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Abstract

Background

Theoretical studies predict that it is not possible to eradicate a disease under voluntary vacci-

nation because of the emergence of non-vaccinating “free-riders”when vaccination coverage

increases. A central tenet of this approach is that human behaviour follows an economic

model of rational choice. Yet, empirical studies reveal that vaccination decisions do not nec-

essarily maximize individual self-interest. Here we investigate the dynamics of vaccination

coverage using an approach that dispenses with payoff maximization and assumes that risk

perception results from the interaction between epidemiology and cognitive biases.

Methods

We consider a behaviour-incidencemodel in which individuals perceive actual epidemiological

risks as a function of their opinion of vaccination. As a result of confirmation bias, sceptical indi-

viduals (negative opinion) overestimate infection cost while pro-vaccines individuals (positive

opinion) overestimate vaccination cost. We considered a feedback between individuals and

their environment as individuals could change their opinion, and thus the way they perceive

risks, as a function of both the epidemiology and themost common opinion in the population.

Results

For all parameter values investigated, the infection is never eradicated under voluntary vac-

cination. For moderately contagious diseases, oscillations in vaccination coverage emerge

because individuals process epidemiological information differently depending on their

opinion. Conformism does not generate oscillations but slows down the cultural response to

epidemiological change.

Conclusion

Failure to eradicate vaccine preventable disease emerges from the model because of cog-

nitive biases that maintain heterogeneity in how people perceive risks. Thus, assumptions
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of economic rationality and payoff maximization are not mandatory for predicting commonly

observed dynamics of vaccination coverage. This model shows that alternative notions of

rationality, such as that of ecological rationality whereby individuals use simple cognitive

heuristics, offer promising new avenues for modelling vaccination behaviour.

Introduction
Vaccination has greatly reduced the burden of infectious diseases worldwide. However, by
2015, only smallpox has been eradicated by programs of voluntary vaccination and global out-
breaks of measles, mumps, whooping cough, polio and rubella are repeatedly being reported in
both developed and developing regions. Why voluntary vaccination programs succeed or fail is
contingent on the acceptance or rejection of vaccines by individuals; considering the vaccina-
tion decision-making process is thus pivotal for making inferences about the dynamics of vac-
cination coverage and disease transmission. Over the last decade, a number of theoretical
studies explicitly modelled human behaviour as a key parameter for determining how vaccines
scares unfold (reviewed in [1,2]). This led to the new field of behavioural epidemiology [3] and
the development of “prevalence-based”models [1] positing that individuals adjust their deci-
sions based on an information relating to the number of infected individuals. Assuming that
individuals are rational, that is, agents that optimize their utility i.e. individuals make a logical
and coherent choice depending on choices of others, it was concluded that it is not possible to
eradicate a disease under voluntary vaccination because of the emergence of non-vaccinating
free riders when vaccination coverage is sufficiently high [4–6]. This approach is at odds with
psychological and anthropological literature on human decision-making and insufficient if we
are to explain why some vaccine preventable diseases can be either globally eradicated (e.g.
small pox) or locally eliminated (e.g. polio in India), or why individuals refuse vaccination
despite scientific evidence that it is safe (reviewed in [7]). Here we propose an alternative to
classic behavioural epidemiology studies by considering a revised version of rationality, that of
an ecological rationality [8,9], enabled by the mind’s “adaptive toolbox” [10]. This framework
dispenses with optimization and with complex calculations of utilities altogether and views
decision-making as the expression of evolved cognitive dispositions (e.g. heuristics or rules of
thumb including social learning abilities). This enables us to develop a behaviour-incidence
model explicitly considering cognitive mechanisms with the aim to investigate how the feed-
back between cognition and epidemiology may influence the dynamic of disease transmission.

How do people decide whether or not to vaccinate? A key factor is the perception of risks
associated with infection and vaccination [11]. Risk perception is central to most health behav-
iour theories and in this line, a recent meta-analysis [12] based on> 15,000 individuals
revealed a significant association (measured by a summary effect size r, which was obtained
from pooling effect sizes across studies) between vaccine uptake and (i) the perceived likeli-
hood of infection (12 studies, r (summary effect size [range]) = 0.26 [-0.12; 0.45]), (ii) the sus-
ceptibility to illness (5 studies, r = 0.24 [0.15; 0.36]) and to a lesser extent, (iii) the severity of
the disease (31 studies, r = 0.16 [-0.18; 0.39]) (meta-analysis [12]). In classic behavioural epide-
miology, risk perception relates to the prevalence of infected individuals at a given time, either
in the general population (non-structured population and homogeneously mixed population)
or in a social network [13,14]. This underlying game theory framework considers that individ-
uals make decisions based on an objective evaluation of the epidemiology, computing statistics
using a large data size (but see [15–17]). However, this assumption is problematic for at least
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two reasons. First, human cognition has been demonstrated to be inefficient at dealing with
uncertainty and computing probability [10]; rather, individuals may use empirical knowledge
based on a small number of cases. Second, risk assessment is likely to be partly independent
from infection [1] as it is shaped by a number of psychological and social factors that may lead
to an under- or an over-estimation of epidemiological risks, including media coverage [18],
salient previous experience [11], belief about contagion [19], family and peers [11,20] and trust
in providers, medical professionals and the state [7,21]. To evaluate temporal and spatial varia-
tion in vaccine uptake, one must thus refine assumptions of rationality to consider, not only
change in epidemiology, but also how the evolved cognition responds to features of the social
and epidemiological environments.

