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ABSTRACT
BACKGROUND: Cocaine-induced plasticity in the nucleus accumbens shell of males occurs primarily in dopamine
D1 receptor–expressing medium spiny neurons (D1R-MSNs), with little if any impact on dopamine D2 receptor–
expressing medium spiny neurons (D2R-MSNs). In females, the effect of cocaine on accumbens shell D1R- and
D2R-MSN neurophysiology has yet to be reported, nor have estrous cycle effects been accounted for.
METHODS: We used a 5-day locomotor sensitization paradigm followed by a 10- to 14-day drug-free abstinence
period. We then obtained ex vivo whole-cell recordings from fluorescently labeled D1R-MSNs and D2R-MSNs in
the nucleus accumbens shell of male and female mice during estrus and diestrus. We examined accumbens shell
neuronal excitability as well as miniature excitatory postsynaptic currents (mEPSCs).
RESULTS: In females, we observed alterations in D1R-MSN excitability across the estrous cycle similar in magnitude
to the effects of cocaine in males. Furthermore, cocaine shifted estrous cycle–dependent plasticity from intrinsic
excitability changes in D1R-MSNs to D2R-MSNs. In males, cocaine treatment produced the anticipated drop in
D1R-MSN excitability with no effect on D2R-MSN excitability. Cocaine increased mEPSC frequencies and
amplitudes in D2R-MSNs from females in estrus and mEPSC amplitudes of D2R-MSNs from females in diestrus.
In males, cocaine increased both D1R- and D2R-MSN mEPSC amplitudes with no effect on mEPSC frequencies.
CONCLUSIONS: Overall, while there are similar cocaine-induced disparities regarding the relative excitability of D1R-
MSNs versus D2R-MSNs between the sexes, this is mediated through reduced D1R-MSN excitability in males,
whereas it is due to heightened D2R-MSN excitability in females.

https://doi.org/10.1016/j.bpsgos.2024.100295
Cocaine alters the neurophysiology of medium spiny neurons
(MSNs) of the nucleus accumbens (NAc) (1–7), with enduring
drug-induced plasticity observed in the NAc shell (NAcSh)
subregion (2). In male rodents, cocaine reduces the firing rates
of dopamine D1 receptor–expressing MSNs (D1R-MSNs), with
no effect on dopamine D2 receptor–expressing MSNs (D2R-
MSNs) (8–10). Regarding cocaine-mediated glutamatergic
synaptic plasticity, various groups have reported some degree
of change at D1R-MSNs characterized by alterations to mini-
ature excitatory postsynaptic current (mEPSC) frequencies
and/or amplitudes (8,11,12). Similar studies using females
have been sparse, and data have often been pooled with data
from males (11,13–15), most likely because it has been widely
assumed that these fundamental effects of cocaine would not
differ between the sexes. In subtype-unidentified NAcSh
MSNs, glutamatergic synaptic plasticity following cocaine was
reported to be sex independent, although the NAc core did
show an effect of cocaine by sex (16).
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Most studies that have examined cocaine-induced alter-
ations to neurophysiology that included sex as a biological
variable did not track the estrous cycle. However, the estrous
cycle and sex hormones in particular have been shown to
cause dynamic changes in MSN neuroplasticity in the
accumbens core of rats (17–20). In addition, cocaine can cause
changes in neuroplasticity in both the NAcSh and core (1,2).
Estrous cycle–dependent neuroplasticity may interact with
cocaine-induced neuroplasticity, creating a scenario where
researchers may not be able to discern drug effects from the
effects of female sex hormones if the two are not tracked pre-
and post drug exposure.

It has been hypothesized that females and males seek
drugs of abuse and relapse for different reasons. In males,
drug seeking and relapse are often attributed to appetitive
behaviors, whereas in females, they are usually attributed to
negative affect (21–23). That said, female mice in estrus show
enhanced cocaine conditioned place preference compared
r Inc on behalf of the Society of Biological Psychiatry. This is an
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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with diestrus females and males (24). In total, sex-dependent
differences in cocaine-induced alterations to NAcSh D1R-
MSN and D2R-MSN neurophysiology would offer a potential
mechanism for behavioral differences in drug seeking and
relapse. This is positing that D1R-MSNs drive appetitive
behavior and D2R-MSNs drive aversive behavior (25,26),
although it is recognized that the mechanisms that drive these
disparate behaviors are more nuanced (27).

