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Abstract

Background: Excessive elevation of arterial blood pressure (BP) at high altitude can be detrimental to our health
due to acute mountain sickness (AMS) or some AMS symptoms. This prospective and observational study aimed to
elucidate blood pressure changes induced by exposure to high-altitude hypoxia and the relationships of these
changes with AMS prevalence, AMS severity, sleep quality and exercise condition in healthy young men.

Methods: A prospective observational study was performed in 931 male young adults exposed to high altitude at
3,700 m (Lhasa) from low altitude (LA, 500 m). Blood pressure measurement and AMS symptom questionnaires
were performed at LA and on day 1, 3, 5, and 7 of exposure to high altitude. Lake Louise criteria were used to
diagnose AMS. Likewise, the Athens Insomnia Scale (AIS) and the Epworth Sleepiness Scale (ESS) were filled out at
LA and on day 1, 3, and 7 of exposure to high altitude.

Results: After acute exposure to 3,700 m, diastolic blood pressure (DBP) and mean arterial blood pressure (MABP)

rose gradually and continually (P < 0.05). Analysis showed a relationship with AMS for only MABP (P < 0.05) but not
for SBP and DBP (P> 0.05). Poor sleeping quality was generally associated with higher SBP or DBP at high altitude,
although inconsistent results were obtained at different time (P < 0.05). SBP and Pulse BP increased noticeably after

high-altitude exercise (P < 0.05).

Conclusions: Our data demonstrate notable blood pressure changes under exposure to different high-altitude
conditions: 1) BP increased over time. 2) Higher BP generally accompanied poor sleeping quality and higher
incidence of AMS. 3) SBP and Pulse BP were higher after high-altitude exercise. Therefore, we should put more
effort into monitoring BP after exposure to high altitude in order to guard against excessive increases in BP.
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Background

Two cardinal challenges to life at high altitude are the low
ambient temperature and hypobaric hypoxia. Temperature
declines approximately 1°C for each 150 m elevation.
Barometric pressure also decreases progressively with in-
creasing altitude. And harmful effects of hypoxia are expe-
rienced by most maladaptive subjects at high altitude
[1,2]. In response to a short-term hypoxic exposure, blood
pressure either does not change or increases modestly,
and currently, the consequences are not fully understood.
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Moreover, most researchers believe that blood pressure
(BP) changes at high altitude are principally due to in-
creases in autonomic and sympathetic activity [3-8]. Pro-
longed hypoxia for up to several days increases systemic
pressure gradually, especially diastolic BP (DBP) and mean
arterial BP (MABP), in parallel with increases in plasma
concentrations of norepinephrine [9,10]. In particular, ex-
cessive elevation of arterial BP is detrimental to our health
and can cause acute mountain sickness (AMS) or some
AMS symptoms, e.g., headache, dizziness, and insomnia.
Some cases may even progress to life-threatening cerebral
or pulmonary edema, known as high-altitude cerebral

© 2014 Liu et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:huanglan260@126.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Liu et al. Military Medical Research 2014, 1:19
http://www.mmrjournal.org/content/1/1/19

edema (HACE) and high-altitude pulmonary edema
(HAPE).

Previous studies on systolic blood pressure (SBP) and
diastolic blood pressure (DBP) changes at different alti-
tudes or different time courses of high altitude have
been reported, the result is still controversial. One of the
purposes of the present study was to confirm the SBP
and DBP changes at different altitudes and different time
courses of high-altitude exposure and to analyze the
MABP and Pulse BP changes. Furthermore, exposure of
healthy subjects to high altitude affects arterial BP based
on individual factors, the absolute altitude of exposure,
the duration of stay at altitude, sleeping quality, and so
on. Therefore, the second aim of our study was to inves-
tigate blood pressure changes and their relationship with
AMS prevalence, AMS severity, sleeping quality and ex-
ercise conditions in healthy young men upon high-
altitude exposure in order to avoid the risk of hyperten-
sion in a high-altitude clinical setting.

