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On the use of aggregated human 
mobility data to estimate 
the reproduction number
Fabio Vanni1,2,3*, David Lambert3,4, Luigi Palatella5 & Paolo Grigolini3

The reproduction number of an infectious disease, such as CoViD-19, can be described through a 
modified version of the susceptible-infected-recovered (SIR) model with time-dependent contact 
rate, where mobility data are used as proxy of average movement trends and interpersonal distances. 
We introduce a theoretical framework to explain and predict changes in the reproduction number 
of SARS-CoV-2 in terms of aggregated individual mobility and interpersonal proximity (alongside 
other epidemiological and environmental variables) during and after the lockdown period. We use an 
infection-age structured model described by a renewal equation. The model predicts the evolution of 
the reproduction number up to a week ahead of well-established estimates used in the literature. We 
show how lockdown policies, via reduction of proximity and mobility, reduce the impact of CoViD-19 
and mitigate the risk of disease resurgence. We validate our theoretical framework using data from 
Google, Voxel51, Unacast, The CoViD-19 Mobility Data Network, and Analisi Distribuzione Aiuti.

Understanding the effectiveness of public service announcements and large-scale physical distancing interven-
tions is critical for managing the short and long-term phases of spread of the epidemic, as in the case of the 
CoViD-19 epidemic. Many countries have reacted via intervention strategies based on mobility and physical 
lockdowns together with regional and international border restrictions1–4. Many of these intervention policies 
are based on assessing the risk of an outbreak through compartmental disease models5–9. We intend our model 
to be complementary to other well-assessed estimates of the reproduction number. These estimates are based on 
phenomenological models which provide a starting point for estimation of key transmission parameters, such 
as the reproduction number, and forecasts of epidemic impact10–14.

From a practical point of view, it is fundamental to understand which approach best permits one to fore-
cast epidemic dynamics in the presence of incomplete data. This is especially true when a country’s healthcare 
system is overwhelmed and data collection becomes sporadic. It is also important during the early phases of 
disease spread, when testing is incomplete or non-existent. For CoViD-19 there is the additional problem of 
undocumented cases15,16.

In our analysis, we focus our attention on the contribution of asymptomatic or undiagnosed (and thus undoc-
umented) individuals to the propagation of the contagion, assuming that these hidden infectious agents have the 
ability to spread the disease in an environment where susceptible agents are present and all the individuals have 
uniform mobility and physical proximity parameters. Consequently, we evaluate the impact of physical distanc-
ing policies in response to the CoViD-19 epidemic in Italy, the US, and selected European locations. Our model 
is a renewal SIR model with a time-dependent contact rate. We provide an expression for the contact rate using 
real-world mobility and social distancing data from Google and other providers. Our approach is complementary 
to typical (fixed contact-rate, non-renewal) compartmental SIR models, with two essential differences: the time 
dependence of β (contact rate in the SIR model) and the fact that we split β into several factors.

In our model we formulate a specific factorization of the time-dependent contact rate into variables directly 
related to mobility and social distancing behaviors from real world data, together with other epidemiological 
and clinical variables.

In particular, we believe that the advantage of our model is that it is parsimonious in capturing the aggregated 
reproduction trends, splitting the contributions of different factors of a disease diffusion framework. Our model 
posits that undiagnosed individuals, captured by the variable � , drive and sustain the infection process through a 
contact web disentangled into two aspects: mobility as movement trends and proximity as proxy for interpersonal 
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distance. This framework takes into account a natural delay between time of contacts and the triggering of new 
infection chains, making the model a forward estimate for the values of Rt to come. This perspective can provide 
useful insight for policy makers and regulators planning mobility restrictions or other strategies for mitigating 
the diffusion of an epidemic like CoViD-19.

