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Abstract

Humans interact with the environment through sensory and motor acts. Some of these interactions require synchronization
among two or more individuals. Multiple-trial designs, which we have used in past work to study interbrain synchronization
in the course of joint action, constrain the range of observable interactions. To overcome the limitations of multiple-trial
designs, we conducted single-trial analyses of electroencephalography (EEG) signals recorded from eight pairs of guitarists
engaged in musical improvisation. We identified hyper-brain networks based on a complex interplay of different
frequencies. The intra-brain connections primarily involved higher frequencies (e.g., beta), whereas inter-brain connections
primarily operated at lower frequencies (e.g., delta and theta). The topology of hyper-brain networks was frequency-
dependent, with a tendency to become more regular at higher frequencies. We also found hyper-brain modules that
included nodes (i.e., EEG electrodes) from both brains. Some of the observed network properties were related to musical
roles during improvisation. Our findings replicate and extend earlier work and point to mechanisms that enable individuals
to engage in temporally coordinated joint action.
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Introduction

In daily life, people must often coordinate their actions with

those of others. Recent research indicates that synchronized brain

activity accompanies coordinated behavior [1–6]. Oscillatory

couplings also have been observed for other biological functions,

such as respiration and cardiac activity during choir singing [7].

However, the neural mechanisms that implement interpersonally

coordinated behavior remain elusive [8–10].

In a previous study [4], we observed duets of guitarists playing a

short melody in unison. We found that phase synchronization

within and between brains increased significantly during periods of

preparatory metronome tempo setting and coordinated play onset.

In addition, phase alignment extracted from within-brain dynam-

ics was related to behavioral play onset asynchrony between

guitarists. Using a similar paradigm, Sänger et al. [6] found that

phase locking as well as within-brain and between-brain phase-

coherence connection strengths were enhanced at frontal and

central electrodes during periods that put particularly high

demands on musical coordination. Phase locking was modulated

in relation to the experimentally assigned musical roles of leader

and follower, corroborating the functional significance of synchro-

nous oscillations in dyadic music performance. In addition, graph

theory analyses revealed within-brain and hyper-brain networks

with small-world properties that were enhanced during musical

coordination periods as well as community structures encompass-

ing electrodes from both brains, termed hyper-brain modules. Taken

together, these findings suggest that between-brain synchroniza-

tion during duet playing cannot be reduced to processing

similarities induced by attending to similar or identical external

stimuli. Instead, between-brain synchronization also reflects, to

some extent at least, the behavioral dynamics between the two

players.

Related work from other groups supports the view that

interbrain synchronization is functionally related to interpersonal

action coordination. Dumas and colleagues [3] investigated the

spontaneous imitation of hand movements recorded with a dual-

video and dual-EEG setup. Using video recordings, they classified

segments of behavior as synchronous or non-synchronous. When

comparing the two, they found statistically significant phase

locking across time between electrodes of the model and the

imitator, predominantly in episodes of synchrony among alpha-

mu, beta and gamma frequency bands. Others have investigated

directed coupling between different electrodes or cortical regions

both within and between brains [1,2,11,12] with measures based

on the concept of Granger Causality [13]. In this context,

measures derived from graph theory, which is increasingly popular

in the neurosciences in general [14–21], have also been

successfully applied in inter-brain studies [1,2,6]. The functional

role of the different frequency bands combined with a graph-

theoretical approach (GTA) has been taken into account in these

studies (e.g., [1,2,6]), however, the differential contributions of

different frequencies to intra- and inter-brain couplings have

remained unclear. Furthermore, frequency-specific properties of

hyper-brain network topology during interpersonal action coordi-

nation or musical improvisation have not been studied thus far.

In this study, we aim to describe and quantify the individual and

joint brain networks of guitarists improvising jazz together in pairs.

For this purpose, we applied new coupling measures based on the
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phase dynamics of synchronous brain oscillations within and

between the brains, which we then fed into a graph-theoretical

evaluation of ‘‘hyper-brain networks’’ [2,6]. In doing so, we

wished to investigate three sets of key issues.

First, we examined the general properties of brain networks

during an activity that is likely to involve all of the following: (a)

many degrees of freedom (e.g., improvisation instead of playing

from a score), (b) a strong emphasis on interpersonal action

coordination, and (c) a strong need to engage in mentalizing (e.g.,

trying to imagine what the musical partner will do next). We

assumed that an activity marked by these properties would give

rise to a hyper-brain module that is defined by coordinated activity

within and between the two brains.

Second, we were interested in exploring differential contribu-

tions of within-brain and between-brain partitions of the network

to the hyper-brain network as a whole. For this purpose, we

analyzed the intra- and inter-brain connectivity for 17 frequency

components or frequencies of interest (FOI) between 2 and 28 Hz.

Based on findings in the literature that are related to coordinated

behavior [4,6,22,23], we decided to restrict our analyses to

frequency bands below 30 Hz. This decision was further

motivated by evidence indicating that low-frequency EEG or

MEG (magnetoencephalography) oscillations (up to 30 Hz) are

involved in limb and hand movement control [24–28] and in

sensorimotor integration [29], which are essential during guitar

playing. For this reason, we expected that inter-brain synchroni-

zation at higher gamma frequency, which has been observed in a

few studies [1,3], would be of minor importance. We expected that

intra- and inter-brain coupling would involve different oscillatory

networks, either preferring high (e.g., within brains) or low (e.g.,

between brains) communication frequencies. This expectation was

based on the assumption that inter-brain communication is

operating at longer timescales than intra-brain coupling.

Third, we explored whether different musical roles would map

onto differences in brain network properties. We expected that the

coupling strength would be stronger when the two guitarists were

playing together than when one guitarist was playing and the other

was listening, as the former, on average, may require more

coordination. For the same reason, we expected differences in

network topology in these two different situations, which would

also be frequency dependent, given the assumed differential

contributions of intra-brain and inter-brain portions of the

network to the hyper-brain structure.

Methods

Participants
Nine pairs of professional guitarists participated in the study.

One pair was excluded from data analysis because of recording

artifacts. Analyses presented here are based on the remaining eight

pairs of guitarists. One guitarist was a member of four of the pairs.

Each of the remaining four pairs involved different guitarists. Thus

altogether, 13 guitarists participated in the study. Participants’

mean age was 29.5 years (SD = 10.0). All participants were right-

handed and had been playing the guitar professionally for more

than 5 years (mean = 15.7 years, SD = 9.3). The Ethics Committee

of Max Planck Institute for Human Development approved the

study, and it was performed in accordance with the ethical

standards laid down in the 1964 Declaration of Helsinki. All

participants volunteered for this experiment and gave their written

informed consent prior to their inclusion in the study. The subject

of the movie (Movie S1) had given written informed consent, as

outlined in the PLOS consent form, for the publication of the

movie.