Methods

Population

Eligible participants had to be non-Tibetan, healthy,
young and male lowland residents (18—45 years old). Be-
fore entering the high-altitude area, the inclusion criteria
were as follows: 1) no organic disease; 2) age 218 years;
3) low-altitude dwellers from areas <400 m; and 4) had
not been exposed to high altitudes in the previous year.
The exclusion criteria were as follows: 1) the presence of
autoimmune diseases, respiratory diseases, cardiovascular
diseases, malignant tumors, liver and kidney dysfunction,
and psychiatric disorders or neuroses that prevented the
completion of the questionnaires; 2) age >45 years; 3) were
from elevations >500 m; 4) were exposed to high altitude
in the previous 3 months; or 5) were reluctant to cooper-
ate with the investigation.

Ethics statement

All participants who agreed to participate in the study
were familiar with the purpose and process of this study.
The research was approved by the Ethics Committee of
Xingiao Hospital, the Second Clinic Medical College of
Third Military Medical University. Before the trial, each
participant provided written informed consent and was
conscious of his right to withdraw without prejudice at
any time. The subjects did not take medication or re-
ceive any intervention, and all the data were anonymized
prior to retrieval and analysis.

Randomization

The subjects were randomly assigned to three groups: a
low-altitude group (LA), a high-altitude non-exercise
group (Day 1, Day 3, Day 5, Day 7) and a high-altitude
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exercise group (Day 7), using a computer generated ran-
dom number list.

Procedure

This study was performed at two locations that were
separately defined as low altitude (Chongzhou, LA,
500 m) and high altitude (Lhasa, 3,700 m). Low-altitude
subjects ascended to 3,700 m after approximately a week
on the Chongzhou plain. Participants completed
the Lake Louise Score (LLS) AMS self-assessment test,
the Athens Insomnia Scale (AIS) questionnaire and the
Epworth Sleepiness Scale (ESS) questionnaire. Arterial
blood pressure measurements were carried out. All of
the trial procedures were performed at 500 m within
one week before ascending in Chongzhou and within
24 h after arrival at 3,700 m (in Lhasa, approximately
13:00 pm from June 21st to 25th, 2012, and examina-
tions were performed at approximately 8:00-11:00 am
on the next morning upon arrival. The minimal and
maximal times from arrival to the examination were
19 hours and 22 hours, respectively). The subjects stayed
at 3,700 m for a week before leaving for the next work
place. An outline of the study design and testing sched-
ule is shown in Figure 1.

Outcome measures

The primary outcome measure was the change of blood
pressure. The secondary outcome measures were as fol-
lows: the incidence of acute mountain sickness at alti-
tude; its severity reflected by the LLS score; SaO,; sleep
quality assessed by questionnaires; and age (y/years),
weight (W/g), and height (H/cm) according to the AMS
symptoms Questionnaire. The body mass index (BMI)
was calculated as weight in kilograms divided by the
square of height in meters.

Blood pressure measurement

All selected subjects, both at low altitude and high alti-
tude, were on the same standard diet, which included a
fixed amount of daily proteins, carbohydrates, and fat,
but the measurements were performed after a 4-hour
fast and at least an 8-hour abstinence from caffeine and
a 24-hour abstinence from alcohol. After the subjects
had been seated in a chair at rest for at least 15 minutes,
non-invasive measurements of resting systolic blood pres-
sure (SBP) and diastolic blood pressure (DBP) were
obtained by a wrist sphygmomanometer (OMRON HEM-
6,200) at the same time of day. All subjects completed the
full study at altitude. Optimal blood pressure was defined
as a SBP <120 mmHg and a DBP <80 mmHg. Prehyper-
tension was defined at a SBP of 120 to 139 mmHg and/or
a DBP of 80 to 89 mmHg, and hypertension was diag-
nosed at a SBP 2140 mmHg and/or a DBP 290 mmHg,
according to international guidelines [11,12]. MABP
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Figure 1 Data collection schedule. This research utilized an all-around design on selected young Chinese men for the test condition. The test
conditions were defined as LA (500 m, Control group) for baseline testing and abrupt exposure to 3,700 m after approximately a week at LA.