We interpret this approach in terms of a macroscopic collision theory of infected individuals in a region with 
a given susceptible population, taking into account the mobility of individuals as well as their radii of interaction 
as reliable proxies of physical distancing measures (as explained in the “Methods” section):

Here, the tildes indicate that the variable is to be evaluated with a delay of τg , a variable that accounts for the typi-
cal time it takes to observe newly generated positive tests (see17,18 and the “Calibration” section). R̂0 represents the 
reproduction number calculated in a given period of time which also embodies the constant contribution over 
that time. Next, St is the fraction of individuals that are susceptible. Finally, Bt is the transmission rate function, 
which depends on average contact frequency, the virus’s infectiousness, and the infectious age of individuals in 
the contagion process. In this way, it is a generalization of the interaction variable in compartmental models.

The model of Eq. (1) is distinguished from other estimates in literature by its forward rather than backward-
looking estimation procedure. We name the model proposed in this paper as the social distancing based model, 
aka SDM. Imagine that some infectious individuals have not been detected and isolated. We wish to evaluate a 
measure of risk of exposure for a given susceptible individual. We take a kinetic approach to the evaluation of 
this risk.

We imagine unobserved spreaders are free to infect other individuals and that the contagion acts within 
a certain radius r of an infected individual. We imagine an environment in which two types of individuals 
are present at a calendar time t. ns is the density of susceptible individuals in a region, while j is the density of 
actual new infected individuals where diagnosed and undocumented cases are both taken into consideration, 
as discussed in the “Methods” section. We consider the regional mobility, ν , to be the average distance explored 
by each individual during the time interval, �t , (usually daily). We define the distance, r, to be the maximum 
distance that an infected person can be from a susceptible person (in the model) and still cause them to become 
infected. This distance depends, for example, on the virus’ infectiousness as a function of distance and on the use 
of personal protective equipment, which can create a physical barrier so increasing effective distances. Physical 
distancing regulations, personal protection devices (such as mask wearing), and hygienic norms will result in a 
decrease in r, as also assessed in19,20. The interpersonal proximity ρ has an inverse effect on infectivity to that of 
the interaction radius and it is defined to be the inverse of the square root of the average density of individuals 
in a region as discussed in the S.I. in more detail.

As specified in Table 1, � represents the efficiency of detecting real cases of infection, and takes on values 
between 0 and 1. In particular, � would have a value equal to 1 if testing and contact tracing technologies were 
maximally efficient, and its value approaches 0 if very few in a large infected population are detected, as shown 
by16,21. The value of � changes with infection age as well as t during the disease outbreak. These changes might 
depend, for example, on the ability to detect and isolate individuals, or the efficiency of contact tracing during 
the epidemic. Contact tracing efficiency varies with the characteristics of the infection and the speed and cover-
age of the tracing process.

Centralized manual testing and tracing may become an impractical strategy and a lockdown may become 
a more efficient and effective means of controlling an epidemic. However, lockdowns are not sustainable in the 
long term because of their social, economic, physical, and psychological effects. Lockdown policies have reduced 
the spread of CoViD-19, but as restrictions are relaxed transmission often goes up again.

Finally, the number of people at risk (susceptible individuals) is

(1)Rt = R0S̃tB̃t .

Table 1.   Parameters of kinetic approach to infectious contacts.

Collision variable Description

Mobility ν Movement trends over time

Social movements Average speed of individual movements, can include distanced traveled per day and mobility trends

Contact zone r The radius within which contact with an infectious individual can trigger a secondary infection in 
airborne diseases (infectious cross section)

Physical proximity ρ The average effective distance between individuals for an airborne disease, a function of physical 
distance, protection devices, and hygienic procedures

Transmissibility η The chance that a contact will result in an infection

Virus-host-environment interaction
Infectiousness due to environmental conditions as well as the virus’s ability to be more or less conta-
gious. (Virus strain mutations, viral load, shedding, and immune system response are involved. Air 
flow, UV exposure, climate factors such as temperature and humidity that influence infectiousness )