EEG Data Acquisition and Preprocessing
EEG measurement took place in an acoustically and electro-

magnetically shielded cabin. Each pair of participants took part in

three sessions of 5–7 min each. During the first session, guitarist A

freely played a melody (improvisation) while guitarist B was

listening (Play A). During the second session, guitarist B played

and guitarist A listened (Play B). During the third session, both

guitarists played a duet improvisation (Play AB). Typically, this

would mean that one guitarist played a melody, while the other

one was accompanying him or her with chords. Seven of the pairs

switched roles several times during the improvisation; in the

remaining two pairs, one of the two guitarists played the melody

all the time. In contrast to our previous studies [4,6], we did not

use a metronome. Hence, guitarists were free to choose their

preferred tempo.

Measurement took place continuously throughout the sessions.

Through one microphone each, the sounds of the guitars were

recorded on two EEG channels simultaneously with the EEG

recordings. In addition, video and sound were recorded using

Video Recorder Software (Brain Products, Munich, Germany),

synchronized with EEG data acquisition (a video recording of a

pair of guitarists playing an improvisation together, with the

corresponding EEG and microphone-channel recordings can be

found in the Movie S1). Microphone and video recordings were

used for the offline setting of event triggers in the EEG recordings

later on. EEG was simultaneously recorded from both participants

using two electrode caps with 64 Ag/AgCl electrodes each, placed

according to the international 10–10 system, with the reference

electrode at the right mastoid. The vertical and horizontal

electrooculogram (EOG) was recorded to control for eye blinks

and eye movements. The sampling rate was 5000 Hz. Recorded

frequency bands ranged from 0.01 to 1000 Hz. Different

amplifiers with separate grounds were used for each individual,

optically coupled to the same computer. Given the possibility of

mastoid asymmetries, data were re-referenced offline to an average

of the left and right mastoid separately for each participant. EEG

recordings were band-pass filtered from 0.5 to 70 Hz and

corrected for eye movements using the Gratton and Coles

algorithm [30]. This algorithm corrects ocular artifacts by

subtracting the voltages of EOG channels scaled by the correction

or propagation factor. The correction factor is estimated by linear

least-square regression between EOG and EEG, whereby the

EOG serves as the independent variable. As stated by Hoffmann

and Falkenstein [31], regression-based eye correction methods

(e.g., Gratton and Coles algorithm) provide comparable results to

an independent component analysis (ICA) approach.

Spontaneous EEG activity was resampled at 250 Hz and

divided into10-s epochs. Eye blink and movement artifacts were

rejected based on a gradient criterion with a maximum admissible

voltage step of 50 mV, and a difference criterion with a maximum

admissible absolute difference of 200 mV between two values in a

segment. A visual inspection in a semiautomatic mode was also

performed. Only artifact-free epochs were chosen for further

analyses. To reduce the amount of data and to overcome the

problem of volume conduction between neighboring electrodes,

we selected 21 electrodes based on the 10220 system (Fp1, Fpz,

Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8,

O1, Oz, and O2). These electrodes are distributed across the

entire cortex, so that the information of the remaining electrodes

would be rather redundant.

Phase Synchronization (Coupling) Measures
To investigate phase coupling in a directed and frequency-

resolved manner (cf. [7]), we applied an analytic or complex-
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valued Morlet wavelet transform to compute the instantaneous

phase in the frequency range from 0 to 50 Hz in 0.002-Hz steps

(see Figure 1A). The complex mother Morlet wavelet, also called

Gabor wavelet, has a Gaussian shape around its central frequency

f:

w(t,f )~ s2p
� �{1=4

e {t2=2s2ð Þz3=2pjftð Þ,j~
ffiffiffiffiffiffiffiffi
{1
p

in which s is the standard deviation of the Gaussian envelope of

the mother wavelet. The wavelet coefficients were calculated with

a time step of 5 leading to a time resolution of 20 ms and

frequency resolution of 0.122 Hz. To identify the phase relations

between any two channels, the instantaneous phase difference

DQmn(t, f) was then computed from the wavelet coefficients for all

possible electrode pairs within and between the brains (see

Figure 1B).

Several different synchronization measures were obtained from

these phase differences for frequency of interest fi. First, we

obtained the Phase Synchronization Index (PSI), which is defined

by

PSIW(fi)~DSejDWk fið ÞTD,j~
ffiffiffiffiffiffiffiffi
{1
p

,

where DWk~ mod Wk
m fi,tð Þ{Wk

n fi,tð Þ,2:p
� �

is the phase differ-

ence at the frequency fi between the instantaneous phases of the

two signals across k data points in the segment;

Wk
m fið Þ~ arg yk

m fið Þ
� �

and Wk
n fið Þ~ arg yk

n fið Þ
� �

. The PSI is

similar to phase coherence, with the difference that the PSI

measures phase stability or phase invariance across time within a

trial or time series (e.g., [32]).

In addition to the PSI (see Figure 1C), which is independent

from the phase angle in the sense that PSI can be high at different

phase angles (phase angle differences), we calculated further

synchronization indexes reflecting in-phase synchronization be-

tween two electrodes, that is, the extent to which the angle of

phase differences approximates 0 [7]. Given the estimates of the

phase difference between pairs of signals (channels), it is possible to

ascertain how long the phase difference remains stable in defined

phase angle boundaries by counting the number of points that are

phase-locked at a defined time window. We adapted and slightly

modified the procedure described in Kitzbichler et al. [33] in that

we divided the range between 2p/4 and +p/4 into two ranges

and distinguished between positive and negative deviations from

phase zero. As shown in Figure 1D, we marked negative deviations

in the range between 2p/4 and 0 in blue (coded with ‘‘21’’) and

the positive deviations in the range between 0 and +p/4 in red

(coded with ‘‘+1’’). Phase difference values beyond these range

were marked with green (coded with ‘‘0’’) and represent non-

synchronization. In the case of two channels, A and B, a blue

stripe in the diagram would mean that the phase of channel B

precedes the phase of channel A and a red stripe would mean that

the phase of channel A precedes the phase of channel B. We then

counted the number of data points that are phase-locked,

separately, in each of these two ranges. Before counting, successive

points in the defined range (between 2p/4 and +p/4) with a time

interval shorter than a period of the corresponding oscillation at

the given frequency (Ti = 1/fi) were discarded from the analysis.

This cleaning procedure effectively eliminated instances of

accidental synchronization (cf. Figures 1E and 1F). On the basis

of this counting, we obtained several synchronization indices: (1)

the Positive Coupling Index, PCI, or the relative number of phase-

locked points in the positive range (between 0 and +p/4); (2) the

Negative Coupling Index, NCI, or the relative number of phase-

locked points in the negative range (between 2p/4 and 0); (3) the

Absolute Coupling Index, ACI, or the relative number of phase-

locked points in the positive and negative range (i.e., between 2p/

4 and +p/4) indicating in-phase synchronization; (4) the Integra-

tive Coupling Index, ICI, calculated by the formulae:

ICI~
PCIzACI

2:ACI
:
ffiffiffiffiffiffiffiffiffi
PCI
p

The ICI is equal to 1 when all points are phase-locked and

positive; if all phase-locked points are negative, the term PCIzACI
2

will approach 0.5, and, through multiplication with
ffiffiffiffiffiffiffiffiffi
PCI
p

, the ICI

will approach 0. Thus, the ICI measure ranges from 0 and 1 and is

asymmetric, (ICIAB ? ICIBA) indicating the relative extent of

positive phase synchronization [7]. These indexes were computed

across all possible electrode pairs within and between the brains

and are presented on a two-dimensional graph (Figure 1G) and

brain maps (Figure 1H).