In this study, we tested whether there are sex differences in
NAcSh MSN excitability, both across the estrous cycle and
following cocaine exposure. Using transgenic Drd1a-tdTomato
and Drd2-eGFP mice and with sufficient statistical power for
comparisons between sexes, we found both estrous cycle
effects in MSN excitability and major sex differences in
response to cocaine.

METHODS AND MATERIALS

Animals

Animal procedures were performed at the University of Min-
nesota in facilities accredited by the Association for Assess-
ment and Accreditation of Laboratory Animal Care and in
accordance with protocols approved by the University of
Minnesota Institutional Animal Care and Use Committee, as
well as the principles outlined in the National Institutes of
Health Guide for the Care and Use of Laboratory Animals. Male
and female mice with a single copy of Drd1a-tdTomato and/or
Drd2-eGFP bacterial artificial chromosome transgene were
maintained on a C57BL/6J genetic background, obtained from
the Rothwell lab (University of Minnesota) (28) and bred onsite.
Mice aged 8 to 16 weeks were used in all experiments and
were group housed and kept on a 14/10-hour light/dark cycle
with food and water ad libitum. Seventy-seven animals were
used in total, with 48 animals used for electrophysiology re-
cordings (n = 29 females and n = 19 males). For neuronal
excitability experiments, 22 animals were used (n = 14 females
and n = 8 males). For mEPSC experiments, 26 animals were
used (n = 15 females and n = 11 males).

Psychomotor Sensitization

All experiments were conducted between 12:00 PM and 5:00 PM,
with houselights on at 6:00 AM and off at 8:00 PM. Animals were
handled and habituated to locomotor chambers as well as
subcutaneous injections 2 days prior to behavioral testing. On
test days, animals were given either a subcutaneous injection
of cocaine (15 mg/kg) daily for 5 days (2) or an equivalent
volume of 0.9% saline and placed promptly into the behavioral
testing chamber (1800 3 900, with 8.500 tall walls) with light levels
of 250 6 10 lx. Videos were recorded for 80 minutes using
ANY-maze tracking software, and total distance traveled was
analyzed offline.

Chemicals

All chemicals were obtained from Sigma-Aldrich except
cocaine hydrochloride, which was obtained from Boynton
Pharmacy (University of Minnesota).

Whole-Cell Recordings

Mice (8–16 weeks old) in late abstinence (10–14 days after the
last behavioral day) were used for electrophysiology
2 Biological Psychiatry: Global Open Science May 2024; 4:-–- www.
recordings. Animals were sacrificed between 9:00 AM and
5:00 PM. For females, prior to being anesthetized, estrous
cycle was determined by vaginal cytology as previously
described (29,30). Mice were anesthetized with isoflurane (3%
in O2) and decapitated. The brain was rapidly removed and
chilled in ice-cold cutting solution containing (in mM) 228
sucrose, 2.5 KCl, 7 MgSO4, 1.0 NaH2PO4, 26 NaHCO3, 0.5
CaCl2, and 11 d-glucose with a pH 7.3 to 7.4 and continu-
ously gassed with 95:5 O2:CO2 to maintain pH and pO2. A
brain block was cut including the NAcSh region and affixed to
a vibrating microtome (Leica VT 1000S; Leica). Sagittal sec-
tions of 240 mm thickness were cut, and the slices were
transferred to a holding container of artificial cerebrospinal
fluid maintained at 30 �C, continuously gassed with 95:5
O2:CO2 containing (in mM) 119 NaCl, 2.5 KCl, 1.3 MgSO4, 1.0
NaH2PO4, 26.2 NaHCO3, 2.5 CaCl2, 11 d-glucose, and 1.0
ascorbic acid (osmolality: 295–302 mosmol/L; pH 7.3–7.4)
(4,31) and allowed to recover for 1 hour. Following recov-
ery, slices were transferred to a glass-bottomed recording
chamber and viewed through an upright microscope
(Olympus) equipped with differential interference contrast
optics, a SOLA SE light engine, appropriate fluorescent filters,
an infrared (IR) filter, and a fluorescence/IR-sensitive video
camera (Dage-MTI).