Test and trace � Ability to detect and isolate contagious individuals

Testing efficacy and contact tracing
Analyzing samples to assess the current or past presence of SARS-CoV-2 viral (molecular and 
antigen) tests and antibody test. Identification of persons who may have come into contact with an 
infected person
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where n is initial fraction of susceptible population respect to the total population, and j0 is the density of only 
the new diagnosed cases (official data) which is only a fraction of the total actual cases of new infections, note 
that jo(t) = j(t) = 0 for t < 0 . There are various factors which contribute to the transmission of a disease. The 
biological and environmental properties are accounted for in the transmissivity variable η , as explained in the 
“Methods” section. Physical proximity, viral load, and environmental conditions determine the infectious dose 
necessary to trigger the infection in a new host. For example, enclosed environments such as workplaces and 
schools correspond to higher η values in the model as compared to an outdoor space. A summary of all the vari-
ables in the model appears in Table 1.

Now let us recall the actual (or effective) reproduction number which represents the average number of 
secondary infections generated by each new infectious case (assuming ns and other environmental variables 
retain their current values forever). The actual reproduction number can be used as a predictive tool to track 
the epidemic’s evolution. It is also a measure of epidemic risk, in the sense that if it is significantly above one for 
long enough, then an outbreak will occur. Thus, by linking a dynamical model with time-series data, one obtains 
a measure of epidemic risk. This risk is derived (see “Methods” section) leading to the effective reproduction 
number:

where t0 is an initial (or calibration) time, and we have taken the testing efficiency � and the transmissibility η 
constant during the lockdown periods, as discussed in the “Methods” section. We call the reproduction number 
as expressed in the previous equation Rt SDM.

Results
The above equation represents the change in the average number of secondary cases caused by a single primary 
case throughout the course of infection at calendar time t calibrated at an initial value (for example, before the 
lockdown). In the present section, we apply Eq. (2) to data from various sources in order to validate our mod-
eling framework.

We assume the spatial homogeneity of every variable. In particular, ρ to be the average proximity between 
individuals, and ν(t) to be their average mobility. Moreover we consider the fraction of missed cases, � , to be 
constant with respect to infection age. Additionally, we define a typical time interval, the generative time τg as 
the average infection age at which positive test result is generated.

The changing trends of the reproduction number may be due to several interrelated reasons apart from physi-
cal distancing policies. These reasons can be collected into two groups. The first has to do with the virus itself 
and its capacity to spread. Favorable environmental conditions or the emergence of less dangerous strains can 
decrease the effective infectiousness of the contagion. The other group of reasons is connected to the decrease in 
the susceptible population. On the other hand, physical distancing (also known as social distancing) is a prac-
tice recommended by public health officials to stop or slow down the spread of contagious diseases. It requires 
maintaining physical space between individuals who may spread certain infectious diseases. The data repositories 
used to obtain our results are listed in the Supplementary Information.

As proxies for mobility we consider both the changes in movement fluxes and percent change in average 
distance traveled, as released respectively in Google’s mobility report23 and Unacast’s scoreboard26. We take 
the mobility to represent the average relative speed of the individuals with respect to each other. The fact that 
we use relative velocity is important, as it properly accounts for situations in which people move rapidly in a 
coordinated way.

We infer a measure of proximity from the active population density, i.e., the number of people per unit area 
moving about in selected locations, as variously reported by Voxel51’s proximity index24 and Unacast’s human 
encounters26.

In the general analysis of epidemic data we refer to reported infected persons by their dates of diagnosis via 
laboratory test. However, some countries also report infections by the date of first symptoms reported by patients. 
In particular, we have used the latter type of data when possible (Italy) and inferred it in the case of the USA and 
the UK via an analysis of the effective reproduction number assessed by22,27,28.