All previous coupling measures (PCI, NCI, and ACI) are related

to all measurement points in the window and range from 0 and 1.

PSI and ACI are symmetrical measures (i.e., PSIAB = PSIBA and

ACIAB = ACIBA) and have similar properties when synchronization

is in phase. Positive and Negative Coupling Indexes are

asymmetrical in the sense that PCIAB ? PCIBA, however,

(PCIAB+NCIAB) = –(PCIBA+NCIBA) or PCIAB = |NCIBA|. The ad-

vantage of all these synchronization indexes, including the PSI, is

that they measure synchronization in real time, and do not require

comparisons across trials. Hence, they are suitable for analyzing

continuous EEG signals.

To test and validate the described coupling measures (PSI, ACI,

and ICI), we used the framework of ‘‘The Virtual Brain’’

developed by Viktor Jirsa and colleagues (TVB, www.

thevirtualbrain.org; [34–35]). Simulation results showed that all

three measures capture the intended coupling properties. These

results are described in Text S1 and Figure S1. We restrict the

description of our study results to the ICI measure, which is most

informative due to its directionality. Results concerning PSI and

Figure 1. Schematic presentation of phase synchronization analyses. A, Complex Morlet wavelet transformation of signals from two
channels (Fz and Cz) in time-frequency domain. B, Time course of instantaneous phases from these two channels and their phase difference
(Fz = violet curve; Cz = green curve; Fz-Cz = red curve). C, The phase difference is depicted in form of the vectors in complex space, where the blue
arrows reflect single phase angles and the red arrow represents the mean vector of the angular dispersions; its length displays the PSI measure. D,
Coding of the phase difference of two signals, S1 (e.g., Fz) and S2 (e.g., Cz), at a given frequency (2p/4, S1–S2,0: blue stripes; 0, S1–S2, +p/4: red
stripes; S1–S2, 2p/4 or S1–S2. +p/4: green stripes = non-synchronization). E, Pair-wise synchronization pattern of the inter-brain network including
all possible inter-brain connections from the one guitarist’s brain to the other (441 lines). Each line represents one pair of channels, such that there
are 21 lines for each channel representing the coded phase difference between this channel and all other channels of the companion guitarist. Note
that these phase differences coded with +1 (red), 0 (green), or –1 (blue) at each time point are used to calculate the four synchronization measures
(i.e., PCI, NCI, ACI, and ICI) described in the Methods. F, The same synchronization pattern as in E after the cleaning procedure described in the text. G,
Connectivity matrix of the joint network (42642) with all significant intra- and inter-brain connections for the ICI (Integrative Coupling Index). H, Brain
maps indicating significant connections between the brains.
doi:10.1371/journal.pone.0073852.g001

Inter-Brain Couplings during Musical Improvisation

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e73852



ACI can also be found in the Text S1 and corresponding

Supplementary Figures.

Graph-Theoretical Approach (GTA)
Threshold determination. To determine the network

properties, the thresholds of the synchronization or coupling

measures were calculated first. For this purpose we generated

surrogate data through a random permutation of available data

points (‘‘shuffling’’) of all epochs at all channels included in the

analyses, and then calculated the corresponding synchronization

measures between all possible electrode pairs on the basis of these

surrogate data. Thereafter, we applied a bootstrapping procedure

with 1,000 resamples of the coupling measures obtained from the

surrogate data set and determined the threshold as the boot-

strapping mean plus the confidence interval at a significance level

of p,0.0001 [36–38]. We used a high threshold level to obtain

sparse networks with highly reliable connections. Only coupling

values larger than the threshold value were considered as a link or

edge in the given network.

Degrees and strengths. As ICI is a directed measure, we

obtained the degree as the sum of in- and out-degrees, in which

the in-degree is the sum of all incoming connections, kin
i ~

P
j[N

aji,

and the out-degree is the sum of all outgoing connections,

kout
i ~

P
j[N

aij . To calculate strengths, we then replaced the sum of

the links with the sum of weights, kw
i ~

P
j[N

wij . Thus, the strength

can be considered as the weighted degree [20]. We determined

degrees and strengths for the whole network of each guitarist pair

and then calculated them for the within-brain network of each

guitarist (A and B) separately. To exclusively determine the

between-brain degrees and strengths, we subtracted degrees (and

respectively strengths) of the within-brain network from the

corresponding links of the network including both brains.

Clustering Coefficient (CC) and Characteristic Path

Length (CPL). If the nearest neighbors of a node are also

directly connected to each other, they form a cluster. For an

individual node, the CC is defined as the proportion of the existing

number of connections to the total number of possible connec-

tions:

Ci~
2ti

ki(ki{1)
or Cw

i ~
2tw

i

ki(ki{1)

for binary and weighted networks, respectively, with

ti~
1
2

P
j,h[N

aijaihajhbeing the number of triangles around a node i.

Usually, Ci is averaged over all nodes to obtain a mean clustering

coefficient (CC) of the graph:

CC~
1

n

X
i[N

Ci:

In the case of a directed graph, the mean CC is calculated by the

formula:

CC~
1

n

X
i[N

Cd
i ~

1

n

X
i[N

td
i

(kout
i zkout

i )(kout
i zkout

i {1){2
P
j[N

aijaji

:

Random networks have low average clustering coefficients,

whereas complex or small-world networks have high clustering

coefficients (associated with high local efficiency of information

transfer and robustness). Thus, the clustering coefficient is a

measure of segregation.

Another important measure is the CLP. In the case of an

unweighted graph, the shortest path length or distance di,j between

two nodes i and j is the minimal number of edges that have to be

passed to go from i to j. This is also called the geodesic path

between the nodes i and j. The CLP of a graph is the mean of the

path lengths between all possible pairs of vertices:

CPL~
1

n

X
i[N

Li~
1

n

X
i[N

P
j[N,j=i dij

n{1
:

In the case of a weighted and directed graph the weight and

direction of the links will be considered.

Random and complex real networks (or small-world networks,

SWNs) have a short CPL (high global efficiency of parallel

information transfer), whereas regular lattices have a long CPL. In

this sense, CPL shows the degree of network integration, with a

short CPL indicating higher network integration.

Small-worldness coefficients. To investigate the small-

world properties of a network, it is common practice to compare

its clustering coefficient and characteristic path length to those of

regular lattices and random graphs. For this purpose, we

constructed regular (lattice) and random networks that have the

same number of nodes and the same mean degree as the observed

networks. Random networks were constructed through random-

ization of the edges in the observed network. Lattice networks

were configured like random networks, but edges were addition-

ally redistributed after an initial random permutation such that

they lie close to the main diagonal [39]. These network

reconstructions for random and regular networks were carried

out 20 times for each individual network. Average CC and CPL

were then determined for these individual control networks.