(mean arterial blood pressure) values were calculated from
SBP and DBP values with the following equation: MABP =
[(SBP-DBP)/3] + DBP; Pulse BP (Pulse blood pressure)
values were also calculated from SBP and DBP values with
the following equation: Pulse BP = SBP-DBP.

Oxygen saturation (SO,) measurement

The second day after the subjects arrived at the destin-
ation, SaO2 was measured by Pulse Oximeter (NONIN-
9550, Nonin Onyx, America) in triplicate after the
subjects had rested in a seated position for 15 minutes.

Acute mountain sickness assessment

Acute mountain sickness was diagnosed by the Lake Louise
Scoring System (LLS). This is a five-item self-administered
questionnaire on the basis of the most frequent symptoms
of AMS: headache, gastrointestinal problems (anorexia, nau-
sea, or vomiting), insomnia, weakness or fatigue, and dizzi-
ness or light-headedness. Every item is scored by the subject
on a scale from 0 to 3, with each integer having a specific
descriptor. The minimum LLS score is 0, and the maximum
score is 15; clinical AMS was diagnosed when headache and
one or more other symptoms occurred and reached a Lake
Louise score of >3 (range, 0 to 15) at any time point. Sever-
ity was assessed according to the following categories: mild
(3—4), moderate (5—10), and severe (11-15) [13].

Epworth Sleepiness Scale (ESS) assessment

The Epworth Sleepiness Scale [14,15] is a measurement of
daytime somnolence that includes eight items. Items 1 to 8
are as follows: (1) sitting and reading, (2) watching televi-
sion, (3) sitting inactive in a public place (e.g., a theater or
meeting), (4) sitting as a passenger in a car for an hour
without a break, (5) lying down to rest in the afternoon

when circumstances permit, (6) sitting and talking to
someone, (7) sitting quietly after a lunch without alcohol,
(8) sitting in a car while stopped for a few minutes in
traffic. Each item is scored as 0 to 3, where O represents
would never doze, 1 represents a slight chance of dozing,
2 represents a moderate chance of dozing, and 3 repre-
sents a high chance of dozing. The ESS score is the sum of
items 1 to 8.

Athens Insomnia Scale (AlS) assessment

The AIS [15,16] also includes eight items: 1) difficulty in
sleep duration, 2) awakening during the night, 3) final
awakening earlier than desired, 4) insufficient total sleep
duration, 5) dissatisfaction with overall quality of sleep, 6)
decreased sense of wellbeing during the day, 7) decreased
functioning during the day, and 8) sleepiness during the
day. Each item is measured on a 4-point Likert scale. A
total score of 6 or higher is recognized as insomnia [15,17].

Exercise condition

At high altitude, before the first step test, blood pressure
was recorded (Pre-exercise). According to the velocity con-
trol of the metronome at 30 times per minute, subjects
began to do the first step test with 0.3-meter-high steps for
5 minutes, and then, the first measure of blood pressure
was recorded immediately after exercise [Post-exercise (1)].
After a rest for 5 minutes, subjects continued to do the sec-
ond step test at 0.3-meter-high steps for 5 minutes, and
then, the second measure of blood pressure was recorded
immediately after exercise [Post-exercise (2)].

Statistical analysis
All analyses were conducted using the SPSS 19.0 software
(Chicago, IL, USA). The results were presented as the
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mean + standard deviation. To apply parametric tests deal-
ing with continuous variables, we assessed the normality of
distributions using the one-sample Kolmogorov-Smirnov
test. Data were analyzed using nonparametric statistics for
non-normally distributed variables. Four variables of time
(SBP, DBP, MABP and Pulse BP) were estimated for each
station as well as the between-subject changes using a re-
peated measure ANOVA and the Kruskal-Wallis H test.
Differences in the mean values between the two groups of
subjects with and without AMS were compared by the
independent-samples t-test or the Mann—Whitney test.
The significance level was established at P-value <0.05.