Slices transferred to the glass-bottomed recording chamber
were continuously perfused with artificial cerebrospinal fluid,
gassed with 95:5 O2:CO2, maintained at room temperature,
and circulated at a flow of 2 mL/min. Patch electrodes were
pulled (Flaming/Brown P-97; Sutter Instrument) from borosili-
cate glass capillaries with a tip resistance of 5 to 10 MU.
Electrodes were filled with a solution containing (in mM) 135 K-
gluconate, 10 HEPES, 0.1 EGTA, 1.0 MgCl2, 1.0 NaCl, 2.0
Na2ATP, and 0.5 Na2GTP (osmolality: 280–285 mosmol/L; pH
7.3) (7). D1R-MSNs and D2R-MSNs were identified under
epifluorescence and IR–differential interference contrast based
on morphology and their hyperpolarizing membrane potential
(270 to280 mV) and were voltage clamped at280 mV using a
Multiclamp 700B amplifier (Molecular Devices), with currents
filtered at 2 kHz and digitized at 10 kHz. Holding potentials
were not corrected for the liquid junction potential. Once a GU
seal was obtained, slight suction was applied to break into
whole-cell configuration, and the cell was allowed to stabilize,
which was determined by monitoring capacitance, membrane
resistance, access resistance, and resting membrane potential
(Vm) (7,32,33). Cells that met the following criteria were
included in the analysis: action potential amplitude $50 mV
from threshold to peak, resting Vm negative to 266 mV, and
,20% change in series resistance during the recording. Pas-
sive membrane properties, capacitance, and membrane
resistance were measured from the membrane test in pCLAMP
(Molecular Devices). The resting neuronal membrane potential
shown in Table 1 was recorded immediately after breaking into
whole-cell mode.

To measure NAcSh MSN neuronal excitability, Vm was
adjusted to 280 mV by continuous negative current injection,
and a series of square-wave current injections was delivered in
steps of 1 20 pA, each for a duration of 800 ms.

For mEPSC recordings, slices transferred to the glass-
bottomed recording chamber were continuously perfused
with artificial cerebrospinal fluid containing lidocaine (0.7 mM)
sobp.org/GOS