We use epidemiological data at the level of states and mobility data at the level of cities for US locations and 
at the level of state for EU countries. We have studied and analyzed these regions during the period in which 
lockdown policies were in action as reported in29. Finally, for US states, we use22 as estimation of the reproduc-
tion number as well as the estimation of susceptible population considered. When analyzing other countries, 
we use various sources, averaging Epiforecast27 and Covid19 projections28 so as to have an ensemble calculation 
of the actual reproduction number R(t).

In Fig. 1, we show the hardest hit states in the US as of June 2020: New York and Florida. Note the good 
agreement between the theory of this paper using mobility and proximity and independent estimates of the 
reproduction number. Note that for New York state an important cause for the reduction in R(t) is due to the 
depletion of the susceptible population, while physical distancing has a smaller impact. Meanwhile, in Florida, the 
behavior of R(t) is mainly due to physical distancing restrictions taken up at the end of the shelter-at-home policy.

The use of appropriate face coverings should reduce the transmission of CoViD-19 by individuals who do 
not have symptoms and may reinforce physical distancing. Public health officials also caution that face coverings 

ns = n−

∞∑
i=τg

j(t − i) = n−

∞∑
i=τg

jo(t − i)

�(t − i)
,

(2)R(t) ∼ R(t0)
ns(t − τg )

ns(t0 − τg )

ρ(t0 − τg )

ρ(t − τg )

ν(t − τg )

ν(t0 − τg )
,
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may increase risk if users reduce their use of other efficacious measures such as physical distancing and frequent 
hand washing. In the singular case of Italy as report in Fig. 2, we take the number of face masks distributed to 
the population as a proxy for physical proximity (i.e., we assume the number distributed is effectively equivalent 
to a certain interpersonal distance), since at the beginning of the outbreak Italy has reported the number of 
distributed face mask in the country30.

In Fig. 3, we show the two derivations of the effective reproduction number R(t). The first is found using 
RtLive22. We use this to study the diffusion of the second wave of CoViD-19 in USA. We have sourced mobility 
and proximity data from the Data for Good program31 (see also the SI section B for further discussions and 
results). The analysis covers the period from March to November 2020 in two US states (New York and Florida). 

Figure 1.   Reproduction number estimates for two US states. Comparison between the reproduction number 
calculated from symptom onset data as in literature22 (dashed red line) and the reproduction number computed 
according our kinetic SDM approach, using data from23 for mobility24, for social proximity and25 for epidemic 
data. Ribbons are the 90% credible interval obtained via bootstrapping. Insets represent the single components 
of the reproduction number as in Eq. (1), specifically solid black and gray line is R(t) using only mobility and 
interpersonal proximity variables respectively, and dashed black line is R(t) due to the depletion of susceptibles 
only. The scale of the insets are the same the main plot. Calibration coefficients in the two examples are c = 1.21 
and c = 1.05 respectively (see “Calibration” subsection of Methods).

Figure 2.   Effective reproduction number for Italy during the lockdown period (March 9th to May 18th). We 
compare the Rt (dashed red) estimate by well established approaches with Rt SDM (blue) from the method we 
propose using human mobility data. Includes depletion of the susceptible population, individual mobility and 
physical proximity. The left inset compares the Rt (dashed) with the Rt SDM (solid) by using mobility data only 
and the right inset compares the Rt (dashed) with the Rt SDM (solid) by using physical proximity data only. The 
scale of the insets are the same as the main plot. Calibration coefficient c = 1.14 (see “Calibration” subsection of 
Methods).
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Our analysis closely matches the epidemic risk trend by using mobility data and new cases yielding an R(t) value 
6 days sooner than typical R(t) estimations in literature.

Alternatively we perform a further analysis comparing our Rt SDM with the reproduction number computed 
by a direct renewal equation where we use the number of cases by the onset of symptoms, as in Fig. 4, data from33 
for Italy. In this figure we have used the renewal estimate of the reproduction number as in16 and the social dis-
tancing based estimation using two dataset for human mobility trend from Google23 and31. We notice that the 
anomalous peak observed in the epidemiological estimate in October is not present in the social estimate. This 
effect is largely due to an abrupt increase of number of performed tests in that period.

