]; more

recently, nearly 30% [14]. In the opposite case, some sequences could appear misidentified,

because they belong to different ITS copies of the same species; this was one the criticisms of

using ITS as a universal barcode for fungi [34]. If species annotations are correct, ITS

sequences from Ramaria conjunctipes, R. botrytis, R. formosa or R. stricta display a large molec-

ular variation; and their clades could be species complexes or contain cryptic species.

Ramaria and related genera exemplify the importance of sound taxonomic knowledge

before starting molecular analyses in a group. As a case study, they also show how molecular
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analysis helps taxonomists to improve the identification of doubtful samples, and how “the tax-

onomic feedback loop” links both disciplines synergistically [35]. During the last years, phylo-

genetic analyses using ITS sequences have helped us to elucidate many groups of fungi (e.g.

gasteroid and corticioid) and to describe new species (e.g. [36–38]). Unfortunately, however,

even if molecular analysis detects a new species, some authors do not follow through by

describing and naming it. Moreover, they also avoid the responsibility of curating their

sequences in DNA repositories as well as in publications. These repositories contain a many

unidentified sequences, even though many of them are connected to vouchers and are not

environmental samples. In our study, 647 sequences from Gomphales, mainly Ramaria, were

downloaded, but 231 had a non-specific epithet (e.g., “sp.”), and our PCI analysis had to

exclude them. Although not shown in this paper, many of these Ramaria sp. could be assigned

to a known species, however. On one hand, GenBank places sample KT824242 under Ramaria
sp. (S2 Table), e.g., but its specimen voucher (KD-14-006) is the holotype of R. subalpina [39].

On the other hand, sample MH216040 (S2 Table, holotype) was under Ramaria sp. PA-2018

when we did the analyses, but was later renamed as R. parabotrytis [40].

Many species names appear to be added after a direct BLAST search, identified only by

macromorphology, without microscopic examination, e.g., R. apiculata clade contains many

sequences under R. abietina. Microscopical features differentiate the two species: R. apiculata
has rosette oxalate crystals in the mycelium, ellipsoid and verrucose spores, and ornamented

ampulliform septa, whereas R. abietina has stellate oxalate crystals in the mycelium, amygda-

loid and nearly spinose spores, and smooth ampulliform septa (Fig 4). This is a good example

showing that DNA repositories need to include high quality sequences from well identified

specimens [41, 42].

In addition, many mistakes in the DNA repositories are related with contaminations or

mixed-up samples. Among the sequences obtained for this study, after the phylogenetic

Fig 4. Comparative of features of Ramaria abietina and R. apiculata. Ramaria abietina: (A) Basidioma (AH 48373);

(B) Spores (MA-Fungi 49419); (C) Crystals from mycelium (MA-Fungi 49419); (D) Ampulliform septum (MA-Fungi

49419). Ramaria apiculata: (E) Basidioma (AH 47751); (F) Spores (MA-Fungi 48462); (G) Crystal from mycelium

(MA-Fungi 48485); (H) Ampulliform septum (MA-Fungi 47981). Scale bars = 10 μm.

https://doi.org/10.1371/journal.pone.0237507.g004
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analyses we detected a contamination; our sequence AF442098 identified as R. praecox
grouped in the R. flava clades. However, R, praecox is very different to R. flava. In R. praecox
spores show conspicuous ornamentation, hyphae without clamps, and vernal phenology,

whereas in R. flava, spores are slightly ornamented, hyphae clamped, and mainly autumnal

phenology (Fig 5). Just as in metagenomic sequencing [43], contamination can arise from pre-

vious amplifications. Here, although we also include negative controls to each set of amplifica-

tions as a routine, contamination occurred.

A preliminary analysis detected possible mix-ups in the R. aff. spinulosa sequence and one

sequence of R. botrytis, so we amplified and sequenced them again. The sequences were then

correct: AF442904 corresponded to R. aff. spinulosa; and AJ292294, to R. botrytis. Only taxo-

nomic characters of the species can expose such errors, so the metadata in DNA repositories

should include the voucher for sequences [44]. (R. botrytis has grooved spores from a fleshy

and white basidioma with reddish apices whereas R. aff. spinulosa has verrucose spores from a

delicate brownish basidioma with concolor apices).