Results

We collected 931 AMS symptom questionnaires (excluding
40 lost follow-up and 23 uncompleted) valid at both 500 m
and 3,700 m. General basal features in the studied group
were rather homogeneous (P > 0.05).

The incidence of acute mountain sickness

On day 1, 3, 5, and 7 at 3,700 m, AMS was present in
62.75% (128/204), 20.97% (13/62), 25% (14/56), and 13.33%
(8/60) of subjects.

Blood pressure
Systolic blood pressure

1) Altitudes: On day 1 at 3,700 m, high-altitude SBP
(121.25 + 12.69 mmHg) was significantly higher than
that at LA (115.15 + 10.53 mmHg, P = 0.000, Table 1).
Although the mean SBP value at 3,700 m (Day 1) was
within normal range, an interclass analysis illustrated
that a proportion of the subjects (51.96%) with SBP
values over 120 mmHg was higher than that at LA
(30.81%, Figure 2). Moreover, the mean SBP value of
over 120 mmHg at 3,700 m (Day 1) (129.98 +
10.07 mmHg) was higher than that at LA (127.42 +
7.99 mmHg, P =0.037).

2) Time courses: After acute exposure to 3,700 m (Day 1),
SBP rose noticeably and then slightly decreased on Day
3 (P> 0.05). Thereafter, it began to slightly increase
again on Day 5 (P > 0.05, Table 1). Although the mean
SBP values on day 1, 3, 5, and 7 at 3,700 m were within

Table 1 Time course of blood pressure changes (mmHg, x *s)
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normal ranges, an interclass analysis indicated a high
proportion of the subjects on day 5 and 7 at 3,700 m
(>50%) with SBP values of over 120 mmHg (Figure 2).
The mean SBP value of over 120 mmHg on day 1 at
3,700 m (129.98 + 10.07 mmHg) was higher than that
on day 3 at 3,700 m (125.19 + 4.85 mmHg, P = 0.001)
while it was similar to that on day 5 and 7 at 3,700 m
(12721 £5.90 and 12642 + 6.47 mmHg; P = 0.054,

P =0.059, respectively).

3) AMS prevalence: There was no difference in the SBP
between the AMS and non-AMS groups at any period
(P>0.05, Table 2).

4) AMS severity: On day 1 at 3,700 m, SBP was higher in
the severe AMS group than that in the mild or
moderate AMS group (P =0.033, P=0.013,
respectively, Table 3).

5) Sleep quality: On day 7 at 3,700 m, SBP in the
sleepiness group was higher than that in the
non-sleepiness group (P = 0.007).

6) Exercise group: Compared with the Low altitude SBP
(EG1), the Post-exercise (2) SBP increased at 3,700 m
(Day 2, P=0.001, Table 4). Compared with the Pre-
exercise SBP, the Post-exercise (1) and Post-exercise
(2) SBPs were higher (2 =0.006, P = 0.000). Compared
with the Low altitude SBP (EG2), the Pre-exercise,
Post-exercise (1) and Post-exercise (2) SBPs were
higher (P =0.045, P =0.001, P =0.000) at 3,700 m
(Day 7), and the Post-exercise (2) SBP was higher
than the Pre-exercise SBP (P = 0.009).

Diastolic blood pressure

1) Altitudes: On day 1 at 3,700 m, DBP (79.41 +
9.45 mmHg) was higher than that at LA (72.50 +
9.50 mmHg) (P = 0.000, Table 1). Although the mean
DBP value on day 1 at 3,700 m was within normal
range, an interclass analysis showed that the proportion
of the subjects with DBP values over 120 mmHg on
day 1 at 3,700 m (48.04%) was higher than that at LA
(30.81%, Figure 2).