Finally, we call attention to the fact that mobility alone is not sufficient to explain the dynamics of epidemics, 
as discussed in34. We see that physical proximity is crucial in resolving why a relatively stable R(t) below 1 has 
persisted, despite an increase in mobility after the end of the lockdown period. On the other hand, one should 

Figure 3.   Effective reproduction number for New York (a) and Florida (b) state in USA for a more extended 
period of the epidemic, by using data from Google23 mobility trend.

Figure 4.   National Effective reproduction number for Italy during the period from March 2020 to May 2021. 
Here, Rt literature is calculated using the method of32. After the vertical dash line this estimate is not based on 
completed data. Calibration coefficients are c = 1.15 for the RtSDM estimate based on Google data and c = 1.17 
for the RtSDM estimate based on Facebook data, and τg = 12 (see “Calibration” subsection of Methods).
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subtract from the susceptible population the number of asymptomatic or undocumented infected individuals, 
which are not counted in official reports. We provide an estimate for this number in the “Methods” section.

The effects of vaccination on Rt are difficult to estimate. In Fig. 4 we present a preliminary analysis of these 
effects. Taking into account vaccination is necessary to accurately estimate the SDM reproduction number once 
a significant fraction of the population has been vaccinated. We assume that vaccination reduces the fraction 
of the population that is susceptible by a factor of 1− ν(t) , where ν(t) is the fraction of the population that has 
received the vaccine at time t.

It is outside the scope of this paper to explore the effects of vaccination; however, we stress the importance 
of using this information to properly assess the reproduction number via mobility data. In a follow-up paper, 
the authors intend to analyze the effects of different types of vaccines on Rt at the regional (and higher) level.

Discussion
The outbreak of the CoViD-19 pandemic has pushed many countries towards a response that relies on the policy 
of social distancing, the implementation of which has important social and economic impacts on the organiza-
tion of production and on the work process. In response to the CoViD-19 pandemic, countries have introduced 
various levels of ‘lockdown’ to reduce the number of new infections.

From Eq. (2) it is evident that as the epidemic evolves the force of infection is reduced for various reasons, 
primarily due to physical distancing policies adopted by most countries in the form of a lockdown of human 
mobility. Since it is not practical to reduce physical distancing beyond a certain socially and economically 
acceptable level, the only foreseeable reasons for the end of an epidemic are the depletion of susceptible popula-
tion (immunization), a change in the intrinsic infectiousness of the virus, a sustained change in public hygiene 
habits (mask wearing, physical distancing, etc.), or innovation in contact tracing, testing, and isolation, see35 
for a discussion.

Mechanistic models of disease transmission are often used to forecast disease trajectories and likely disease 
burden, but are hampered by substantial uncertainty in disease epidemiology in the presence of significant social 
feedback. Models of disease transmission dynamics are hindered by uncertainty in the role of asymptomatic 
transmission, the length of the incubation period, the generation interval, and the contribution of different 
modes of transmission.

Infectiousness depends on the frequency of contacts and on the level of infection within each individual. In 
airborne infections, the former can be decomposed as a product of mobility and physical proximity, interpreted 
broadly as an effective distance measure which also includes the amount and type of physical protection used. 
The latter involves an internal micro-scale competition between the virus and the immune system which depends 
on environmental factors like pollution levels and repeated viral exposure, which can modify the viral load shed 
by infectious individuals.

We have mainly focused our study on the spread of a contagion in a homogeneous population, using a renewal 
collisional equation which has proven to be a powerful tool for analyzing and modeling epidemic data along 
side other well established measurements of the reproduction number. We have found it to be both practically 
and conceptually useful. This analysis has focused on the lockdown, but the same theoretical tools along with 
additional technology and data resources show promise for the analysis of the post-lockdown response and 
further mitigation of this disease.