Moreover, we must remember questions related to nomenclature, e.g., sequences in DNA

repositories that belong to one species, but appearing under two or more different names. Dur-

ing our morphological study we have unified some of these names. Thus, for example, R. luteo-
vernalis is synonymous with R. praecox; or R. fennica var. violacea synonymous with R.

cedretorum (S1 Table). In other cases (S1 Fig and S1 Table), some nomenclature questions to

be addressed after the phylogenetic analyses included in this study, e.g., R. claviramulata and

R. celerivirescens published as new species in [45], where our analyses grouped them into the

same clades. Exeter et al. [46] suggested that R. celerivirescens is the correct name to the species.

We studied the unique collection from R. claviramulata (holotype), and the basidiomata show

Fig 5. Comparative of features of Ramaria flava and R. praecox. Ramaria flava: (A) Basidioma (AH 48375); (B) Spores

(MA-Fungi 48465); (C) Clamped hyphae from context (MA-Fungi 48484); (D) Hyphae from mycelium (MA-Fungi

48484). Ramaria praecox: (E) Basidioma (AH 47804); (F) Spores (AH 47732); (G) Unclamped hyphae from context

(AH 47732); (H) Hyphae from mycelium with crystals (AH 47804) or mucilaginose drops (AH 47732). Scale

bars = 10 μm.

https://doi.org/10.1371/journal.pone.0237507.g005
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a morphology that could correspond with a phytoplasma infection, as we have shown in other

Ramaria species [47].

Theory

In the main article, formal mathematical definitions and proofs are restricted to this Theory

section, which is not necessary to understand the rest of the article. The Theory section defines

the four PCIs mathematically, proves the PCI inequality, and proves that Average Unanimous

PCI pA,s is more sensitive than the Unanimous PCI pU,s for detecting improvements in a proce-

dural pipeline. It also introduces a taxonomic unanimity test for detecting statistically signifi-

cant improvements in barcode species assignment, e.g., to reflect expert species identification

or pipeline improvements.

Mathematical definitions of the four PCIs

Fix a species s, with n samples in s. For each sample σ = 1, 2,. . .,n from s, define the nearest

neighbors of σ to have the minimum p-distance from σ (in the relevant dataset). Let the frac-

tion of nearest neighbors of σ within s be fσ(0� fσ� 1). Define the unanimity function U(fσ) =

1 if fσ = 1 (all nearest neighbors of σ are in s); and 0, otherwise. For species s, define the Species

Fractional PCI pF,s = (f1 + f2 +. . .+ fn)/n; the Species Average Unanimous PCI pA,s = (U(f1)+U
(f2)+. . .+U(fn))/n; and the Species Unanimous PCI pU,s = min{U(f1), U(f2),. . .,U(fn)}. The Spe-

cies Barcode Gap PCI pB,s = 1 if the maximum intraspecies p-distance is strictly less than the

minimum interspecies distance (i.e., species s has a barcode gap); and 0, otherwise. Note for

any species s: (1) pU,s and pB,s only take the values 0 and 1; and (2) all four of the Species PCIs

ps 2 (pF,s, pA,s, pU,s, pB,s) satisfy 0� ps� 1. For any of the four Species PCIs ps, define a corre-

sponding (Overall) PCI p by averaging the Species PCI over all species. In a standard notation

from physics, we denote the average over species with angle brackets, e.g., pB = hpB,sis. S1 Table

contains several examples of these calculations for samples in species in the PCI DATASET.

Proof of the PCI inequality

0 � pB;s � pU;s � pA;s � pF;s � 1: ð1Þ

By definition, 0�pB,s. To prove pB,s� pU,s, there are two cases: pB,s = 0 or pB,s = 1. If pB,s = 0,

then automatically pB,s� pU,s. Otherwise, pB,s = 1, and the barcode gap for species s implies

that for every sample σ in the species s, all nearest neighbors belong to s, i.e., fσ = 1 and U(fσ) =

1. Thus, pU,s = min{U(f1), U(f2), . . .,U(fn)} = 1, so again pB,s� pU,s. To prove pU,s� pA,s, the

minimum pU,s of the numbers U(fσ) can never exceed their average pA,s. To prove pA,s� pF,s,

note that U(fσ)� fσ (on one hand, if fσ = 1, then U(fσ) = fσ = 1; on the other hand, if fσ< 1, then

0 = U(fσ)� fσ). Average over all samples in the species s to derive

pA;s ¼ ðUðf1Þ þ Uðf2Þ þ . . .þ UðfnÞÞ=n � ðf1 þ f2 þ . . .þ fnÞ=n ¼ pF;s: ð2Þ

Finally, pF,s� 1 to finish the proof of Eq (1). In Eq (1), average over all species s to derive