2) Time courses: After acute exposure to 3,700 m (Day 1),
DBP escalated noticeably and, thereafter, increased
gradually and persistently, above the level of LA

Index LA High altitude 3,700 m

Day 1 Day 3 Day 5 Day 7
SBP 115.15+£10.53 121.25 +12.69° 11647 +10.07 121.02+9.58 119.75+9.36
DBP 72.50+9.56 7941 +9.45° 79.18 +9.96 81.04 +8.80° 7848+9.11°
MABP 86.71+893 93.36 +9.55° 9047 +847° 94.36 + 8.56° 9224 +781°
Pulse BP 42.65+8.06 41.84+998° 39.00 + 8.04° 3998 +6.43° 4127 £10.28

SBP, Systolic blood pressure; DBP, Diastolic blood pressure; MABP, Mean arterial blood pressure; Pulse BP, Pulse blood pressure. Values are means + SD (standard

deviation). P < 0.05 compared with LA.
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Figure 2 Interclass distribution of arterial blood pressure at different altitudes and time courses. (A) SBP (systolic blood pressure, mmHg),
(B) DBP (diastolic blood pressure, mmHg). LA: Low altitude (500 m); HA-3,700 m: High-altitude 3,700 m. Day 1, Day 3, Day 5, Day 7: all at
high-altitude 3,700 m. Values are proportions. °P < 0.05 compared with LA.
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(P> 0.05, Table 1). Although the mean DBP values on
day 1, 3, 5, and 7 at 3,700 m were within normal
ranges, an interclass analysis indicated that a high
proportion of the subjects had DBP values of over
80 mmHg on day 5 (55.36%) and day 7 (53.33%) at
3,700 m (Figure 2). The mean DBP value of over
80 mmHg on day 1 at 3,700 m (87.06 + 5.67 mmHg)
was higher than that on day 3 (84.65 + 4.88 mmHg)
(P =0.049) while it was similar to that on day 5 and 7
(86.77 £ 547 and 85.03 + 4.55 mmHg) (P = 0.805;
P =0.068, respectively).

3) AMS: At no period did we find an association of
DBP values with AMS (P > 0.05, Table 2).

4) AMS severity: On day 1 at 3,700 m, DBP showed no
differences among the three AMS subgroups
(P> 0.05, respectively, Table 3).

5) Sleep quality: On day 1 and 3 at 3,700 m, DBP in
the insomnia group was higher than that in the

non-insomnia group (P = 0.049, P = 0.024, respectively).

6) Exercise group: At 3,700 m (Day 2, Day 7), there
was no difference in DBP between the low altitude,
Pre-exercise, Post-exercise (1) and Post-exercise (2)
groups (P> 0.05, Table 4).

Mean arterial blood pressure
1) Altitudes: On day 1 at 3,700 m, MABP (93.36 +

9.55 mmHg) was noticeably higher than that at LA
(86.71 + 8.93 mmHg, P = 0.000, Table 1).

2) Time courses: After acute exposure to 3,700 m (Day
1), MABP increased rapidly, and remained
persistently elevated. Its change was analogous to
DBP (Table 1).

3) AMS: MABP on day 1 at 3,700 m was much higher
in the AMS group (P =0.028). See Table 2.

4) AMS severity: On day 1 at 3,700 m, MABP was
higher in the severe AMS group than that in the
mild AMS group (P = 0.000). See Table 3.

5) Sleep quality: High-altitude MABP showed no
difference between the insomnia and non-insomnia
groups and between the sleepiness and
non-sleepiness groups (P > 0.05).

6) Exercise group: On day 2 at 3,700 m, the Post-
exercise (1) and Post-exercise (2) MABPs were higher
than the Pre-exercise MABP (P =0.031, P=0.038,
Table 4). On day 7, the Pre-exercise, Post-exercise
(1) and Post-exercise (2) MABPs were higher than the
low altitude (EG2) MABP (P =0.016, P=0.001, P =
0.000).