At this stage, we do not investigate the dynamics of the severity of the disease. In order to examine these 
dynamics, we would need to focus our attention on the microscale corresponding to viral particles and immune 
cells. Since these agents induce the dynamics of the varying intensities of the disease observed at the macroscopic 
scale of the human population.

Furthermore, to assess the severity of an epidemic in a population, one should take into account both the 
reproduction number R(t) and the absolute number of cases. A high R(t) is manageable in the very short run 
as long as there are not many people sick to begin with. An important aspect of R(t) is that it represents only an 
average across a region. This average can miss regional clusters of infection. Another subtlety not captured by 
R(t) is that many people never infect others, but a few ’superspreaders’ pass on the disease many more times than 
average, perhaps because they mingle in crowded, indoor events where the virus spreads more easily. This means 
that bans on certain crowded indoor activities could have more benefit than blanket restrictions introduced 
whenever the R(t) value hits one. In conclusion, in addition to R(t) one should look at trends in numbers of new 
infections, deaths, hospital admissions, and cohort surveys to see how many people in a population currently 
have the disease, or have already had it.

Fatality rates and intensive care hospitalization rates are related to disease severity. In our collisional kinetic 
framework we have considered contacts among individuals to be random. In addition to these erratic contacts , 
one can consider structured contacts occurring at home, in hospitals, workplaces, and schools, just to mention 
a few of the possibilities. For structured contacts, we should consider the use of a different approach than col-
lision theory. One example of a situation in which interactions are more structured is in the theory of random 
growth of surfaces. In the model considered by36, the growing surface is represented as a set of columns, which 
can be thought of as the individuals of a society that interact. These individuals influence each other and self-
organize in the presence of noise so that anomalous scaling and long-range correlations are produced, which are 
a manifestation of the cooperation among individuals. Since people interact in correlated ways37, an extension 
of the collisional model of the present paper to include correlations among the movements of individuals would 
be more realistic (and likely important for small population sizes or parameter values near R = 1 or R = 0 ). 
For a simulation of the interplay between the social and epidemiological effects in a two-layer network, see38.

We stress some advantages of using Rt SDM alongside the well-established estimations in literature. First, 
the social estimate is available a couple of weeks earlier then the epidemiological estimate. Second, if a deviation 
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is observed between these two estimates, it may be a sign of a change in the transmissibility of the virus. Fur-
thermore, the approach we have presented allow us to disentangle the effects of population mobility, physical 
proximity, and depletion of susceptibles on the progression of the epidemic. Knowing the effects of each of these 
components of the response of the government and society to the CoViD-19 epidemic should allow for less costly 
and more effective strategies for defeating and mitigating epidemics. In particular, this collision model approach 
to estimation of infection spread should help policy makers and governments to better assess the continuing 
threat of CoViD-19 to the public welfare.

Methods
The renewal equation was introduced in the context of population dynamics studies. Later it was reinterpreted 
along the lines of stochastic processes, as in39, where transmission occurred via a Poisson infection process. This 
process is such that the probability that, between time t and t + δt , someone infected a time τ ago successfully 
infects someone else is A(t, τ)δt , where δt is a very small time interval. As a consequence, the predicted mean 
infectious incidence at time t follows the so-called renewal equation:

where τ is known as the infection age and j(t) is the rate of production of infectious individuals. The kernel A(t, τ) 
is the average rate at which an individual infected τ time units earlier generates secondary cases. In other words, 
A(t, τ) is the expected infectivity of an individual with infection-age τ , it can be interpreted as the reproduction 
function for new infections at time t. A practical issue concerns the extrinsic dynamics (e.g., public health inter-
ventions) of time inhomogeneities in the number of cases highlighting the depletion of susceptible individuals 
when contact tracing, quarantine, and isolation are implemented during the course of an epidemic. Finally, i(t) 
is a function that describes the effects of an external source of infected persons. For the special case i(t) = Aδ(t) , 
it encodes the initial number of imported infected individuals. Let us notice that one could completely disregard 
the external source of infectious individuals, by modelling an infinitely old epidemic where τ ∈ [0,∞) in the 
renewal integral so disregarding the imported cases.