http://www.sobp.org/GOS


Table 1. Passive NAcSh MSN Membrane Properties

Experimental Group Capacitance, pF Vm, mV Rm, MU

Male D1R-MSN Saline, n = 17 86.4 6 3.5 278.7 6 0.9 104.1 6 5.2

Male D2R-MSN Saline, n = 17 80.6 6 4.7 275.7 6 1.1 116.7 6 7.7

p Value .325 .044 .185

Male D1R-MSN Cocaine, n = 20 91.2 6 3.4 277.9 6 0.9 96.7 6 4.9

Male D2R-MSN Cocaine, n = 18 84.6 6 4.2 275.9 6 0.8 111.8 6 6.6

p Value .223 .111 .07

Female Estrus D1R-MSN Saline, n = 16 86.1 6 3.5 276.8 6 0.6 94.1 6 4.5

Female Estrus D2R-MSN Saline, n = 13 88.9 6 4.2 273.7 6 1.0 95.8 6 7.2

p Value .608 .007 .838

Female Estrus D1R-MSN Cocaine, n = 14 78.2 6 3.1 275.6 6 1.5 106.9 6 4.6

Female Estrus D2R-MSN Cocaine, n = 15 74.6 6 4.0 273.5 6 1.0 127.7 6 8.2

p Value .487 .252 .043

Female Diestrus D1R-MSN Saline, n = 13 80.6 6 3.4 276.2 6 1.5 89.2 6 4.8

Female Diestrus D2R-MSN Saline, n = 14 83.3 6 3.1 274.6 6 1.1 101.4 6 7.6

p Value .603 .394 .193

Female Diestrus D1R-MSN Cocaine, n = 15 81.3 6 4.0 276.5 6 1.0 92.9 6 3.9

Female Diestrus D2R-MSN Cocaine, n = 14 72.5 6 3.2 273.5 6 1.6 97.4 6 7.9

p Value .101 .124 .615

D1R, D1 receptor; D2R, D2 receptor; MSN, medium spiny neuron; NAcSh, nucleus accumbens shell; Rm, membrane resistance; Vm, resting membrane potential.
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to block voltage-gated sodium channels and picrotoxin (100
mM) to block GABAAR (gamma-aminobutyric acid A receptor),
and was continuously gassed with 95:5 O2:CO2, maintained at
room temperature, and circulated at a flow of 2 mL/min. Patch
electrodes were pulled (Flaming/Brown P-97; Sutter Instru-
ment) from borosilicate glass capillaries with a tip resistance of
5 to 10 MU, and whole-cell recordings were made. Electrodes
were filled with a cesium methanesulfonate (CsMeSO4) solu-
tion containing (in mM) 120 CsMeSO4, 15 CsCl, 10 TEA-Cl, 10
HEPES, 0.4 EGTA, 8.0 NaCl, 2.0 Na2ATP, and 0.3 Na2GTP
(osmolality: 280–285 mosmol/L; pH 7.3). D1R-MSNs and
D2R-MSNs were identified under epifluorescence and IR–
differential interference contrast based on morphology and
their hyperpolarizing membrane potential (270 to 280 mV)
and were voltage clamped at 280 mV using a Multiclamp
700B amplifier (Molecular Devices), with currents filtered at 2
kHz and digitized at 10 kHz. Holding potentials were not
corrected for the liquid junction potential. mEPSCs were
recorded for 2 minutes and analyzed offline using Mini Anal-
ysis software (Synaptosoft) with an amplitude threshold set at
3 times the noise level.
Statistical Analysis

Data values were reported as mean 6 SEM. All statistical
analyses were performed with a commercially available sta-
tistical package (GraphPad Prism, version 9.4.1). Probabilities
,5% were deemed significant a priori. Depending on the ex-
periments, group means were compared using a paired Stu-
dent’s t test or a 1-way or 2-way repeated-measures analysis
of variance (ANOVA). When differences were found, Bonferroni
post hoc tests were used for multiple pairwise comparisons.
For analyses collapsed across animals, D1R-MSN versus
D2R-MSN comparisons were performed using a within-subject
Biological Psychiatr
design whereas saline versus cocaine comparisons were
performed using a between-subject design.
RESULTS

Cocaine Psychomotor Sensitization Does Not Differ
by Sex in Drd1a-tdTomato and/or Drd2-eGFP Mice

Various genetic backgrounds can produce large sex differ-
ences in cocaine-mediated locomotor sensitization (34). Here,
we used a mouse line where the actions of cocaine on male
and female locomotion were extremely similar, and thus po-
tential differences in NAcSh D1R-MSN and D2R-MSN physi-
ology could not be attributed to differences in behavior.
Studies followed previous methods, using a standard psy-
chomotor sensitization protocol followed by 10 to 14 days of
abstinence and then ex vivo whole-cell current- or voltage-
clamp recordings of the NAcSh (Figure 1A) (2,34). The
estrous cycle was also monitored prior to electrophysiology
recordings to compare responses during diestrus (before
hormonal surges) and estrus (after)—periods within the estrous
cycle when the largest differences in MSN physiology (20) and
behavior (24) have been reported.

Following 2 days of habituation during which all mice (n =
77) received saline in the behavioral testing chamber
(Figure 1B), mice were subdivided, receiving either daily
cocaine (15 mg/kg) or saline for the next 5 days (Figure 1C).
This dose of cocaine has been used previously by our lab for
psychomotor sensitization and examination of NAcSh neuro-
plasticity (2,4). This dosing has also been used in follow-up
studies to examine the effects of cocaine on D1R- and D2R-
MSN excitability in the NAcSh of male mice (9). Thus, we
have attempted to maintain consistent comparisons in both
cocaine psychomotor sensitization and neuroplasticity.
y: Global Open Science May 2024; 4:-–- www.sobp.org/GOS 3
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Figure 1. Cocaine psychomotor sensitization in male and female mice. (A) Experimental timeline and recording area of the NAcSh highlighted in light blue.
(B) Two-day saline habituation (H1 and H2) summary data of grouped male (n = 37) and female (n = 40) mice. (C) Psychomotor sensitization, letter symbol (b)
significantly different from (a) within sex and (c) significantly different from (a) and (b) within sex (cocaine: male n = 22, female n = 20; saline: male n = 15, female
n = 20). (D) Linear regression of cocaine psychomotor sensitization. (E) Slope of locomotor sensitization. (F) Coefficient of variation for saline-treated animals.
(G) Coefficient of variation for cocaine-treated animals. ac, anterior commissure; Coc, cocaine; NAcSh, nucleus accumbens shell; Sal, saline; S.C.,
subcutaneous.
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Cocaine increased the total distance traveled in both male
(n = 22) (2-way ANOVA, F1,35 = 54.15, p , .0001) and female
(n = 20) (2-way ANOVA, F1,37 = 75.66, p , .0001) mice
compared with their saline (n = 15 male, n = 20 female)
counterparts. Sensitization to cocaine was observed in males
starting on day 2 of cocaine (1-way repeated-measures
ANOVA, F4,66 = 27.38, p , .0001) treatment and starting on
day 3 for females (1-way repeated-measures ANOVA, F4,52 =
9.72, p , .0001). By day 5 of cocaine administration, both
males and females were exhibiting similar locomotor re-
sponses. Notably, on day 2 of habituation, females displayed
a small but significant increase in total distance traveled
compared with their male counterparts when given saline
(2-way ANOVA with Bonferroni post hoc test, p = .0099), a
trend that continued in the saline-treated controls throughout
subsequent days of testing. We also examined whether there
were any sex differences in cocaine sensitization by analyzing
the slope of total distance traveled on days 1 through 5
(Figure 1D). This analysis represented the average increase in
distance traveled per day within sex compared with the pre-
vious day (34). We found no difference in the magnitude of
sensitization between males and females (unpaired t test, p =
.3856) (Figure 1E), again indicating minimal sex differences in
the psychomotor response to cocaine in this line of transgenic
mice.
4 Biological Psychiatry: Global Open Science May 2024; 4:-–- www.
For the last component of the behavioral analysis, we
measured the coefficient of variation for each animal across
the 5-day behavioral testing with respect to distance traveled
and compared the coefficient across sexes. In saline-treated
animals, females had a reduced coefficient of variation
compared with their male counterparts (unpaired t test, p =
.0005) (Figure 1F). This finding is consistent with a previous
report showing that exploratory behavior was more consistent
among female than male mice, regardless of estrous cycle (35),
and that females did not increase behavioral variability (36).
Interestingly, cocaine exposure normalized the coefficient of
variation between sexes (Figure 1G), a finding consistent with
what we observed in various other mouse strains (34). Overall,
the data indicate similar locomotor sensitization following
cocaine in these male and female mice.
The Estrous Cycle and Late Abstinence From
Cocaine Alters NAcSh D1R- and D2R-MSN
Excitability in a Sex-Dependent Manner