Pulse blood pressure

1) Altitudes: After acute exposure to 3,700 m, the Pulse
BP (41.84 + 9.98 mmHg) was below that at LA
(42.65 £ 8.06 mmHg, P =0.000, Table 1).

2) Time courses: On day 1 at 3,700 m, the Pulse BP
was lower than that at LA, and for approximately a
week, it remained below that at LA (Table 1).

Table 2 Blood pressure, SaO, and AMS at HA-3700 m Day 1 (mmHg, x+s, n =204)

Grade SBP DBP MABP Pulse BP Sa0,
Non-AMS 118.77 +11.00 77.76 +10.08 9143 +9.56 4101 +£867 88.88 +3.77
AMS 12269 + 1341 8037 £897 9448 + 940 4232+1067 87.66 +3.64
P value 0.068 0.057 0.028 0.699 0.024

HA-3,700 m: High-altitude 3,700 m. Values are means + SD (standard deviation).
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Table 3 Blood pressure, Sa0, and severity of AMS at HA-3,700 m Day 1 (mmHg,%, x s, n = 204)

Grade SBP (mmHg) DBP (mmHg) MABP (mmHg) Pulse BP (mmHg) Sa0, (%)
Mild AMS 12289+ 1398 7944 + 889 9392+9.18 434541227 8737 +367
Moderate AMS 121.73+1243 81.14+897 9467 + 951 4059+8.14 8793+357
Severe AMS 144,50 + 4.94°° 8950+ 2.12 107.83+0.24° 5500+ 7.07° 905 +495

HA-3,700 m: High-altitude 3,700 m. Values are means + SD (standard deviation). °P < 0.05 compared with mild AMS. °P < 0.05 compared with moderate AMS.

3) AMS: At no period did we find an association of the
Pulse BP between the AMS and non-AMS groups
(P> 0.05, Table 2).

4) AMS severity: On day 1 at 3,700 m, the Pulse BP
was lower in the severe AMS group than that in the
moderate AMS group (P =0.017, Table 3).

5) Sleep quality: The High-altitude Pulse BP showed no
difference between the insomnia and non-insomnia
groups and between the sleepiness and
non-sleepiness groups (P> 0.05).

6) Exercise group: Compared with low altitude (EG1), the
Post-exercise (2) Pulse BP at high altitude was higher
(P =0.000); the Post-exercise (1) and Post-exercise (2)
Pulse BPs were higher than the Pre-exercise Pulse BP
(P=0.042, P =0.000). On Day 7, the Post-exercise (2)
Pulse BP was higher than the Pre-exercise BP
(P=0.017, Table 4).

Sa0,

The SaO, level on day 1 was much higher in the AMS
group than that in the non-AMS group (P =0.024). There
was no difference in the SaO, level between the mild, mod-
erate and severe AMS groups (P > 0.05). See Tables 2 and 3.

Discussion

This study principally contributes to the comprehensive
knowledge of BP changes in a relatively large number of
young male subjects during high-altitude exposure. The
initial phase of exposure to altitude was connected with a

noticeable rise in systolic and diastolic blood pressure and
has been noted in other studies [8,18].

SBP increases as an acute phenomenon on account of an
increased and dominant sympathetic activation by hypoxic
stress, which is congruous with some reports [7,19,20]. It
was reported that an elevation of SBP tends to normalize or
decrease after a few days at altitude [21-24], which was ob-
served in the current study. Furthermore, our research did
not show that any SBP value had an association with AMS;
however, in the severe AMS group, SBP was higher.