The kernel A can be factorized as

where β(t, τ) is the product of the contact rate and the risk of infection (i.e., the effective contact rate), and Ŵ(t, τ) 
is the probability of being infectious at infection age τ . So, reduction in contact frequency with calendar time 
t affects β(t, τ) while early removal of infectious individuals at calendar time t changes the form of Ŵ(t, τ) . An 
earlier average infection age at first transmission of the disease will result from contact tracing and isolation. 
However, the classic approach to renewal equations for epidemics assumes, as in12,40–42, that the non-linearity of 
an epidemic is characterized by the depletion of susceptible individuals alone, so that

Finally, the proportion of persons who have the ability to infect at a given calendar time is given by the number 
of infected individuals which is called prevalence,

Notice that p(t) is not the number of active infected individuals generally reported in epidemic data published 
by different national health services. This is because the officially detected cases are actively confined (in hos-
pitals or at home) and so their contribution to the spread of the epidemic is not so relevant. On the contrary 
p(t) represents the infected people that are still conducting their lives as usual, possibly infecting other people.

The most important assumptions in our use of phenomenological models are (1) Short time scale of the 
epidemic (much shorter than the characteristic birth and death time scales of the population) (2) Well mixed 
population (force of infection homogeneously the same for all ages, sexes, etc.) (3) closed population (no immi-
gration or emigration) (4) initial small shock (the initial infected group extremely small with respect to the size 
of the susceptible population).

Using the collision theory for chemical reactions in solution with two types of molecules, we can write down 
the rate of contacts between the two types in a given volume, per unit time z = nsjx2πrν . Where we have assumed 
that all agents are ideal point particles that do not interact directly, and travel through space in straight lines. We 
further investigate the assumption of such collision model in43. However, not all contacts will result in second-
ary infectious, rather only those contacts that have sufficient viral load so as to surmount a certain threshold for 
triggering the infection. Such transmission efficacy should depend inversely on the physical distance between 
individuals. Moreover, the collision rate, in reality, depends on time and, in general, on the epidemic’s evolu-
tion. This is because the total number of agents changes over time. As an approximation, we embed all of these 
complexities in the choice of the radius r, so to maintain the simplest form of crossection z.

Suppose that during an outbreak only a certain fraction of infectious persons are observed through direct 
testing, other infectious individuals are not observed, e.g., because of lack of symptoms or the mildness of their 
illness. In particular, asymptomatic secondary transmissions, caused by those who have been infected and have 
not developed symptoms yet, and also by those who have been infected and will not become symptomatic 
throughout the course of infection, must be considered. At a given calendar time, t, we imagine that the important 
new cases are not the observed newly infected (which are quarantined or self-isolate), but rather the fraction of 

(3)j(t) = −
d

dt
ns(t) =

∫ ∞

0

A(t, τ)j(t − τ)dτ + i(t)

A(t, τ) = ns(t)β(t, τ)Ŵ(t, τ),

A(t, τ) = ns(t)β(τ)Ŵ(τ).

p(t) =

∫ ∞

0

Ŵ(τ)j(t − τ)dτ .



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23286  | https://doi.org/10.1038/s41598-021-02760-8

www.nature.com/scientificreports/

newly infected that are not observed. Some of these unobserved infected spread the disease. The observed cases 
are a fraction �t of all cases, i.e.,

where �t is the rate of detection which can change over time depending on the details of and degree of adherence 
to testing protocols and medical screenings. Moreover, the observed cases together with the undocumented cases 
constitute all cases so that

Thus, the relation between undocumented infected and documented infected individuals is

If the population screening procedure is effective, we have � = 1 . This could happen, for example, if the infected 
group is made up of only symptomatic persons which are infectious only after the onset of symptoms. As a first 
approximation, we have considered η to be constant over the time periods we considered, and � to be a slowly 
changing function (over a time scale of τA with respect to the calendar time t) so that �(t − τ) ≈ �(t).