0 � hpB;sis � hpU;sis � hpA;sis � hpF;sis � 1: ð3Þ

The definitions pB = hpB,sis, etc., yield

0 � pB � pU � pA � pF � 1; ð4Þ

finishing the proof.
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The Average Unanimous PCI pA,s is more sensitive than the Unanimous

PCI pU,s for detecting improvements in a procedural pipeline

Consider a procedural pipeline (represented by unprimed symbols), later improved to another

pipeline (represented by primed symbols). Then for any species s, if pU;s < p0U;s, then

pA;s < p0A;s ¼ 1.

Proof: If pU;s < p0U;s, then 0 ¼ pU;s < p0U;s ¼ 1 (because pU,s is either 0 or 1). After improve-

ment on one hand, p0U;s ¼ minfUðf 0
1
Þ;Uðf 0

2
Þ; . . . ;Uðf 0nÞg ¼ 1. Thus, Uðf 0

1
Þ ¼ Uðf 0

2
Þ ¼

. . . ¼ Uðf 0nÞ ¼ 1 and p0A;s ¼ ðUðf
0
1
Þ þ Uðf 0

2
Þ þ . . .þ Uðf 0nÞÞ=n ¼ 1. Originally on the other

hand, pU,s = min{U(f1), U(f2), . . .,U(fn)} = 0, so at least one i = 1, 2, . . ., n satisfied U(fi) = 0.

Consequently, pA,s = (U(f1) + U(f2)+. . .+U(fn))/n<1. Because p0A;s ¼ 1, we have proved

pA;s < p0A;s ¼ 1.

A taxonomic unanimity test

A taxonomic unanimity test can detect improvements in barcode species assignment, as

follows.

Consider a specific barcoding sequence dataset, in which every sequence bears a species

identification from one of two sources. It might be useful to have objective evidence that one

source (e.g., an expert taxonomist) is systematically more accurate than the other. In a related

situation, one might be concerned that species identification is superior in one of two disjoint

sets of samples, e.g., that sequences longer than 500 bp identify species better than sequences

shorter than 501 bp. To be specific, consider the case of expert identification.

Consider a sequence dataset of interest and any species s with at least two samples in the

dataset. The nearest neighbors of a sample from s are the sequences in the dataset, excluding

the sample sequence itself, with the minimum p-distance to the sample sequence. We say that

a sample from species s has unanimous neighbors if its nearest neighbors are all from s.
Let a dataset of N (more than 2) sequences be assembled from two sources, e.g., with and

without expert species taxonomy. Construct a 2x2 table corresponding to the species s (see “A

Taxonomic Unanimity Test” in S2 Text), as follows. Of the sequences with expert taxonomy,

let A count the sequences with unanimous neighbors; C, the sequences without. Similarly, of

the sequences without expert taxonomy, let B count the sequences with unanimous neighbors;

D, the sequences without. Thus, of the N = A+B+C+D samples, A+C had expert species taxon-

omy, whereas B+D had not. Similarly, each sample within species s either had unanimous

neighbors or had not, and of the N samples, A+B were unanimous, whereas C+D were not.

One might hope that expert taxonomy displays itself by systematically increasing the number

of unanimous neighbors.

If the unanimity of neighbors is probabilistically independent of the source of taxonomic

identification, then in species s, of the A+C samples with expert identification, the expected

count of samples with unanimous neighbors is Es = (A + C)(A + B)/N, because (A + B)/N is

fraction of samples with unanimous neighbors. The observed count of samples with expert tax-

onomy and unanimous neighbors is in fact Os = A. Conditioned on the marginals A+C, B+D,

A+B, and C+D, if the source of taxonomic identification is independent of the samples of spe-

cies s, A follows a hypergeometric distribution, so its variance is

s2

s ¼
ðAþ CÞðBþ DÞðAþ BÞðC þ DÞ

N2ðN � 1Þ
: ð5Þ

Sum the excess Os—Es over all species s and denote the sum by X. Sum s2
s similarly, and

denote the result by σ2. Under the reasonable approximation that species are probabilistically

PLOS ONE Statistics and DNA barcodes in a Ramaria case study

PLOS ONE | https://doi.org/10.1371/journal.pone.0237507 August 19, 2020 16 / 22

https://doi.org/10.1371/journal.pone.0237507


independent, X has an approximate normal distribution with variance σ2. Thus, the upper tail

of a standard normal cumulative distribution function beyond Z = X/σ gives a one-sided p-

value for testing whether expert taxonomy is significantly more accurate than inexpert species

identification.