The DBP analysis is highly relevant for young adults, and
this seems to be the most important BP component [21].
Our results show that DBP behaves variably on different
occasions. Other researchers have investigated the relation-
ship of BP behavior with altitude, age, and gender in acute
hypoxic environments. According to the results of our
study, DBP at rest increased gradually with time after high-
altitude exposure. This phenomenon has also been reported
by other studies [2,10,25,26]. The explanations for the sus-
tained DBP increase observed after more than a week at
3,700 m may chiefly be a consequence of a persistent sym-
pathetic stimulation [21,27]. This indicates that hypoxia
may be a continual stimulus for an organism, as suggested
by Siques et al. [21], who demonstrated a relationship
between lower SaO, values and hypertensive DBP values.
Furthermore, the increase of sympathetic tone may be a
natural response by non-adapted subjects to counteract the
effects of hypoxia. Indeed, hypoxia directly affects the
vascular tone of systemic resistance vessels and
increases ventilation and sympathetic activity via the

Table 4 High-altitude blood pressure changes and exercise (mmHg, x + s)

Item SBP (mmHg) DBP (mmHg) MABP (mmHg) Pulse BP (mmHg)

EG] 3,700 m Day 2 (n = 100) Low altitude (n = 100) 1175941175 7644 +11.08 90.19+ 10.80 41104692
Pre-exercise 11476 +11.15 7544 + 898 88.55+8385 3932+871
Post-exercise (1) 11961+ 1332° 7737 £1028 9145 +10.06° 4224+11.28°
Post-exercise (2) 12313 1247% 7546 +11.15 91.35+1008° 4767 £12.21%°

EG2 3,700 m Day 7 (n=53) Low altitude (n =53) 11160+ 10.15 70.00 +8.09 83.87+8.16 4160+ 7.14
Pre-exercise 116,08+ 12.45° 7438 +1096° 8828+ 10.26° 417041090
Post-exercise (1) 12026 +15.77° 7589+ 11.71° 90,68+ 12.26° 4438 +1041
Post-exercise (2) 12238+ 11.97 7526 +11.76° 9097 +10.37° 4711 412,08

EG: Exercise Group. Pre-exercise: before the first exercise at high-altitude 3,700 m; Post-exercise (1): after the first exercise at high-altitude 3,700 m; Post-exercise
(2): after the second exercise. P < 0.05 compared with low altitude (EG1). °P < 0.05 compared with high-altitude 3,700 m Day 2 (EG1) Pre-exercise. P < 0.05
compared with Low altitude (EG2). 9P < 0.05 compared with high-altitude 3,700 m Day 7 (EG2) Pre-exercise.
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stimulation of peripheral chemoreceptors [24,26]. Inter-
actions occur between the hypoxic vasodilatation of
systemic arterioles and the chemoreceptor-mediated re-
sponses in the systemic circulation [2,21,28]. This, in turn,
leads to baroreceptor-mediated sympathetic excitation.
Alterations in baroreflex function, an increase in the “set
point” and possibly a decrease in gain, are also likely to
contribute. These autonomic adaptations may have a role
in an escalation in BP during sustained hypoxia [2,29]. It
has been reported that hypoxia-induced hypertension is
linked with a transient rise in plasma endothelin and a de-
pressed production of nitric oxide in rats [2,30]. Moreover,
the subsequent decrease of DBP is potentially secondary
to the circulation of hypoxia-induced inflammatory
markers that have vasodilating properties and cause an
overall reduction in DBP.

The change pattern of MABP bears a resemblance to that
of DBP. Acute exposure to altitude was associated with a
rise in MABP. Sizlan et al. [2] highlighted the gradual in-
crease in MABP at rest with time at altitude, which was
also observed in other studies [2,10,19,31]. This also oc-
curred in our subjects. Our research demonstrated that
blood pressure tends to be higher in the AMS group, espe-
cially MABP, as was previously reported by Beidleman et al.
[32]. The mechanism of this relationship between blood
pressure and AMS could be associated with an exagger-
ation in sympathetic tone that causes peripheral vasocon-
striction and, thus, an increase in blood pressure. However,
a few studies have reported that signs of exaggerated [33]
or decreased [34] sympathetic response at altitude are re-
lated to increased or decreased AMS, respectively [27,35].
One hypothesis regarding the inhibition of AMS through
altitude acclimatization involves downregulation of efferent
renal sympathetic nerve activity so that the kidneys can sus-
tain diuresis and prevent or limit the edema associated with
high-altitude illness [36,37]. Beidleman et al. [32] suggest
that decreased or increased MABP in the present study
may also be a marker of decreased or increased sympathetic
activation, respectively.