Next, we investigated cocaine-induced changes to excitability
in the NAcSh among D1R-MSNs and D2R-MSNs during late
abstinence (2). We recorded from a total of 186 neurons in the
medial portion of the NAcSh. As others have reported (8–10),
D1R-MSN excitability was reduced relative to D2R-MSN
sobp.org/GOS
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excitability in saline-treated males (2-way ANOVA, F1,32 = 6.70,
p = .014) (Figure 2A). Cocaine exposure followed by drug
abstinence led to a more pronounced reduction in the firing
frequency of D1R-MSNs in males (2-way ANOVA, F1,35 = 9.76,
p = .004) (Figure 2B). No change was observed in male D2R-
MSN excitability following cocaine treatment (2-way ANOVA,
F1,33 = 3.9 3 1023, p = .95) (Figure 2C). The net effect of
cocaine in males is an augmented gap between D1R-MSN and
D2R-MSN excitability, driven by reduced D1R-MSN activity (2-
way ANOVA, F1,36 = 55.70, p , .0001) (Figure 2D, E).

For females in diestrus, neuronal excitability differences
under baseline conditions were similar (if not greater) to the
pattern seen in male animals, i.e., reduced D1R-MSN excit-
ability compared with D2R-MSNs (2-way ANOVA, F1,25 =
15.07, p = .001) (Figure 2F). Interestingly, during estrus, the
excitability of D1R-MSNs increased to the extent that there
were no differences between D1R-MSNs and D2R-MSNs (2-
way ANOVA, F1,27 = 0.06, p = .804) (Figure 2K). Notably, the
magnitude of change in D1R-MSN excitability across the 4- to
5-day estrous cycle was comparable to the effect of cocaine in
males (Figure 2B, K).

Cocaine administration to females produced additional
unanticipated results. First, cocaine did not alter D1R-MSN
(2-way ANOVA, F1,26 = 1.01, p = .324) (Figure 2G) or D2R-
MSN (2-way ANOVA, F1,26 = 0.01, p = .908) (Figure 2H)
excitability in females when measured during diestrus
(Figure 2J). Second, during estrus, cocaine arrested D1R-MSN
plasticity (2-way ANOVA, F1,28 = 2.36, p = .136) (Figure 2L)
while simultaneously initiating D2R-MSN plasticity (2-way
ANOVA, F1,26 = 13.92, p = .001) (Figure 2M). Specifically,
there was an emergent increase in D2R-MSN excitability
(Figure 2O). In total, cocaine flipped the effect of the estrous
cycle on D1R-MSN/D2R-MSN excitability. Under drug-naïve
conditions, the estrous cycle balances D1R-MSN/D2R-MSN
activity through increased D1R-MSN excitability (Figure 2K),
whereas following cocaine administration, the estrous cycle
potentiated the discrepancy between the 2 subtypes of MSNs
by enhancing D2R-MSN excitability (2-way ANOVA, F1,27 =
33.92, p , .0001) (Figure 2N). As an additional analysis, we also
made comparisons across animals rather than across individual
neurons. As shown in Table S1, the same comparisons were
significant.