Using these graph metrics, specific quantitative small-world

metrics were obtained. The first small-world metric, the so-called

small-world coefficient s, is related to the main metrics of a

random graph (CCrand and CPLrand) and is determined on the basis

of two ratios c~CC=CCrand and l~CPL=CPLrand :

s~
c

l
~

CC=CCrand

CPL=CPLrand

The small-world coefficient s has been used in numerous

networks showing small-world properties and has been found to be

greater than 1 in the SWN (s .1). The second small-world metric,

the so-called small-world coefficient v, is defined by comparing

the clustering coefficient of the observed network to that of an

equivalent lattice network and comparing the characteristic path

length of the observed network to that of an equivalent random

network:

v~
CPLrand

CPL
{

CC

CClatt

This metric is ranged between 21 and +1 and is close to zero

for SWN (CPLSWN<CPLrand and CCSWN<CClatt). Thereby,

negative values indicate a graph with more regular properties

Inter-Brain Couplings during Musical Improvisation
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(CPLSWN..CPLrand and CCSWN<CClatt), and positive values of v
indicate a graph with more random properties (CPLSWN<CPLrand

and CCSWN,,CClatt ). The clear advantage of the metric v
compared to s is the possibility to define how much the network of

interest is like its regular or random equivalents [40].

Community structures and definition of node roles within

the brain networks. To further investigate the topological

properties of the hyper-brain networks, community structures for

weighted undirected and directed networks, as well as indices of

modularity (M), the within-module degree (Zi) and the participa-

tion coefficient (Pi) were determined (cf. [20]). For this calculation,

the modularity optimization methods [41,42] were used, which are

implemented in the Brain Connectivity Toolbox (https://sites.

google.com/site/bctnet/; cf. [20]). The optimal community

structure is a subdivision of the network into non-overlapping

groups of nodes in a way that maximizes the number of within-

module edges, and minimizes the number of between-module

edges. The modularity (M) is a statistic that quantifies the degree to

which the network may be subdivided into such clearly delineated

groups or modules and is given for weighted networks by the

formula [42]:

Mw~
1

lw

X
i,j[N

wij{
kw

i kw
j

lw

� �
:dmi ,mj ,

where lw~
P

ij wij and wij represents the weight of the edge

between i and j, N is the total number of nodes in the network, kw
i

and kw
j are weighted degrees or strengths of the nodes i and j, mi is

the module containing node i, mj is the module containing node j,

and dmi ,mj
is the Kronecker delta, where dmi ,mj

= 1 if mi = mj, and 0

otherwise. For directed unweighted networks, modularity was

calculated in similar way by the formula [41]:

M?~
1

l

X
i,j[N

aij{
kin

i kout
i

l

� �
:dmi ,mj ,

where l~
P

ij aij is the number of edges in the graph, and aij is

defined to be 1 if there is an edge from j to i and zero otherwise, kin
i

and kout
i are the in- and out-degrees of the node i, and dmi ,mj

is

again the Kronecker delta. High modularity values indicate strong

separation of the nodes into modules. M = 0 if nodes are placed at

random into modules or if all nodes are in the same cluster [43].

The within-module degree Zi indicates how well node i is

connected to other nodes within the module mi. It is determined

by

Zi~
ki(mi){�kk(mi)

sk(mi )
,

where ki(mi) is the within-module degree of node i (the number of

links between i and all other nodes in mi). �kk(mi) and sk(mi ) are the

mean and standard deviation of the within-module degree

distribution of mi. The within-module degree Zi is 0 if all the

nodes of the module have the same number of edges (e.g., if all the

nodes within the module are fully interconnected with each other);

otherwise, it has negative or positive values depending on the

number of links at the different nodes.

The participation coefficient Pi describes how well the nodal

connections are distributed across different modules:

Pi~1{
X
m[M

ki(mi)

ki

	 
2

,

M is the set of modules, ki(mi) is the number of links between

node i and all other nodes in module mi, and ki is the total degree

of node i in the network. Correspondingly, Pi of a node i is close to

1 if its links are uniformly distributed among all the modules and 0

if all of its links lie within its own module. Zi- and Pi-values are

characteristic for the different roles of the nodes in the network

[43].

Following Guimerà and Amaral [43], we heuristically defined

eight different universal roles, each characterized by Z- and P-

values dividing the Z-P parameter space into eight different

regions:

R1 (Z,1.4; P,0.05) – non-hub ultra-peripheral nodes,

R2 (Z,1.4; 0.05,P,0.5) – non-hub peripheral nodes,

R3 (Z,1.4; 0.5,P,0.8) – non-hub connector nodes,

R4 (Z,1.4; P.0.8) – non-hub kinless nodes,

R5 (Z.1.4; P,0.05) – hub ultra-peripheral nodes,

R6 (Z.1.4; 0.05,P,0.5) – hub peripheral nodes,

R7 (Z.1.4; 0.5,P,0.8) – hub connector nodes,

R8 (Z.1.4; P.0.8) – hub kinless nodes.

The community structures and corresponding measures (M, Zi,

and Pi) were determined for the joint networks of the two guitarists

and for each individual brain separately. As the separate within-

brain networks showed relatively low modularity values (M ,0.30;

cf. [44,45]), we only report results for the joint networks. All GTA

measures described here were determined using the Brain

Connectivity Toolbox (cf. [20]) for 17 frequency components: 2,

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 24, and 28 Hz.

EEG Data Reduction and Statistical Analyses
For statistical analyses, we collapsed frequencies into five bands:

delta (2–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta1 (14–20 Hz)

and beta2 (24–28 Hz). Also, individual electrodes were collapsed

into three regions along the anterior-posterior axis (frontal, central

and parieto-occipital). Degrees and strengths were statistically

evaluated for hyper-brain networks and separately for within- and

between-brains connections. A four-way repeated-measures AN-

OVA with a between-subject factor Guitarist (guitarist A vs.

guitarist B) and three within-subject factors Play Condition (Play

A, Play B, and Play AB), Frequency Band (delta, theta, alpha,

beta1, and beta2), and Site (frontal, central, and parietal) was used

for all the coupling measures (PSI, ACI, and ICI). CC, CPL, and M,

which were determined for hyper-brain networks only, were tested

using a two-way repeated-measures ANOVA with two within-

subject factors Play Condition and Frequency Band.

Results

By simultaneously recording the EEG of two people, we

measured the electrophysiological brain activity of eight pairs of

guitarists during musical improvisation. The two guitarists were

either playing simultaneously, or one of them was playing while

the other was listening. A video recording of a pair of guitarists

playing together with the corresponding EEG is available as a

Movie S1. As mentioned in the Methods section, we restrict the

description of our results to the directed ICI measure. Results

regarding PSI and ACI can be found in the Supporting

Information files. With a few exceptions, the pattern of results
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obtained with PSI and ACI matched the pattern of results obtained

with ICI.

Phase Synchronization and Brain Connectivity Patterns
In Figure 2, we illustrate time-frequency diagrams of synchro-

nization patterns between two electrodes within (Fza to Pza or Fzb

to Pzb; see Figure 2A and 2B, respectively) and between (Fza to

Fzb and Pza to Pzb, see Figure 2C and 2D, respectively) the brains

in the frequency range between 0 and 30 Hz while (i) guitarist A is

playing and guitarist B is listening; (ii) guitarist B is playing and

guitarist A is listening; and (iii) both guitarists are playing together.