An alternative to current modelling of vaccination decision-making may come from the
consideration of evolutionary-ecological models, focusing on the concept of ecological ratio-
nality [9,22]. In this framework, cognitive dispositions are evolved, i.e. decision rules have been
selected for, but the resulting behaviour may or may not be adaptive, i.e. maximizing current
individual survival and reproductive success. It follows that to understand the processes under-
lying vaccination decision-making, one focuses on the environment and the cognitive mecha-
nisms underlying decisions rather than health outcomes of decisions. Proponents of ecological
rationality argue that humans have evolved heuristics, i.e. simple cognitive rules processing a
few pieces of information available from the environment [9]. For the purpose of this paper,
which aims to investigate the role of cognitive biases for predicting commonly observed
dynamics of vaccination coverage such as the failure to reach herd immunity and oscillations
between high and low levels of coverage, we focus on those heuristics or cognitive shortcuts
that are likely to allow for heterogeneity and change in opinion about vaccination. In modelling
how individuals interpret epidemiological information, we first decided to consider “confirma-
tion bias”, i.e. the propensity to look for evidence supporting pre-existing beliefs while consid-
ering disconfirmatory evidence with great scrutiny [23,24]. Confirmation bias has been
observed in the context of pertussis vaccination for children: when presented with the same
risk-benefit information about vaccination, non-vaccinators became less committed with vac-
cination, while vaccinators became more committed [25]. The second heuristic we considered
is “imitate the majority” or conformism, as the role of peer influence has repeatedly been
invoked for understanding vaccination behaviour [7,26,27].

In this paper, we consider a behaviour-incidence model in which opinion formation medi-
ates a feedback between vaccination behaviour and the disease. As compared to previous
behaviour-incidence models, our approach does not make use of game theory analysis (see also
[28,29]). We first consider that disease incidence and vaccination coverage determine how
many people suffer from negative effects, an information that represents epidemiological costs.
We then assume that an individual interprets those costs as a function of their opinion of vacci-
nation. Specifically, a sceptical individual will be more likely to overestimate a vaccination cost
while a pro-vaccine advocate will more likely to overestimate the cost of infection. It follows
that given the same epidemiological information, individuals will vaccinate at different rates
depending on their a priori opinion. Finally, we consider that individuals respond to their envi-
ronment over time as they can change their opinion as a function of both epidemiological costs
and the most common opinion in the population (conformism). The model assumes that the
population mixes homogenously so that anyone can infect any other individual in the popula-
tion and the information on epidemiological costs is globally available to everyone through the
media. The goal of this study is to investigate how the interaction between human cognition
and both the epidemiological and social environments shape the dynamics of vaccination
coverage.
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Methods

Rationale
The model corresponds to a SIR (susceptible-infected-recovered/immune) compartmental
model capturing the disease transmission process [30] augmented with a belief model (Fig 1).
It enables individuals to be characterized by both their epidemiological status and their opin-
ion. Specifically, individuals can belong to one of 4 epidemiological compartments: susceptible,
infected, immune through vaccination and immune naturally. In each compartment, individu-
als can be characterized either as “pro-vaccines” (positive opinion) or “sceptical” (negative
opinion). Across time, individuals can change compartments: for instance, susceptible individ-
uals may become infected, or they may choose to vaccinate. The system of compartments and
flows between them is defined by a system of ordinary differential equations (see section 2.iii)
to examine numerical simulations at different values of the parameters.