The passive membrane properties of D1R-MSNs and D2R-
MSNs across groups are shown in Table 1. As previously re-
ported (37,38), resting membrane potentials for D2R-MSNs
tended to be more depolarized than those for D1R-MSNs,
although this only reached significance in male and estrous
females treated with saline. Data collapsed across all animals
again indicated a significant effect in females, with a strong
trend in males (Table S2).
Late Abstinence From Cocaine Differentially
Impacts mEPSCs in a Sex-Dependent Manner

Given previous reports that cocaine can modulate gluta-
matergic synaptic activity in the NAcSh (8,11,12), we next
tested the effect of cocaine on mEPSCs. As noted above, in
the medial portion of the NAcSh, we recorded from 116 neu-
rons. In males, we found enhancement of glutamatergic
synaptic activity in cocaine-treated mice (Figure 3A–C). This
Biological Psychiatr
was driven by increased mEPSC amplitude in both D1R-
MSNs (unpaired t test, p = .0193) and D2R-MSNs (unpaired
t test, p = .0045) (Figure 3C). For females, there were no
estrous cycle effects in either mEPSC frequency or amplitude
in saline-treated animals. For females recorded in diestrus
(Figure 3D–F), cocaine caused enhancement of glutamatergic
synaptic activity solely through an increase in D2R-MSN
mEPSC amplitude (unpaired t test, p = .0342) (Figure 3F),
although there was a strong trend for an increase in D2R-MSN
frequency (unpaired t test, p = .0561) (Figure 3E) as well. For
females recorded in estrus, cocaine also enhanced gluta-
matergic synaptic activity (Figure 3G–I). This was produced by
an increase in mEPSC frequency (unpaired t test, p = .0322)
(Figure 3H) and amplitude (unpaired t test, p = .0018)
(Figure 3I), but again, only in D2R-MSNs. Finally, following
cocaine treatment, an estrous cycle–dependent change
developed in D1R-MSN mEPSC amplitude (Figure 3F, I:
hatched bars), with greater amplitudes (unpaired t test,
p = .0082) during estrus. Consistent with analyses between
neurons, when comparing across animals, there were signifi-
cant differences in mEPSC amplitudes on male MSNs
following cocaine treatment, as well as an increase in mEPSC
amplitude on female D2R-MSNs (Table S3).
DISCUSSION

This study is the first to explore the effects of cocaine on D1R-
MSN versus D2R-MSN excitability of the NAcSh across sexes,
with attention to the effects of estrous cycle before and after
drug treatment. We have replicated previous findings that
cocaine exposure leads to neuroadaptive effects in the NAcSh
of male mice, primarily driven by an effect at D1R-MSN
(8–11,13,39–42). This cocaine-induced D1R-MSN–driven
plasticity is thought to be the primary contributor to the
rewarding effects of the drug (43) as well as the locomotor
response (13). In male mice, optogenetic stimulation of D1R-
MSNs of the NAc mimicked cocaine reward, consistent with
results in the dorsomedial striatum, where D1R-MSN opto-
genetic stimulation was deemed rewarding (25,26). It is notable
that in contrast, D2R-MSN stimulation in these same studies
was found to be aversive.