It can be seen that in all these cases there is a complex interplay of

synchronization patterns across frequencies and time, with the

direction of temporal phase differences marked in blue and red,

respectively. It is not surprising that synchronization within the

brains is always stronger than that between the brains, but

synchronization both within and between the brains seems to be

strongly related to the plucked notes or chords that are played

(compare Figure 2E). Furthermore, there is strong phase

alignment across frequencies, which indicates coactivity between

different networks operating in different frequency domains.

Within-brains synchronization patterns at the frequency of

interest (fi = 6 Hz) across all possible electrode pairs for guitarists A

and B are presented in Figures 3A and 3B, respectively. The

between-brains synchronization pattern is depicted in Figure 3C.

Corresponding recordings of acoustic channels for guitarists A and

B as well as the AB duet are presented below in the respective

synchronization patterns in Figure 3D. The connectivity matrices

corresponding to the individual and duet synchronization patterns

can be found in Figure 3E. The brain maps for ICI within and

between the brains are presented in Figures 3F (within) and 3G

(between). All panels in Figure 3 represent three playing conditions

(Play A, Play B, and Play AB). For better visualization, brain maps

containing the strongest within- and between-brain connections

are depicted. Figure S2 shows the entire network with all

significant connections within and between the brains.

Intra-brain connections were distributed across the entire cortex

involving different brain regions or networks (prefrontal, motor,

auditory, visual cortices, etc.) in both the playing and the listening

guitarist, with slightly stronger interconnectivity within the playing

guitarist’s brain. The inter-brain connectivity differed between the

two guitarists: While guitarist A showed strong outgoing connec-

tions from frontal and central regions, the outgoing connections of

guitarist B are distributed across different regions, with a relatively

high number of connections going to frontal and occipital (e.g.,

Oz) electrodes of guitarist A. However, it should be noted here

that connectivity patterns varied from pair to pair and across

segments within pairs. To describe these changes in greater detail,

we used the GTA.

Statistical Evaluation of GTA Measures
Degrees and strengths. Strengths averaged across partici-

pants separately for the three play conditions and 21 electrode sites

are represented in Figure S3 for some frequencies of interest (6, 10,

16 and 28 Hz). At higher frequencies (8 Hz and higher), strengths

(in- and out-strengths) of the playing guitarists within their brains

were higher than that of listening guitarists. This is particularly the

case when playing solo. In addition, there were low strengths

between the brains in the duet-playing condition in the alpha

frequency range (e.g., 10 Hz), and high strengths between the

brains in the beta1 frequency range, especially at 16 Hz.

For statistical analyses, we collapsed frequencies into five bands:

delta (2–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta1 (14–20 Hz)

and beta2 (24–28 Hz). Also, individual electrodes were collapsed

into three regions along the anterior-posterior axis (frontal, central

and parieto-occipital). We obtained relatively similar results for

degrees and strengths as well as in- and out-degrees/2strengths.

Therefore, we only present out-strengths here, which are more

informative than degrees since they account for the weights of the

network links. The out-strengths were determined for the whole

network of the duet, encompassing both within- and between-

brain connections as well as separately for within- and between-

brain networks. For the joint networks, a four-way repeated-

measures ANOVA (Guitarist6Play Condition6Frequency Band

6 Site) for ICI revealed significant main effects of Frequency

Band, F(4,56) = 28.2, P,0.0001, g2 = 0.67, and Site,

F(2,28) = 28.0, P,0.0001, g2 = 0.67, indicating an increase in

strengths with higher frequency and a decrease in strengths from

frontal to parieto-occipital regions. Furthermore, significant

interactions of Guitarist 6 Play Condition, F(2,28) = 4.0,

P,0.05, g2 = 0.22, and Guitarist 6Play Condition 6Frequency

Band, F(8,112) = 10.1, P,0.0001, g2 = 0.42, were found, indicat-

ing higher strengths in the playing guitarist compared to his or her

listening partner. This difference was especially pronounced for

both beta frequency bands (i.e., beta1 and beta2). When both

guitarists were playing, there were no significant differences

between them. Similar results were found for within-brain

networks: Frequency Band, F(4,56) = 67.8, P,0.0001, g2 = 0.83;

Site, F(2,28) = 24.4, P,0.0001, g2 = 0.64; Guitarist 6 Play

Condition, F(2,28) = 4.1, P,0.05, g2 = 0.23; Guitarist 6 Play

Condition 6 Frequency Band, F(8,112) = 11.4, P,0.0001,

g2 = 0.45. In the between-brain network, however, statistical

analyses of strengths showed a significant decrease of strengths

with increasing frequency, indicated by the significant main effect

Frequency Band, F(4,56) = 216.0, P,0.0001, g2 = 0.94, and the

significant Frequency Band 6 Play Condition interaction,

F(8,112) = 3.0, P,0.05, g2 = 0.18. This inverse relationship

reflected variations in both within- and between-brains connec-

tions: increasing strength with higher frequency within the brains,

and decreasing strength with higher frequency between the brains

(see Table 1).

Clustering Coefficient (CC) and Characteristic Path

Length (CPL). CC and CPL were determined across all pairs

of guitarists for different frequency bins and play conditions, taking

into account intra- and inter-brain connections. Particular

frequencies were then collapsed into the five frequency bands

and analyzed using two-way repeated measures ANOVA (Play

Condition 6Frequency Band).

The rmANOVA showed a significant main effect of Frequency

Band only, indicating significant changes across the frequency

bands: CC increased with higher frequencies, F(4,28) = 158.8,

P,0.0001, g2 = 0.96), and CPL decreased, at least for beta1 und

beta2 frequency bands, F(4,28) = 29.6, P,0.0001, g2 = 0.81.

Small-worldness of hyper-brain networks. The small-

world characteristics (s and v) for the ICI measure in the different

frequency bands averaged across the three play conditions and all

guitarist pairs are presented in Figure 4. According to the small-

world coefficient s, the ICI-based hyper-brain networks corre-

spond to the SWN, wherein s is always greater than 1 and

increases with higher frequency. The small-world coefficient v
decreases with higher frequency and ranges between –0.22 and

0.05. This indicates that networks based on ICI possess more

random characteristics for the delta frequency band and more

regular characteristics for the beta frequency band. Statistical

analysis revealed only a significant main effect of Frequency Band

for both coefficients (s and v): s, F(4,28) = 46.38, P,0.0001,

g2 = 0.87), and v, F(4,28) = 72.08, P,0.0001, g2 = 0.91).
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Modularity, community structures and the Z-P

parameter space. Modularity (M), which was analyzed in the

same way as CC and CPL, showed a significant increase with

frequency, F(4,28) = 178.1, P,0.0001, g2 = 0.96, indicating the

stronger partitioning of networks synchronizing or communicating

at high frequencies (e.g., beta frequency bands).