The rate at which individuals become vaccinated is a function of both the epidemiological
costs associated with infection and vaccination and the distribution of opinions of vaccination
in the population. First, costs are defined by the epidemiology with the number of infected
individuals and vaccination coverage determining the number of people suffering negative side
effects from infection and vaccination, respectively. Individuals are assumed to vaccinate more

Fig 1. Structure of the behaviour-incidence model. The model is an augmentation of a classic SIR compartmental model [30]. Individuals are
characterized by both their epidemiological status (S: susceptible; I: infected; Rv: recovered through vaccination; Rg: recovered naturally) and for each
compartment, their opinion of vaccination (positive: subscript p; non-shaded colours; negative: subscript n; shaded colours). CV andCI are compartments
that indicate the total recalled number of individuals having suffered negative side effects from vaccination and infection, respectively. β indicates the rate of
infection transmission;Ω indicates the rate at which individuals change their opinion (from positive to negativeΩ or from negative to positiveΩ0); δ indicates
the number of individuals suffering side effects from either vaccination δV and infection δI; θ indicates the rate at which individuals vaccinate. Each individual
dies at the same rate d.

doi:10.1371/journal.pone.0142990.g001
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quickly when the infection cost is high and more slowly when the vaccination cost is high.
Then, given the same epidemiological information on costs, individuals with different opinions
vaccinate at different rates. We considered that pro-vaccines individuals give more weight to
the role of infection cost in their decision process, while sceptics give more weight to the vacci-
nation cost (due to confirmation bias). Thus, while pro-vaccines individuals always take up
vaccines more quickly than sceptics, the difference between them in how rapidly they take up
vaccination is considered to be the highest for levels of vaccination coverage that are either low
(high infection cost) or high (high vaccination cost). Finally, individuals can change their opin-
ion as a function of both the epidemiology and the most common opinion in the population.

The full model
The structure (Fig 1). We considered the case of a single contagious disease, which does

not increase the death rate, but which causes negative side effects for infected individuals. Our
goal here is not to study a disease in particular but to provide general insights with regard to
the effect of opinion on the dynamics of infection and vaccination coverage. We used a com-
partmental epidemiological model with births and deaths [30] in which the population is
divided into 4 compartments: the number of susceptible (S), the number of infected (I), the
number of immune through vaccination (Rv) and the number of immune through natural
immunization (Rg). A susceptible individual becomes infected at the rate β (the transmission
rate) and vaccinates (transits from compartment S to Rv) at the rate θ. Individuals give births to
susceptible individuals at the rate b and each individual can die at the rate d = b, so that the
population remains of constant size. Then, for each compartment, the population is divided
into 2 subgroups, with individuals having either a positive opinion of vaccination (pro-vaccines
individuals, subscript p) or a negative opinion (sceptical individuals, subscript n). The forma-
tion of the opinion and the decision to vaccinate are two separated processes that both depend
on the environment. Individuals can change their opinion during their lifetime, and given their
opinion at a given time, they decide to get vaccinated or not. At any given time, the total
recalled number of individuals having suffered negative side effects from becoming infected or
vaccinated constitute a globally available information, which will be used to calculate the epide-
miological costs CI and CV.

The parameters (Table 1). The rate of infection transmission: β is expressed in terms of
the basic reproductive ratio of the pathogen R0 [31]. R0 corresponds to the average number of
secondary infections produced by an infected individual in an otherwise susceptible population
and can be understood as the fitness of the pathogen: for a pathogen to invade the population,
R0 must be>1. In our model R0 has been calculated as:

R0 ¼
ðS�n þ S�pÞb
d þ g

;

where S�n and S
�
p are determined numerically using the system of ordinary differential equations

(see section 2.iii) assuming no infection.
Indeed, S� is the number of susceptible individuals, i.e. the number of individuals that are

not vaccinated before the emergence of the infection. In our model, people can have two differ-
ent opinions regarding vaccination which implies two different probabilities to accept the vac-
cine. Thus the number of susceptible individuals S� depends on the number of individuals who
either have a positive or a negative opinion before the emergence of the infectious disease, i.e.
S� ¼ S�n þ S�p where S

�
n and S

�
p represent the population equilibrium of the number of suscepti-

ble individuals in the absence of disease.
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The information relating to the costs of infection and vaccination: This information, available
to everyone, is assumed to be summarized by a function of the number of the past and present
individuals who have suffered negative side effects from infection and vaccination. This infor-
mation is used by all individuals in order to measure the relating costs of infection and vaccina-
tion, respectively denoted CI and CV. We supposed that this information is generated and
memorized by all individuals at a rate δI and δV. We also assumed that the information is for-
gotten at a rate f.

At any given point in time, the number of infected individuals is determined by the history
of vaccine uptake in the population. Thus, the costs of infection and vaccination depend on
both the history of vaccine uptake and the number of infected individuals.