Finally, the actual (or effective) reproduction number can be written as the incidence-prevalence ratio

where prevalence is the proportion of persons who have the ability to infect at a given calendar time. This ratio 
indicates the propensity of currently infected individuals to infect susceptibles and

is the average infectious period (or mean generation time). Therefore the actual reproduction number written 
as incidence persistence ratio is:

where we have also considered some practical issues in the calculation of the reproduction number as given in18.
Note that, R(t) does not depend explicitly on Ŵ(τ) , except through its integral over all possible values of τ . 

Thus, to a an adequate degree of approximation, it only depends on the typical time between infection and detec-
tion. Indeed, one can replace the Ŵ distribution with any distribution with the same mean recovery time (i.e., time 
to become non-infectious). As a consequence, the most changing Ŵ (as a function of τ ) can do is change R(t) by 
a re-scaling. However, effectively, the infectious age distribution depends on t. Since contact tracing, testing, and 
isolation (as well as treatments) will tend to reduce the active infectious period (and their use depends on t). On 
the other hand, the absolute scale of R(t) is also important, since one would like to maintain a value of R below 1.

Calibration.  We discuss some important points for the calibration of the social distancing estimate of Rt . 
First, calibration is required since we need to align the SDM reproduction number we compute with the repro-
duction number derived using the epidemiological data obtained by estimation methods in literature. Regress-
ing the two variables, we find a constant c which is then embedded in the the R̂0 . The second point is essentially 
due to possible misalignment between the two different estimation procedures because of intrinsic discrepan-
cies in data we use. For this purpose, we evaluate the multiplicative scaling factor in the reproduction number 
Eq. (4), using a zero-intercept linear regression between the two time series of the reproduction number.

Additionally, we have set the generative time τg = 6 , which takes into account the typical time to generate 
positive test results. This time scale is interpreted as detection period which is the time between exposure (con-
tact) and detection (isolation)44–46. The generative time has been estimated through the synchronization between 
the signals in the calibration steps. This is equivalent to the delay estimate used by RtLive and Epiforecast and 
other reconstruction infection estimates as17,18,47,48 as in Fig. 3. Note that for Fig. 4 we used the method of Ref.32 
to estimate R(t). Since this estimate was not adjusted for the delay in reporting symptoms, it was necessary to 
add an additional 6 days to the value of τg for a value of τg = 12 . The values chosen produce a good alignment 
between the features of R(t) derived as in the literature and corresponding features of R(t) as given by Eq. (4).

A last step in the calibration consists in the estimation of the fraction of the population that is infected, which 
is particularly important for a longer-term analysis has. This is accomplished by studying the dependence of the 
reproductive number R(t) on the ratio, c(t), between the official number of people infected and the total popula-
tion of the region (Italy) or state (US)16. The value � has changed over time throughout the epidemic and after the 
end of the spring 2020 lockdowns it increased, possibly due to the increased number of tests performed. Finally, 
when plotting the reproduction number, to visualize the trend, we use non-parametric regression analysis with 
LoWeSS (Locally Weighted Scatterplot Smoothing) surrounded by a 90% confidence interval obtained through 
bootstrapping.

jo(t) = �t j(t),

j(t) = jo(t)+ jx(t).

jx(t) = jo(t)
1− �t

�t
.

R(t) = D
j(t)

p(t)
,

D :=

∫ ∞

0

Ŵ(τ)dτ

(4)R(t + τg ) ∼ R(t0 + τg )
ns(t)

ns(t0)

η(t)

η(t0)

ρ(t0)

ρ(t)

ν(t)

ν(t0)

1− �(t)

1− �(t0)
≡ R0S̃tB̃t ,
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