To define how nodes were positioned in their own module and

with respect to other modules, we calculated the within-module

Figure 2. Phase synchronization patterns across frequencies (0–30 Hz) of one pair of guitarists under the three playing conditions
(Play A, Play B, and Play AB). A, Phase synchronization patterns within the brain of guitarist A (Fza to Pza). B, Phase synchronization patterns
within the brain of guitarist B (Fzb to Pzb). C, Phase synchronization patterns between the brains at the frontal electrode sites (Fza to Fzb). D, Phase
synchronization patterns between the brains at the parietal electrode sites (Pza to Pzb). E, Microphone traces of guitar A (yellow) B (purple),
respectively. Play A: Guitarist A is playing and guitarist B is listening; Play B: Guitarist B is playing and guitarist A is listening; Play AB: Both guitarist A
and B are playing.
doi:10.1371/journal.pone.0073852.g002
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degree (Zi) and participation coefficient (Pi) of the node i for the

whole network of a given pair. The within-module degree

measures how ‘well-connected’ node i is to other nodes in the

module, whereas the participation coefficient reflects how ‘well-

distributed’ the links of the node i are among the other modules. Zi

and Pi form together the so-called Z-P parameter space, with

different regions indicating specific roles of the nodes in this space

or these regions.

Figure 5 displays community structures and Z-P parameter

spaces for the three play conditions (Play A, Play B, and Play AB)

for all pairs of guitarists across the 10 different trials (see

Figures 5A, 5B, and 5C). When comparing community structures

at different frequencies (see Figure S4), we noticed that (i) the

brains of the two guitarists being in different musical roles can

always be differentiated independently of the frequency and the

number of modules, (ii) the number of modules decreased with

increasing frequency from about 3–4 (sometimes 5) in the delta

and theta band to about 2–3 modules in the beta2 band, and (iii)

there were cases at all frequencies in which some electrodes from

different brains shared the same module (see Figures 5D and 5E).

Regarding the Z-P parameter space, we noticed for all the

measures a clear separation at P = 0.5 dividing the Z-P space into

two regions: peripheral nodes (P#0.5) and connectors (P.0.5).

According to the within-module degree, nodes with Z $1.4 were

defined as hubs and nodes with Z ,1.4 were defined as non-hubs.

This separation Z-value was chosen arbitrarily but it corresponds

to the definition of hubs as nodes containing much more edges

than the most of the nodes in the module (cf. [43]). The number of

hubs varied between 0.6% and 2.8% for all the three measures at

different frequencies. Depending on the participation coefficient,

we further divided hubs and non-hubs into eight different roles:

(R1) ultra-peripheral non-hubs (P#0.05), (R2) peripheral non-

hubs (0.05,P#0.5), (R3) connector non-hubs (0.5,P#0.8), (R4)

kinless non-hubs (0.8,P#1.0), and R5–R8 are then ultra-

peripheral, peripheral, connector, and kinless hubs, respectively.

We calculated the number of nodes falling into these regions.

Results of this calculation for the ICI at different frequencies are

displayed in Figure 6. It can be seen that the number of peripheral

nodes, especially of ultra-peripheral nodes, increased with higher

frequency, whereas the number of connectors decreased. These

tendencies apply to both hubs and non-hubs. Interestingly, the low

number of peripheral nodes was compensated by the high number

of ultra-peripheral nodes, and vice versa (e.g., at the beta

frequency 14–28 Hz). Furthermore, there was a higher number

of non-hub connectors during separate playing (Play A and Play B)

than during joint playing (Play AB) at the alpha frequency (8–

12 Hz), whereas the joint playing was accompanied by a higher

number of hub-connectors at the delta (2–3 Hz) and theta (5–

7 Hz) frequency. We note that the present observations of

differences between joint and separate playing are not backed

up by inference statistics but are descriptive, and hence should be

treated with caution. Please note that results regarding ACI and

PSI measures are presented in Text S1, Tables S1 and S2, and

Figures S5, S6, S7, and S8.

Discussion

The primary objective of this study was to investigate the intra-

and inter-brain dynamics in pairs of guitarists improvising

together. In contrast to our previous studies [4,6], where phase

synchronization was measured across trials, we were interested in

obtaining phase synchronization indices that can be applied to

continuous data, or single trial analyses. Hence, we established

directed and undirected synchronization or coupling measures

derived from instantaneous changes in phase synchronization or

phase differences between two EEG signals across time at different

frequencies. These coupling indices measure different aspects of

phase synchronization and are suitable for single-trial analysis (see

also Text S1).

We observed phase synchronization patterns in the time-

frequency domain and showed that intra- and inter-brain phase

synchronization were operating at overlapping frequencies with

different modes, such that the phase of a given signal at a given

frequency can precede or follow another signal in phase.

Generally, however, phase alignment across frequencies was a

prominent feature of the data. Frequencies aligned in phase

support the hypothesis that cell assemblies both within and

between the brains synchronize during activities that require

Figure 3. Phase synchronization patterns at the frequency of interest (6 Hz) for all possible electrode pairs within and between the
brains under the three play conditions (Play A, Play B, and Play AB). A, Phase synchronization patterns within the brain of guitarist A. B,
Phase synchronization patterns within the brain of guitarist B. C, Phase synchronization patterns between the brains of the guitarists A and B. D,
Microphone traces of guitar A (yellow) and B (purple), respectively. E, Connectivity matrices of the joint network (42642) with all significant intra- and
inter-brain connections for the ICI (Integrative Coupling Index). F, Brain maps indicating significant connections within the brains. G, Brain maps
indicating significant connections between the brains.
doi:10.1371/journal.pone.0073852.g003

Table 1. Mean and standard deviation for strength of ICI
measures calculated separately for intra- and inter-brain
connections in the five frequency bands.

Frequency bands Intra-brain Inter-brain

Delta 7.42 (1.21) 2.28 (0.11)

Theta 8.05 (1.33) 1.86 (0.16)

Alpha 8.22 (1.50) 1.40 (0.13)

Beta 1 9.25 (1.39) 1.15 (0.09)

Beta 2 10.24 (1.43) 1.18 (0.14)

doi:10.1371/journal.pone.0073852.t001

Figure 4. Small-worldness coefficients sigma (s) and omega (v)
for the ICI measure in the five frequency bands (delta, theta,
alpha, beta 1,and beta 2). The X-axis corresponds to the five
frequency bands: De = Delta, Th = Theta, Al = Alpha, Be1 = Beta 1, and
Be2 = Beta 2.
doi:10.1371/journal.pone.0073852.g004
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interpersonal action coordination in the time domain, such as

musical improvisation. Phase-specific differences in phase state

may suggest that the putative causal influence from one signal to

the other is frequency dependent and may go in different

directions at the same time.

Graph-theoretical Measures: Degrees and Strengths
Next, we used graph-theoretical measures to describe the

properties of intra- and inter-brain networks while improvising on

the guitar in pairs. We found that (i) the strengths of outgoing

connections increased with higher frequencies and were strongest

at frontal sites, irrespective of the frequency, and (ii) the guitarist

playing alone showed higher out-strengths than the listening

guitarist, especially at the beta1 and beta2 frequencies, while no

significant differences (between the two guitarists) were found

when both guitarists were playing. Another interesting result was

that strengths decreased with frequency in the between-brain

networks, but increased with frequency in the within-brain

networks. This inverse association suggests that intra-brain and

inter-brain synchronization are operating at different modal

frequencies.