Data from female animals implicate alternative hypotheses
regarding the role of D1R-MSNs and D2R-MSNs in cocaine
action or possibly alternative rationales for female versus male
drug responsiveness. As some investigators have hypothe-
sized, it may be the gap or imbalance generated between D1R-
MSN versus D2R-MSN activity in the NAc (13) that has a
greater impact on the behavioral and rewarding effects of
cocaine than strict D1R-MSN modulation alone. Even with
opposite adaptations (decreased D1R-MSN excitability in
males, increased D2R-MSN excitability in females), the
resulting disparity between D1R-MSN and D2R-MSN excit-
ability following cocaine is quite similar. Alternatively, if D2R-
MSN activation is aversive in females as was observed in
males, females might exhibit responses to cocaine more to
minimize activation of D2R-MSNs, a neuronal population that
exhibits heightened excitability. This could be contrasted with
males, which may be motivated to drive D1R-MSN activation
(which appears to be appetitive) from a population of neurons
that exhibit decreased excitability.
y: Global Open Science May 2024; 4:-–- www.sobp.org/GOS 5
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Figure 2. NAcSh neuronal excitability in male and female mice. (A) Summary data for saline-treated male D1R-MSN vs. D2R-MSN neuronal excitability.
(B) Summary data for saline- vs. cocaine-treated male D1R-MSN neuronal excitability. (C) Summary data for saline- vs. cocaine-treated male D2R-MSN
neuronal excitability. (D) Summary data for cocaine-treated male D1R-MSN vs. D2R-MSN neuronal excitability. (E) Representative raw traces from saline-
treated and cocaine-treated male D1R-MSNs (top) and D2R-MSNs (bottom) from the NAcSh. (F) Summary data for saline-treated female D1R-MSN vs. D2R-
MSN neuronal excitability recorded during diestrus. (G) Summary data for saline- vs. cocaine-treated female D1R-MSN neuronal excitability recorded during
diestrus. (H) Summary data for saline- vs. cocaine-treated female D2R-MSN neuronal excitability recorded during diestrus. (I) Summary data for cocaine-treated
female D1R-MSN vs. D2R-MSN neuronal excitability recorded during diestrus. (J) Representative raw traces from saline- and cocaine-treated female D1R-MSNs
(top) and D2R-MSNs (bottom) from the NAcSh recorded during diestrus. (K) Summary data for saline-treated female D1R-MSN vs. D2R-MSN neuronal excitability
recorded in estrus. Green overlay of D1R-MSN neuronal excitability from saline-treated females recorded in diestrus. (L) Summary data for saline- vs. cocaine-
treated female D1R-MSN neuronal excitability recorded in estrus. Green overlay of D1R-MSN neuronal excitability from cocaine-treated females recorded in
diestrus. (M) Summary data for saline- vs. cocaine-treated female D2R-MSN neuronal excitability recorded in estrus. Green overlay of D2R-MSN neuronal
excitability from cocaine-treated females recorded in diestrus. (N) Summary data for cocaine-treated female D1R-MSN vs. D2R-MSN neuronal excitability
recorded in estrus. (O) Representative raw traces from saline- and cocaine-treated female D1R-MSNs (top) and D2R-MSNs (bottom) from the NAcSh recorded
during estrus. The number of neurons and mice per group is denoted as n = x/y, where x is neurons and y are mice. Each group consisted of 3 to 5 mice. Coc,
cocaine; D1R, D1 receptor; D2R, D2 receptor; MSN, medium spiny neuron; NAcSh, nucleus accumbens shell; Sal, saline.
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Figure 3. NAcSh mEPSCs in male and female mice. (A) Representative mEPSC traces from NAcSh MSNs for saline- and cocaine-treated male animals.
(B) Summary NAcSh MSN D1R-MSN and D2R-MSN mEPSC frequencies for male animals treated with saline and cocaine. (C) Summary NAcSh D1R-MSN
and D2R-MSN mEPSC amplitudes for male animals treated with saline and cocaine. (D) Representative mEPSC traces from NAcSh MSNs for saline- and
cocaine-treated female animals recorded during diestrus. (E) Summary NAcSh D1R-MSN and D2R-MSN mEPSC frequencies for female animals treated with
saline and cocaine, recorded during diestrus. (F) Summary NAcSh D1R-MSN and D2R-MSN mEPSC amplitudes for female animals treated with saline and
cocaine, recorded during diestrus, *p , .05 vs. (I). (G) Representative mEPSC traces from NAcSh MSNs for saline- and cocaine-treated female animals
recorded during estrus. (H) Summary NAcSh D1R-MSN and D2R-MSN mEPSC frequencies for female animals treated with saline and cocaine, recorded
during estrus. (I) Summary NAcSh D1R-MSN and D2R-MSN mEPSC amplitudes for female animals treated with saline and cocaine, recorded during estrus.
Neuronal recordings came from a minimum of 3 mice per treatment group (3–6 mice per group). D1R, D1 receptor; D2R, D2 receptor; mEPSC, miniature
excitatory postsynaptic current; MSN, medium spiny neuron; NAcSh, nucleus accumbens shell.
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It was hypothesized in a recent review that males are more
likely to engage in drug usage for sensation seeking (i.e.,
positive reinforcement), whereas females are more likely to
take drugs for self-medication (i.e., negative reinforcement),
downward spirals that are exacerbated with continued use
(22). It is provocative to consider that the sex differences re-
ported here provide the neurophysiological underpinnings to
support this hypothesis. Future experiments will further
examine behavioral and physiological correlates related to sex
differences and drug-taking behavior to test this theory.