The rate of vaccination: Only susceptible individuals can take up vaccination and the deci-
sion to vaccinate depends on both an individual opinion and the costs of infection and vaccina-
tion. Individuals with a positive opinion vaccinate at the rate θp; individuals with a negative
opinion vaccinate at the rate θn.

yp ¼ up
expxp

1þexpxp
� �

with xp ¼ mpC
I � m0

pC
V :

yn ¼ un
expxn

1þexpxn
� �

with xn ¼ mnC
I � m0

nC
V :

υp and υn represent the maximum rate at which individuals can be vaccinated. While individu-
als have access to the same epidemiological information CI and CV, the perception of those
costs and the subsequent vaccination behaviour is modified by an individual opinion because
of a confirmation bias. Confirmation bias is introduced with μ, the weight given to the cost of

infection and μ0, the weight given to the cost of vaccination. During the vaccination decision-
making process, individuals with a positive opinion of vaccines give more weight to the

Table 1. Parameters used and their default values.

Symbols Meaning Default values

b Reproductive rate 1 UT-1

d Mortality rate 1 UT-1

R0 Basic reproductive ratio variable

γ Recovery rate 0.1 UT-1

δV Rate—negative side-effects from vaccine variable

δI Rate—negative side-effects from infection 1 UT-1

f Forgetting rate 5 UT-1

D Conformity coefficient 0.7

ωp!n Maximum rate of opinion change (from positive to negative opinion) 2 UT-1

ωn!p Maximum rate of opinion change (from negative to positive opinion) 2 UT-1

vn Maximum rate to get vaccinated (negative opinion) 2 UT-1

vp Maximum rate to get vaccinated (positive opinion) 2 UT-1

μn Weight given to the infection cost (negative opinion) 0.5

μp Weight given to the infection cost (positive opinion) 1

μ0
n Weight given to the vaccination cost (negative opinion) 1

μ0
p Weight given to the vaccination cost (positive opinion) 0.5

UT denotes the unit of time which can be expressed in year or ten years.

doi:10.1371/journal.pone.0142990.t001
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infection cost (mp > m0
p) while individuals with a negative opinion give more weight to the vac-

cination cost (m0
n > mn).

The rate of opinion change: A pro-vaccine individual will become a sceptic at the rate O and
a sceptic will become a pro-vaccine individual at the rate O0.

O ¼ op!n gp!n cn with gp!n ¼
expy

1þexpy
� �

and y ¼ �CI þ CV :

O0 ¼ on!p gn!p cp with gn!p ¼
expy

0

1þexpy0
� �

and y0 ¼ CI � CV :

ωp!n and ωn!p indicate the maximum rates at which an individual changes opinion; Υp!n

and Υn!p indicate resistance to opinion change, which is a function of the costs of infection
and vaccination (CI and CV); cp and cn indicate the conformity functions, which are non linear
frequency-dependent functions, as modelled by [32].

cp ¼ ap ½1þ Dð2ap � 1Þð1� apÞ� where ap ¼
F
N
; with F ¼ Sp þ Ip þ RV

p þ Rg
p:

cn ¼ an ½1þ Dð2an � 1Þð1� anÞ� where an ¼
Ng

N
; with Ng ¼ Sn þ In þ RV

n þ Rg
n:

F and Ng indicate the number of pro-vaccines and sceptical individuals in the entire population
denoted N; D is the conformity coefficient. The more common is a given opinion, the more
often it is adopted.

The parameter time unit: It is calibrated in relation to the birth and death rates. We gener-
ally set the birth and death rates at the value 1 which, in the case of human populations, could
correspond to a time unit of the order of a year or ten years.

The dynamic. The dynamic of the system can be described by the following set of ordinary
differential equations:

dSp
dt

¼ bF þ O0Sn � OSp � ySp � bSpðIp þ InÞ � dSp;

dSn
dt

¼ bNg � O0Sn þ OSp � y0Sn � bSnðIp þ InÞ � dSn;

dRV
p

dt
¼ ySp þ O0RV

n � ORV
p � dRV

p ;

dRV
n

dt
¼ y0Sn þ ORV

p � O0RV
n � dRV

n ;

dIp
dt

¼ bSpðIp þ InÞ þ O0In � OIp � gIp � dIp;
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dIn
dt

¼ bSnðIp þ InÞ þ OIp � O0In � gIn � dIn;

dRg
p

dt
¼ gIp þ O0Rg

n � ORg
p � dRg

p;

dRg
n

dt
¼ gIn þ ORg

p � O0Rg
n � dRg

n;

dCV

dt
¼ dVðRV

n þ RV
p Þ � fCV ;

dCI

dt
¼ dIðIp þ InÞ � fCI :