In the study of Dumas et al. [3], three different inter-brain

synchronization clusters among alpha-mu, beta and gamma

frequency bands were found during spontaneous imitation

episodes. In accordance with our findings, inter-brain synchroni-

zation measured by Phase Locking Value (PLV, a measure like PSI

in our study) was higher in the alpha-mu frequency band than in

the beta and gamma frequency bands. Furthermore, inter-brain

synchronization comparing induced imitation episodes with ‘‘No

View Motion’’ baseline could be found in the theta band only. The

present results also replicate our earlier work, where inter-brain

synchronization in guitarist duets as measured by Inter-Brain

Phase Coherence (IPC) was predominantly observed in the delta

and theta frequency bands [4,6]. Taken together, the findings

suggest a preponderance of low frequencies in inter-brain

synchronization. Using the directed ICI measure, which reflects

both strength and earliness in the phase angle, we were able to

further specify this observation in the present study.

As indicated by a Frequency Band6Play Condition interaction

for the inter-brain strengths, solo playing was accompanied by

higher strengths in the alpha frequency range, while joint playing

requires higher strengths in the beta1 frequency range (e.g., 16 Hz

as shown in Figure S3). Joint playing is more of an interaction than

solo playing and requires fast action coordination, which may be

supported by faster frequencies. We have shown that inter-brain

coupling generally prefers lower frequencies but faster frequencies

may sometimes be required to support highly coordinative actions.

Small-worldness, Segregation and Integration of Hyper-
brain Networks

As a graph theory description of brain networks, we also

computed the CC and the CPL as measures of segregation and

integration, respectively [20,46,47]. We found that both the CC

and CPL of the joint network of the two guitarists’ brains were

frequency dependent. Whereas the CC increased with higher

frequency, CPL decreased. Thus, directed networks measured by

ICI showed stronger segregation and stronger integration at higher

frequencies (e.g., beta1 and beta2). This tendency generalized

across the two playing conditions.

To investigate the small-world properties of the hyper-brain

networks, we compared their CC and CPL to those of regular

lattices and random graphs. In general, random networks have a

low average clustering coefficient, whereas complex or small-world

networks have a high clustering coefficient (associated with the

high local efficiency of information transfer and robustness).

Random and small-world networks have a short CPL (high global

efficiency of parallel information transfer), whereas regular

networks (e.g., lattices) have a long CPL. To investigate small-

world properties of the guitarists hyper-brain networks, we

constructed regular and random networks with the same number

of nodes and mean degree as our real networks and calculated two

different small-worldness coefficients (i.e., s and v). According to

the small-world coefficient s, the directed hyper-brain networks

correspond to SWN, whereby s increases with higher frequency.

This increase of s for ICI with higher frequency corresponds to

the increase of CC and decrease of CPL mentioned above. The fact

that the small-worldness coefficient v decreases with higher

frequency and goes from positive (e.g., delta frequency band) to

negative (especially for beta frequency band) indicates that ICI-

based hyper-brain networks become more regular at higher

frequencies. This seems to be a general tendency of the hyper-

brain networks, because their small-world coefficients did not vary

as a function of the play condition. In an MEG study, Stam [48]

showed that binary unweighted networks correspond to SWNs for

the delta and theta frequency bands, but are regular for the alpha

and beta frequency bands. In an EEG study [49], where SWN

properties were investigated using the synchronization measure at

different frequencies, a decrease of small-worldness with higher

frequency was also shown. The small-world index was not

calculated by the authors, but can be obtained from changes in

relative CC (c) and CPL (l); it approaches 1 at high frequencies.

Other studies also have reported changes in network topology with

a shift to more regular or more random networks, dependent on

frequency or frequency bands [50–53]. There is also neuro-

physiological evidence that small-world characteristics (e.g., CC

and CPL or c and l) can vary as a function of age [47,54,55] or

neuropathology [49,51,56–61], with a shift to a more regular or

more random network topology (for a review, see [62] as well as

[63]). According to a recent report, reduction in small-worldness is

associated with a decrease in local efficiency and with an abnormal

rise in interhemispheric connectivity [64]. Nevertheless, despite

the currently available data on variations in small-worldness, our

understanding of these differences is incomplete (see also results

regarding PSI and ACI measures in Text S1). Also, it needs to be

kept in mind that the results mentioned above all refer to single-

brain studies (cf. [65]). Thus, even less is known regarding inter-

brains networks. Further systematic research is needed to provide

better understanding of this very important issue.

Modular Properties of the Guitarists’ Networks
Modularity (M) measured for joint networks revealed a

significant increase with higher frequencies, indicating a stronger

Figure 5. Community structures and distribution of nodes in a Z-P parameter space under the three play conditions (Play A, Play B,
and Play AB). A–C, Community structure and Z-P parameter space for Play A, Play B and Play AB conditions. Community structure: In the X-axis
(Cases), 10 trials of each of the 8 guitarist pairs are displayed. In the Y-axis (Electrodes), 21 electrodes of each guitarist in the pair are displayed. The
color indicates the electrodes’ module affiliation. Z-P parameter space: The X- and Y-axes correspond to Partition coefficient (P) and Within-module
degree (Z), respectively. Yellow circles display guitarist A, and red circles – guitarist B. D–E, A case in which some electrode sites from different brains
share the same module, is displayed.
doi:10.1371/journal.pone.0073852.g005
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Figure 6. Changes in the number of nodes assuming different roles in the Z-P parameter space across the different frequencies for
the ICI measure. Changes are presented for ultra-peripheral non-hubs (R1), peripheral non-hubs (R2), connector non-hubs (R3), and corresponding
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partitioning of networks at higher frequencies. This stronger

partitioning was accompanied by a reduced number of modules,

with mostly two modules corresponding to the two brains of

guitarist A and B, respectively (e.g., at beta2 frequency). As

observed in our previous study [6], some nodes (electrode sites)

that comprised in the same module belonged to different brains.

The sharing of electrode sites from different brains in a common

module suggests that the brain areas under these electrodes may

participate in a function that engages both brains. Future research

needs to determine whether and in what way these brain areas

implement neuronal mechanisms of social interaction.

Next, we examined the Z-P parameter space of the joint

network by looking at the within-module degree (Z) and the

participation coefficient (P), which subdivide the Z-P parameter

space into the eight regions corresponding to eight different roles

of the nodes in the network: ultra-peripheral, peripheral,

connectors, and kinless hubs, and corresponding non-hubs. Non-

hub connectors are characterized by a low number of degrees or

strengths within the module, and by a relatively high number of

these between the modules. In contrast, hub-connectors have a

relatively a high number of degrees or strengths both within and

between the modules [43,66]. We calculated the number of nodes

assuming these different roles. A higher number of non-hub

connectors during solo playing (Play A and Play B) as compared to

joint playing (Play AB) could be found at the alpha frequency (8–

12 Hz), whereas the joint playing was accompanied by higher

number of hub-connectors at the delta (2–3 Hz) and theta (5–

7 Hz) frequency. Thus, coordinated guitar playing during jazz

improvisation increases the number of nodes having high

connectivity within and between the modules. In light of the

finding that strengths and degrees between brains increased at low

frequencies, we suggest that the increase of connector hubs at low

frequencies (e.g., delta and theta) during joint playing may be

related, at least in part, to between-brain connections. In sum, we

have shown that joint networks of guitarists’ duets during music/

jazz improvisation, derived from connectivity analyses using

different coupling measures, have a non-random modular

organization, where the nodes or electrode sites have different

functional roles within and between the modules, possibly

contributing to interpersonal action coordination (e.g., playing

guitar in duets).