The decrease in peripheral vascular resistance causes an
increase in cardiac output, which is likely related to the
decrease in DBP and the subsequent increase in pulse
blood pressure (pulse BP). Nevertheless, the gradual de-
cline in pulse BP from low altitude to high altitude may be
due to an increase in vasomotor tone caused by the release
of catecholamine. Although the altitude-induced increase
in BP has been predominantly ascribed to sympathetic ac-
tivation [2,7,38-42], there might also exist some other
mechanisms, e.g., the activation of the renin-angiotensin
system (RAS) and the release of vaso-active substances.

We also observed that high SBP and DBP were correlated
with poor sleep quality. Numerous studies have established
an association between insomnia and hypertension [43-47].
Insomnia is a common disorder characterized by subjective
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symptoms of problems in initiating or maintaining sleep,
often associated with states of “hyperarousal”. Elevated BP
occurring in association with insomnia may mirror the ef-
fects of sleep curtailment and/or sleep disruption on sym-
pathetic activity [44]. Moreover, a report demonstrated that
ESS was positively correlated with BP at all time points. In
healthy older adults, Goldstein et al. predicted that, com-
pared with individuals who showed few signs of daytime
sleepiness, those who were sleepy during the day would
have higher BP and would be more likely to develop hyper-
tension after 5 years [48].

According to our findings, we also see that at high
altitude, Post-exercise SBP and Pulse BP surpassed Pre-
exercise SBP. On the one hand, this is due to the
reinforcement of cardiac contractility and the increase
of stroke volume, which result in high BP; on the other
hand, the increase of skeletal muscle sympathetic activ-
ity could result in muscle contractibility during exercise
at high-altitude 3,700 m, which causes some vasocon-
strictive metabolites and Ang II to be produced. How-
ever, we did not find any changes in DBP. The reason
may be that after exercise, heart rate increased, myocar-
dial systolic time was shortened, and cardiac contrac-
tion was strengthened in order to ensure normal blood
circulation. Most of the contractile force was used to
pump the blood into the systemic circulation (SBP),
while the absorption force of aortic dilatation (the DBP
force) was relatively small. Therefore, SBP increased sig-
nificantly after high-altitude exercise while DBP dis-
played no obvious changes.

Limitations

There are several limitations to our study. One practical
limitation was that our study was not an anterior-posterior
self-control study. One other potential limitation is that BP
responses in the current study were only observed in young
male subjects, and the fact that BP remains elevated for
longer than expected cannot be used to conclude how older
people will respond over a similar time period. The BP re-
sponse to high altitude of older travelers who might have
baseline hypertension has recently been addressed by Luks
[49]; however, some aspects of BP at high altitude are yet to
be elucidated. Moreover, the lack of significance in the
prevalence of AMS between men and women existed in a
study when AMS severity was increased in men [50]. Al-
though the existence of a sex difference in the context of
this study is unclear, a sex difference does exist in AMS in-
cidence [51]. Consequently, further studies incorporating
female subjects need to be carried out to corroborate the
current findings.

Conclusions
Taken together, our study suggested that blood pressure
did not manifest significant monotonic changes with time
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and increasing altitude. Moreover, there was a trend for
higher blood pressure in the AMS group. And the degree
of BP alteration appears to be related to the severity of the
AMS symptoms (LLS), which suggest their utility in high-
altitude clinical settings. Simultaneously, a higher BP
response to hypoxia seems to identify subjects prone to
develop AMS, and potentially, an exaggerated chemoreflex
sympathetic vascular response is implicated in the genesis
of AMS. Based on this study, higher BP at high altitude
leads to lower sleep quality. BP should be considered as a
parameter to be monitored in all adults who ascend to
high elevations. Further studies are needed to take sex,
age, and ethnicity into consideration.
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