Nested models
The full model described above combines five elements: (1) the characterization of individuals
by their epidemiological status (SIR model); (2) the characterization of individuals by their
opinion; (3) a globally available information on the infection and vaccination costs; (4) the
interpretation of epidemiological costs as a function of opinion through confirmation bias and
(5) the transmission of opinion through conformism. To evaluate the significance of each ele-
ment in shaping the dynamics of infection and vaccination coverage, we broke down the full
model into several nested models differing by 1 element at a time. Specifically, we investigate
the same range of parameter values (Table 1) for the five nested models in order to be able to
detect the effect of each element (Table 2):

Model 1: a classic SIR model without the belief component.
Model 2: a model that characterizes individuals by both their epidemiological status and

their opinion. Vaccination rate is fixed (θp = υp; θn = υn) and individuals with a positive opinion
vaccinate more quickly than those with a negative opinion (υp > vn). By doing so, vaccination
behaviour is a function of opinion but not confirmation bias (μp = μn = 1), i.e. the difference in
vaccination rates between individuals with opposed opinions is not a function of the number
of infected individuals and vaccination coverage. The rate of opinion change is also fixed
(O = ωp!n = O0 = ωn!p).

Model 3: This model includes the globally available information on the number of individu-
als suffering negative side effects from the infection CI and vaccination CV. This enables to cal-
culate the epidemiological costs.

Table 2. Components of the different nested models.

Models SIR model Opinions Disease and vaccine costs Confirmation bias Conformism

Model 1 X

Model 2 X X

Model 3 X X X

Model 4 X X X X

Model 5 X X X X X

doi:10.1371/journal.pone.0142990.t002
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Model 4: This model includes confirmation bias, i.e. the biased perception of costs by indi-
vidual opinion. In Models 1–3 confirmation bias is not considered so μ = μ0 regardless of the
opinion of individuals.

Model 5: This model includes conformism and corresponds to the full model. In Models
1–4, conformism is not considered so cp = cn = 1.

Numerical simulation. We performed all simulations using Mathematica 9.0 [33]. First,
500 susceptible positive individuals and 500 susceptible negative individuals are introduced.
We ran 100 000 iterations with a time step of 10−4, the number of iterations needed to reach a
stable equilibrium, to determine the number of susceptible individuals (S�n and S

�
p) and calculate

the rate of infection transmission β with R0 in the absence of disease. Second, after β was
obtained, we introduced two infected individuals, one of each opinion (N = 1002 individuals).
We ran 1,000 000 iterations with a time step of 10−4 which corresponds to 100 time units (e.g.
100 years), to ensure that we capture the complete dynamic. To evaluate the role of each com-
ponent of the full model in shaping the dynamics of infection and vaccination coverage, we
analysed and compared the results of the nested models. We run all models for values of R0

ranging from 0 to 10 in steps of 0.5. All other parameter values are detailed in Table 1.

Results
Our results are threefold: (i) for all parameter values investigated, the infection is never eradi-
cated under voluntary vaccination, i.e. vaccination coverage never reaches herd immunity, that
is, the threshold of vaccination coverage needed for stopping the spread of the infection; (ii)
the dynamics of infection and vaccination coverage depend on the presence/absence of a poly-
morphism for the opinion of individuals, which is a function of the transmissibility potential of
the pathogen (R0) (Fig 2). If the infection is not contagious (R0 < 1), all individuals become

Fig 2. Infection and opinion dynamics as a function of the reproductive rate of the infection (model 5). For each value of R0 (number of secondary
infections which can be understood as the fitness of the pathogen; it must be >1 for the pathogen to invade the population), the time-series of the dynamics of
the infection (top panel; the thin line corresponds to the number of infected individuals and the thick line corresponds to the number of vaccinated individuals)
and opinion (bottom panel; the dashed grey line indicates the number of individuals who have a positive opinion and the dashed black line indicates
individuals who have a negative opinion) are depicted for a rate of negative side effects from vaccination δv = 0.7. Alternative changes of opinions of
vaccination and oscillations in vaccination coverage emerge for intermediate values of R0. When the reproductive rate of the disease is large (R0 >4), the
negative opinion of vaccination disappears and vaccination coverage, while reaching high levels, does not reach herd immunity. This is because the infection
spreads too quickly. More generally, four dynamics can be observed and a1 to a3 represent their limits which can be moved depending of the values of δv

considered.

doi:10.1371/journal.pone.0142990.g002
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sceptical and vaccination coverage remains low; if infection is highly contagious (R0 >> 1), all
individuals become pro-vaccines but herd immunity is never reached because the infection
spreads too quickly. Yet, vaccination coverage remains high. For intermediate values of R0,
both sceptical and pro-vaccine individuals coexist and oscillations in vaccination coverage are
observed (Fig 3); (iii) the rule “imitate the majority” is not necessary for oscillations to appear.
Rather, the transmission of opinions through conformism increases the delay between changes
in epidemiological parameters and the behavioural responses to those changes (Fig 4).