Materials and methods

S1 Text describes the morphological analyses, PCR, and sequencing of the fungal specimens

studied in this paper.

Sequence datasets

The TOTAL DATASET consisted of 647 sequences including those under Ramaria sp. in the Gen-

Bank. Moreover, Gomphus, Schildia, and Turbinellus sequences were included due to the rela-

tionship with Ramaria mentioned in the introduction. Two samples of Gloeocantharellus were

chosen as outgroup to the posterior phylogenetic analyses. Before proceeding to the phyloge-

netic analyses, searches with BLAST+ 2.8.1 checked dubious sequences and genera misidentifi-

cations [48, 49]. The PCI DATASET consisted of 416 sequences (specifically excluding Ramaria
sp. in the TOTAL DATASET). S2 Text contains summary statistics describing the lengths and

nucleotide compositions of the sequence data. To assess the effects of short ITS sequences on

species identification, we subdivided the PCI dataset into two datasets: (1) the LONG DATASET,

sequences exceeding 500 bp; and (2) the SHORT DATASET containing the remaining sequences.

To assess the effect of faulty taxonomy in GenBank sequences on species identification, we

subdivided the PCI dataset into two datasets: (1) the TAXONOMIC DATASET, our samples plus spe-

cies type-derived sequences in GenBank; and (2) the GENBANK DATASET containing the remain-

ing GenBank sequences.

Multiple sequence alignment and p-distance

To prepare for multiple sequence alignment, we removed replicate sequences, so all aligned

sequences were unique. Most multiple sequence alignment programs are progressive, so they

add sequences sequentially and then align them. Progressive sequence alignment programs

can therefore align replicate sequences differently, spuriously inferring a positive phylogenetic

distance between identical sequences. In general, the removal of any replicate sequence before

sequence alignment improves the stability of multiple sequence alignments [50], and surpris-

ingly, the workflows in some multiple sequence alignment programs do not remove replicate

sequences from their inputs before sequence alignment. Muscle 3.8.31 under its default param-

eters [51, 52] aligned our unique sequences in the TOTAL, PCI, LONG, and TAXONOMIC DATASETs.

The principle basic to DNA barcoding is that the genetic variation between species usually

exceeds the variation within a species (e.g. [6, 53]). Many distances can measure genetic varia-

tion between sequences, but the choice of distance rarely influences species identifications

(e.g., [13, 54–56]). For simplicity, the p-distance between two aligned DNA sequences [30], the

fraction of unambiguous nucleotide pairs that were mismatches, measured genetic variation

here.

Four types of the probability of correct identification (PCI)

Many variants of PCI appear in the taxonomic literature (e.g., [18, 57]). Given a dataset, we cal-

culated the following four types of Species PCIs for all non-singleton species s. (The Theory

section contains a mathematically formal “Mathematical Definitions of the Four PCIs”).
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The Species Barcode Gap PCI (pB,s) is 1 if species s has a barcode gap (i.e., its minimum

interspecies p-distance exceeds its maximum intraspecies p-distance), and 0 otherwise.

Fix a dataset, and within species s, consider a sample’s nearest neighbors under p-distance.

Call a sample unanimous (i.e., unanimously correctly identified) if its nearest neighbors under

p-distance are all from species s. Each unanimous sample has a Sample Unanimous PCI of 1;

all other samples have a Sample Unanimous PCI of 0. Define the Species Unanimous PCI

(pU,s) as 1 if every sample in species s is unanimous, and 0 otherwise.

Averaging provides another procedure for turning Sample Unanimous PCIs into Species

PCIs. Define the Species Average Unanimous PCI (pA,s) as the average of the Sample Unani-

mous PCIs over all samples in the species s.
Finally, let the Sample Fractional PCI to be the fraction of nearest neighbors belonging to

species s. The Species Fractional PCI (pF,s) is the average of the Sample Fractional PCIs over all

samples in species s.
Each of the four Species PCIs (pB,s, pU,s, pA,s, pF,s) may be averaged over all (non-singleton)

species s to produce the corresponding (Overall) PCI (pB, pU, pA, pF).