Another important finding is that D1R-MSN plasticity is a
normal process across the estrous cycle. Remarkably, the
magnitude of change in D1R-MSN excitability across the
estrous cycle was comparable to the effect of cocaine in males
(see Figure 2B, K). This basic neurophysiological finding may
help explain several behavioral phenomena across the female
estrous cycle, such as reproductive behavior (e.g., seeking out
a mate, copulation, etc.). Increased D1R-MSN neuronal
excitability during the estrus phase of the estrous cycle should
theoretically drive increased appetitive behaviors, including
reproductive behavior and sexual receptivity (44). This could be
Biological Psychiatr
contrasted with diestrus, when D1R-MSN excitability is lower,
and females are not sexually receptive (44). These estrous
cycle–dependent neurophysiological findings in the NAcSh
may also be related to estrous cycle–dependent feeding
habits. Feeding behavior in rats was lowest during proestrus/
estrus and greatest during metestrus/diestrus (45). Further-
more, metestrus/diestrus animals exhibited greater motivation
to work for sucrose pellets than proestrus/estrus females (45).
In diestrus, we found that NAcSh D1R-MSN excitability was
lower, which may drive diestrus female motivation for sucrose
pellets (e.g., to increase D1R-MSN excitability). Again, this can
be contrasted with what we found in the NAcSh during estrus,
where D1R-MSNs are already excitable compared with dies-
trus animals.

In females, cocaine arrested D1R-MSN plasticity while
simultaneously initiating estrous cycle–dependent changes in
D2R-MSN. The implications of these results are numerous. One,
if D1R-MSN and D2R-MSN reflect appetitive and aversive re-
sponses as described above, motivational fluctuations across
the estrous cycle are based on entirely different processes in
drug-naïve versus drug-treated individuals. Alterations in
y: Global Open Science May 2024; 4:-–- www.sobp.org/GOS 7
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Figure 4. Sexdifferences inD1R- andD2R-MSNexcitability in response to cocaine. Inmales, cocainedecreasesD1R-MSN (D1R) excitability, furthering thebaseline
discrepancy between D1R- and D2R-MSN (D2R) excitability. For females, estrous cycle–dependent fluctuations in D1R-MSN excitability under baseline conditions
results in a relative balance of activity during estrus. Following cocaine, changes in D1R-MSN plasticity are arrested, and an estrous cycle–dependent D2R-MSN
plasticity emerges, exacerbating the discrepancy in excitability between these neuronal subtypes during estrus. Note that females in diestrus have virtually identical
D1R- and D2R-MSN neuronal excitability with and without cocaine. D1R, D1 receptor; D2R, D2 receptor; MSN, medium spiny neuron.
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NAcSh physiology following cocaine administration are also
enduring, at least in males (2,7). It will be important to determine
whether this shift in D1R-MSN to D2R-MSNplasticity in females
across the estrous cycle endures not only for weeks, but also
possibly for months or years. Furthermore, it will be important to
determine the timing of when this switch occurs (the first day or
last day of cocaine exposure or during the abstinence period)
and whether it is mediated by NAc membrane estrogen re-
ceptors (46) or by estrous cycle–dependent ventral tegmental
area–generated dopamine (24,47). In addition, while the
mechanism by which cocaine produces these changes is
currently unknown, it may also play a role in enhancement of
cocaine conditioned place preference during estrus over dies-
trus (24), the time when D2R-MSNs exhibit heighted excitability.

Future studies will also need to determine whether other
drugs of abuse produce similar sex-specific changes within the
nervous system. Because the rodent estrous cycle repeats
every 4 to 5 days, emphasis should be placed in understanding
how the hypothalamus-pituitary-gonadal axis produces and/or
aromatase activity in the NAc (48,49) contributes to these
dynamic changes in neuronal activity. By having a greater
understanding of the mechanisms by which the estrous cycle
produces MSN plasticity (Figure 4), we may better identify
treatments to reverse long-term drug-induced changes within
these same populations of neurons across both sexes.
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