What is the role of R0 for the dynamics of vaccination coverage?
Various dynamics are observed depending on the reproductive rate of the infection because
the value of R0 influences the distribution of opinions in the population. For infections that
spread very quickly in the population (R0 >> 1), only “pro-vaccines” individuals persist. For

Fig 3. Confirmation bias, conformism and the emergence of oscillations in vaccination coverage. The emergence of oscillations (o) is depicted as a
function of an infection’s reproductive rate (R0) and the rate of negative side effects from vaccination (δv). The emergence of oscillations is contingent on the
inclusion of confirmation bias but not conformism and is observed for intermediate values of R0. Three models are considered: Model 3 (without either
confirmation bias or conformism); Model 4 (including confirmation bias) and Model 5 (including both confirmation bias and conformism). If no oscillations
emerge, three dynamics can be noted for the distribution of opinions of vaccination: (i) coexistence of 2 opinions with a greater number of individuals with a
positive opinion (+), (ii) coexistence of 2 opinions with a greater number of individuals with a negative opinion (-), (iii) all individuals have a positive opinion (*).
The models are analysed for 2 different generation times (birth (b) = death (d) = 1 and 0.5) and for different values of the rate of negative side effects from
infection (δI). 1 million iterations were run with a time step of 0.0001 which correspond to 100 unit of time.

doi:10.1371/journal.pone.0142990.g003
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intermediate values of R0, a stable coexistence of “sceptics” and “pro-vaccine” individuals is
observed with three possible cases: (1) at equilibrium, a negative opinion of vaccination is more
frequent; (2) at equilibrium, a positive opinion of vaccination is more frequent; (3) which opin-
ion is the most frequent oscillates over time (Fig 2). Oscillations are only observed when the
cost of vaccination (CV) is high enough, i.e. when a sufficient number of individuals are vacci-
nated and suffer from side effects. The influence of other parameters on the emergence of oscil-
lations is depicted Fig 3.

The emergence of oscillations in vaccination coverage
The role of cognition (confirmation bias and conformism). We compared nested mod-

els to disentangle the role of confirmation bias and conformism on the distribution of opinions
towards vaccination and subsequently, the emergence of oscillations in vaccination coverage.
We found that oscillations can only emerge when both negative and positive opinions of vacci-
nation coexist in the population and when a confirmation bias is included (Models 4 & 5, see
also S1 Fig for various values of μp, μn and μp/μn). To confirm the significance of confirmation
bias, we reran the full model while excluding confirmation bias (μp = μn): oscillations do not
appear (S2 Fig). Then we found that conformism does not affect the emergence of oscillations
in the dynamics of infection and vaccination coverage (Fig 3). Rather, oscillations become less
frequent and more ample because conformism increases the time necessary for the least fre-
quent opinion to invade the population (Fig 4). To confirm that conformism does not produce
oscillations, we compared the results obtained for the full model with and without biased social
transmission (D = 0.7 and D = 0, respectively): when confirmation bias is considered oscilla-
tions do appear in both situations (S2 Fig).

Fig 4. Conformism and oscillations in vaccination coverage. The evolution of the number of infected (thin line) and (thick line) vaccinated individuals is
depicted. Conformism (illustrated by Model 5) increases the amplitude of oscillations and slows down the rate at which alternative opinions of vaccination
alternate. The situation is indicated for infections that are moderately infectious (with a reproductive ratio (R0) varying from 3 to 5) and with the rate of negative
side effects from the vaccination (δV) varying from 0.5 to 2.

doi:10.1371/journal.pone.0142990.g004
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The role of epidemiology (vaccination and infection costs). Once opinion heterogeneity
and confirmation bias are considered, the emergence of oscillations in vaccination coverage
depends on the ratio between the costs of vaccination and infection. For instance, in the case of
an infection with a low epidemic potential (R0 is low) and few individuals infected, both the
infection cost and the vaccination cost are low because only a few individuals suffer negative
side effects. Consequently, vaccination coverage remains low and stable over time. For infec-
tions with a high reproductive rate (R0 is high), the infection invades the population more rap-
idly than vaccination behaviour. Thus, the cost of infection is always higher than the cost of
vaccination. Similarly, when the cost of vaccination is low, oscillations do not emerge because
the cost of vaccination is always lower than that of infection.