Consider any PCI obtained by averaging: p̂ ¼ ðp1 þ p2 þ . . .þ pNÞ=N (e.g., the (Overall)

PCI is an average of Species PCIs; the Species Average Unanimous PCI is an average of Sample

Unanimous PCIs; etc.). If the PCIs p1, p2,. . ., pN are uncorrelated, the unbiased sample vari-

ance

ŝ2 ¼
ðp1 � p̂Þ2 þ ðp2 � p̂Þ2 þ . . .þ ðpN � p̂Þ2

N � 1
; ð6Þ

and the standard error mean ŝ=
ffiffiffiffi
N
p

estimates the error in p̂. Thus, the error in the (Overall)

PCIs (pB, pU, pA, pF) can be estimated from the corresponding Species PCIs (pB,s, pU,s, pA,s,

pF,s).

Multiple testing

All p-values are given without multiple-test correction. As only unpublished preliminary data-

sets had uncorrected p-values p� 0.05, the planned (Bonferroni) multiple-test correction for

our published datasets is irrelevant.

Supplementary parsimony and Bayesian analyses

To evaluate whether the species were recovered as monophyletic groups, the sequence align-

ment of the PCI DATASET was analyzed under maximum parsimony (MP) using the heuristic

search option in PAUPver4.0a [58], with a default setting for stopping the analysis. Phyloge-

netic trees were rooted with two sequences under Gloeocantharellus persicinus and Gloeo-
cantharellus purpurascens. Gaps were treated as missing data [13]. Branch lengths equal to

zero were collapsed to polytomies. Nonparametric bootstrap support [59] for each clades was

assessed with the fast-step option, using 10,000 replicates, yielding a composite consistency

index [60], retention index [61], and homoplasy index [61]. PAUP�Version 4.a selected as the

best model for each partition ITS1, 5.8S, and ITS2 of sequences, as well as for their union ITS1

+5.8+ITS2, so we had MrBayes 3.2 [62] do a Bayesian analysis [63, 64] with the model HSK+I

+G. Two independent and simultaneous analyses starting from different random trees were

run for two million generations with 12 parallel chains, and trees model scores saved every

100th generation. The initial 1000 trees were discarded as burn-in before calculating the 50%

majority-rule consensus tree and the posterior probability (PP) of the nodes, as described else-

where [65]. A combination of bootstrap proportions and posterior probabilities was used to

assess the level of confidence for a specific node [66]. The phylogenetic trees were viewed with
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FigTree v. 1.3.1 (http://tree.bio.ed.ac.uk/sotware/figtree/) and edited with Adobe Illustrator

CS3 v.11.0.2 (Adobe Systems).

Perl Programs for calculating the PCIs are publicly available as open source software at

https://go.usa.gov/xyuut.

Supporting information

S1 Fig. The 50% majority rule Bayesian tree inferred from ITS nrDNA assuming

HSK + I + G model of Gomphales included in the PCI analyses. Terminal branches with

names according to S1 Table. Colors: Blue, unique species names; Green, one species name

and related infraspecific taxa; Red, clades including two or more species names; Orange: spe-

cies names that occur in two or more clades. See S1 Table and S1 Fig for clades and singleton

names.

(PDF)

S1 Text. Morphological analyses and sequencing.

(DOCX)

S2 Text. Supplementary information about the barcoding analysis.

(DOCX)

S1 Table. Shows the PCI dataset, used both in PCI and phylogenetic analyses. The column

headings are mostly self-explanatory. For human readability, some cells in some columns are

highlighted: (A) Column “From authors” highlights sequences contributed by the authors; (B)

Column “Typus from GenBank” highlights sequences declared as species types in GenBank;

(C) Column “Length (nt)” highlights sequences of length less than 500 nt, our Short dataset;

(D) Column “Ambiguous (nt)” highlights sequences with 10 or more ambiguous nucleotides;

(E) Column “SH Number” highlights each missing UNITE identifier not found by entry of the

GenBank accession number; and (F) Column “BLAST found SH” highlights which UNITE

identifiers required the manual use of BLAST to find them from the GenBank accession num-

ber.

(XLSX)

S2 Table. Shows all samples in the Total dataset not already presented in the PCI dataset.

The Total dataset was used solely in the phylogenetic analysis. Column “Length (nt)” high-

lights sequences of length less than 500 nt, our Short dataset; and (D) Column “Ambiguous

(nt)” highlights sequences with 10 or more ambiguous nucleotides.

(XLSX)
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