Discussion
Despite evidence that vaccines are safe, vaccine scares are repeatedly observed in various popu-
lations and cause the resurgence of diseases otherwise near eradication (e.g. measles). A key
factor in driving vaccination decisions is how epidemiological parameters, in particular the
costs associated with infection and vaccination, are perceived. Although perception may be
based on epidemiological information, the success of anti-vaccination movements also suggests
that individuals vary in the way they interpret scientific evidence. People differ in their opinion
of vaccination because of their past experience with immunization, their trust in the state or in
the medical profession, the opinion of their parents or the most common opinion in their cul-
tural environment, irrespective of a cost-benefit analysis based on the epidemiology [34]. In
this paper, we deviate from previous theoretical studies positing that individuals are economic
agents maximizing their health [4,5,35–39] to consider that individuals make decisions as
result of cognitive biases. Specifically, we developed a behaviour-incidence model in which
individuals can be pro-vaccines or sceptical, their opinion influencing how the costs of infec-
tion and vaccination are perceived. Overall, the model predicts the commonly observed
dynamics of vaccination coverage, i.e. the failure to reach herd immunity as well as oscillations
in vaccination coverage (periods of increase in vaccination coverage followed by disease out-
breaks). The results have implications for considering how the interaction between human cog-
nition and the epidemiology may lead to difficulties in reaching and/or maintaining
population level immunity.

The emergence of oscillations
D’Onofrio et al. [40] showed that assuming a memory of the information related to the costs of
infection and vaccination can generate oscillations in a SIR model without cognitive bias. Com-
paring the behaviour of our model with or without cognitive bias we have shown that the con-
firmation bias is necessary for the emergence of oscillations in the dynamics of infection and
vaccination coverage, at least in the parameter range we explore. Our model and that of d’Ono-
frio et al. differ by several hypotheses, which could explain why the conditions necessary for
the emergence of oscillations differ between the two models. D’onofrio et al. assumed that
memory is fading following an exponential rate and that the infection rate is frequency depen-
dent while we supposed a memory fading at a linear rate and a density dependent infection
rate. In all cases, our model is the first to show that confirmation bias can strongly facilitate
cyclical dynamics.

The propensity to seek out information that confirms one’s pre-existing belief, and the possi-
bility for individuals to change their opinion as a function of the number of vaccinated individu-
als (i.e. confirmation bias) can thus explain variation into vaccination coverage. When
vaccination coverage increases, the cost of vaccination increases too as more individuals suffer
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vaccination side effects. It leads to a rise in the number of individuals who become sceptical
about vaccines. Those “sceptics” are more likely to overestimate the cost of vaccination as com-
pared to that of infection, and thus when most of the population is vaccinated; sceptics perceive
the infection as harmless. Eventually, this phenomenon leads to a decrease in vaccination cover-
age and subsequently, to the resurgence of diseases. In turn, as the number of infected individuals
increase, a “pro-vaccine” opinion spreads leading to an increase in vaccination coverage. Those
results are not different from those obtained in other models where vaccine cost appears large in
comparison to that of infection as the population approaches herd immunity [41]. However, in
some previous theoretical studies, the cost of vaccination does not change as a function of the
number of people vaccinated. Rather, the increase in vaccination cost is imposed using an exoge-
nous description of the evolution of vaccine risk [41], the inclusion of a cyclical period to simulate
a vaccine scare [27,39] or through a decrease in the accessibility of vaccines [37,42,43]. While pre-
vious studies showed that a vaccine scare could lead to a decrease in vaccination coverage, the
present model explicitly articulates a mechanism creating a vaccine scare (i.e. when the cost of
vaccination is perceived to be greater than that of the infection cost). The results reported here
are contingent on the assumption that the vaccination decision-making process is sensitive to a
confirmation bias. This cognitive phenomenon is only one among several, however, as other heu-
ristics have been documented in previous research on vaccine acceptance [25,44], for instance
omission bias (when people prefer act of omission over act of commission, even if the outcome
of omission is worse) or ambiguity aversion (aversion of ambiguous outcomes). Further work
explicitly comparing the significance of various cognitive biases may yield additional insight into
the role of cognition in generating vaccine scares.

Social learning and vaccinating decision-making
A number of previous studies have investigated the role of social interactions in shaping the
emergence of oscillations in vaccination coverage [13,17,27,29,35,45,46]. This is because vacci-
nation coverage can be relatively stable in the absence of a vaccine scare and the feedback
between the number of infected individuals and vaccination behaviour appears insufficient in
accounting for the delay between reaching high vaccination coverage and the emergence of a
scare. To account for the role of social interactions, behavioural epidemiology models usually
consider that individuals imitate the most successful strategy among their neighbouring con-
tacts [39,47] and such models are better than models considering a homogenous population
for fitting data on vaccine scares [41]. The way social learning is modelled explicitly considers
that individuals are rational agents maximizing their payoff. Individuals can be influenced by
social interactions in different ways, however, and the role of social influence need not be con-
nected to epidemiological risks [48]. For instance, it has been argued that mothers taking their
children for vaccination has become part of their “habitus” (sensu Bourdieu, in [34]). Mothers
elicit to vaccinate their children because “everyone else does” and ethnographic studies on the
acceptance of vaccines in various populations revealed that peer opinion matters [34]. In the
model developed here, individuals adopt the most common opinion in the population through
the phenomenon of conformism. Conformism does not generate oscillations in vaccination
coverage but increases the amount of time needed for a change in epidemiology to generate a
cultural response. The role of conformism in increasing the time for cultural change has been
observed in previous studies [39].

Limitations
First, the model presented here assumes that both infection and health behaviour are transmit-
ted within a homogeneously mixing population, and those are simplifying assumptions.
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Humans are connected with a limited number of contact [49] and a number of studies has con-
sidered that social heterogeneity influences disease transmission [14,50,51], risk perception
[15,20,52] and vaccination behaviour [15,48,53]. Clustered occurrence of beliefs can lead to the
clustered occurrence of disease [54]. Nevertheless, in the context of information transmission,
the assumption according to which the population is homogeneously mixed is valid if we focus
on the role of the media, i.e. information that is globally available to everyone. The media has
had a central role in disseminating vaccine scares and shaping the perception of disease severity
[18]. The media also enables anti-vaccination movements to have a strong impact on vaccina-
tion decision-making [7,55]. Yet, if the proposed model may be appropriate for exploring the
role of conformism, it is insufficient to explore other social transmission processes such as
those resulting from the role of opinion leaders (e.g. cultural transmission through prestige-
bias [56]). Religious leaders have been shown to be highly influential in promoting vaccine
refusal in their communities (reviewed in [34]) and the role of prestige-biased cultural trans-
mission for either accelerating the pace of change or stopping it altogether remains to be inves-
tigated. Second, one may argue that since the costs depend on the number rather than the
frequency of individuals suffering side effects, the model is more likely to inform on informa-
tion that is gathered during social interactions than knowledge acquired via the media. The
media report both percentages and anecdotic evidence of side effects associated with vaccina-
tion and both are likely to be determinant in driving the formation of opinion. Yet, the relative
role of each type of information deserves further investigation. Finally, we assumed that the
rate of opinion change, while a function of epidemiological costs, is independent of the SIR
class of the individual. However, an individual suffering infection may be less likely to switch
from a positive to a negative opinion and thus we may have overestimated the occurrence of
oscillations. Note however that for diseases with a strong epidemic potential, the cost of infec-
tion is always higher than that of vaccination and therefore oscillations do not emerge.

This study, along a few others [22,28,29,48], offers an alternative to payoff maximization for
understanding the emergence of oscillations in vaccination coverage. It shows that a decrease
in vaccine uptake when a disease is near eradication may not only emerge because of individual
free riding but because of cognitive biases that maintain heterogeneity in how people perceive
risks. While this study presents limitations that need to be explored in future work, i.e. consid-
ering heterogeneity in contact patterns as well as additional cognitive biases, we show that
alternative notions of rationality, in particular that of an ecological rationality whereby individ-
uals use simple cognitive heuristics, offer interesting new avenues for modelling vaccination
behaviour.

Supporting Information
S1 Fig. The effect of confirmation bias on oscillations. The effect of confirmation bias (i.e.
with μ the weight given to the cost of infection and μ0 the weight given to the cost of vaccina-
tion) on the dynamics of susceptible (solid grey line), infected (thin line) and vaccinated indi-
viduals (thick line) is depicted. The amplitude and the frequency of oscillations are modified
when the difference between μ and μ0 is high. Indeed, the bigger the difference between μ and
μ0, the more the amplitude of oscillations increases and the more the frequency decreases. The
situation is indicated for infections that are moderately infectious, with 2 reproductive ratio R0,
3 and 6 and with a rate of negative side effects from the vaccination δV = 1.
(TIF)

S2 Fig. The effect of conformism and confirmation bias on the appearance of oscillations.
The effect of conformism biased (D = 0.7) and unbiased (D = 0) is depicted with and without
confirmation bias. The number of susceptible individuals is represented by the solid grey line,
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the infected individuals by the thin line and the number of vaccinated individuals by the thick
line. Without confirmation bias (μ = μ0 = 1), oscillations do not appear for both types of con-
formism (biased and unbiased). When the confirmation bias is added, oscillations do appear
with no significant differences between the biased and unbiased conformism. The situation is
indicated with the reproductive ratio R0 = 3 and with a rate of negative side effects from the
vaccination δV = 1.
(TIF)
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