Limitations and Issues for Future Research
The present study has limitations and leaves room for questions

to be addressed in future research. First, the sample size of our

study was small. Further studies with larger samples would provide

additional and more reliable information about coupling mech-

anisms during interpersonal action coordination. Second, certain

features of our data-analytic approach to the study of network

properties, such as the thresholding of coupling parameters and

the definition of topological roles in Z-P parameter space, are

somewhat arbitrary. Third, the synchronization measures used in

this study reflect 1:1 synchronization or synchronization at a given

frequency. Relative (i.e., n:m) as well as nonlinear (or weak)

synchronization [67,68] may also fulfill important functions during

interpersonal action coordination and should be investigated in the

future. Cross-frequency coupling between low and high frequen-

cies may be of particular importance, given that these frequencies

are differentially related to the coupling dynamics within and

between brains, as shown in the present study. Finally, and

perhaps most importantly, analyses of intra- and inter-brain

synchronization, such as the ones reported in this article, need to

be combined with detailed observations of the microstructure of

task-relevant behavior (e.g., gestures, eye movements) to better

understand how inter-brain synchronization is initiated and how

temporally specified expectations about the other person’s actions

are updated.

Conclusions

Extending a previous experimental design [4,6], we found that

within- and between-brain oscillatory couplings can also be

observed during musical improvisation on the guitar. Further-

more, these couplings were also present when one guitarist was

playing and the other was listening.

We found that synchronization patterns during guitar impro-

visation show a complex interplay of different frequencies. With

increasing frequencies, strengths increased in within-brain net-

works, but decreased in between-brain networks, suggesting that

intra-brain networks tend to operate at higher frequencies,

whereas inter-brain networks tend to operate at lower frequencies.

Furthermore, we found that the guitarist playing solo showed

higher out-strengths than the listening guitarist at higher

frequencies, while no significant differences (between the two

guitarists) were found when both guitarists were playing. Joint

playing was also accompanied by higher strengths in the beta1

frequency range, whereas solo playing was accompanied by higher

strengths in the alpha frequency range.

The inspection of community structures showed a higher

number of non-hub connectors during solo playing at the alpha

frequency (8–12 Hz), whereas the joint playing was accompanied

by a higher number of hub-connectors at the delta (2–3 Hz) and

theta (5–7 Hz) frequency. We also found that hyper-brain network

topology is frequency-dependent and approximates regular

networks with increasing frequency, independent of play condi-

tion. Finally, we identified modules composed of nodes from both

brains, so-called hyper-brain modules. The areas captured by

these nodes may point to brain regions that implement mecha-

nisms of interpersonal action coordination.

Supporting Information

Figure S1 Results of PSI, ACI, and ICI distributions for
simulated data at the three different frequencies. A–C,
In this simulation, 5, 10, and 20 Hz oscillations with additive noise

were used. The oscillations were divided pairwise into epochs of

3,000 ms, thereby the second oscillation in the pair was randomly

shifted in phase, with a uniform distribution between –p and +p.

The coupling (PSI, ACI, and ICI) was determined for 10,000 such

epochs in total. Note that all three phase synchronization measures

capture the intended coupling properties (see text for details).

(TIF)

Figure S2 Network patterns and corresponding intra-
and inter-brain maps at the frequency of interest (6 Hz)
for the three coupling measures (PSI, ACI and ICI) under
the three play conditions. A, Connectivity matrices of the

joint network (42642) with all significant intra- and inter-brain

connections for the PSI (Phase Synchronization Index). B, Brain

maps indicating significant connections (PSI) within the brains. C,
Brain maps indicating significant connections (PSI) between the

hubs (R5–R7) under the three conditions (Play A = yellow, Play B = red, and Play AB = green). Kinless hubs and non-hubs are excluded from the
presentation because the number of nodes assuming these roles was very low. X-axis: Frequency bins; Y-axis: Percentage of number of nodes.
doi:10.1371/journal.pone.0073852.g006
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brains. D, Connectivity matrices of the joint network (42642) with

all significant intra- and inter-brain connections for the ACI

(Absolute Coupling Index). E, Brain maps indicating significant

connections (ACI) within the brains. F, Brain maps indicating

significant connections (ACI) between the brains. G, Connectivity

matrices of the joint network (42642) with all significant intra- and

inter-brain connections for the ICI (Absolute Coupling Index). H,
Brain maps indicating significant connections (ICI) within the

brains. I, Brain maps indicating significant connections (ICI)

between the brains.

(TIF)

Figure S3 Out- and In-Strengths within and between the
brains separately for guitarist A and B at some
frequencies of interest (6, 10, 16 and 28 Hz) for the ICI
measure under the three play conditions (Play A, Play B,
and Play AB). The X-axis represents 21 electrode (Fp1, Fpz,

Fp2, F7, …, O1, Oz, and O2) of each participant. The different

colours represent the play conditions: Play A = red, Play B = green,

and Play AB = blue.

(TIF)

Figure S4 Community structures for the ICI measure at
some frequencies of interest (2, 10, 16 and 28 Hz) under
the three play conditions (Play A, Play B, and Play AB). In

the X-axis (Cases), 10 trials of each of the 8 guitarist pairs are

displayed. In the Y-axis (Electrodes), 42 electrodes (21 of each

guitarist in the pair) are displayed. The color indicates the

electrodes’ module affiliation.

(TIF)

Figure S5 Strengths within and between the brains
separately for guitarist A and B at some frequencies of
interest (6, 10, 16 and 28 Hz) for the two undirected
measures PSI and ACI under the three play conditions
(Play A, Play B, and Play AB). The X-axis represents 21

electrode (Fp1, Fpz, Fp2, F7, …, O1, Oz, and O2) of each

participant. The different colours represent the play conditions:

Play A = red, Play B = green, and Play AB = blue.

(TIF)

Figure S6 Small-worldness coefficients s and v for ACI
and PSI measures in the five frequency bands (delta,
theta, alpha, beta 1,and beta 2). A, Small-worldness

coefficients s and v for ACI. B, Small-worldness coefficients s
and v for PSI. The X-axis corresponds to the five frequency bands:

De = Delta, Th = Theta, Al = Alpha, Be1 = Beta 1,and Be2 = Beta

2.

(TIF)

Figure S7 Changes in the number of nodes assuming
different roles in the Z-P parameter space across the
different frequencies for the PSI measure. Changes are

presented for ultra-peripheral non-hubs (R1), peripheral non-hubs

(R2), connector non-hubs (R3) and corresponding hubs (R5–R7)

under the three conditions (Play A = yellow, Play B = red, and Play

AB = green). Kinless hubs and non-hubs are excluded from the

presentation because the number of nodes assuming these roles

was very low. X-axis: Frequency bins; Y-axis: Percentage of

number of nodes.

(TIF)

Figure S8 Changes in the number of nodes assuming
different roles in the Z-P parameter space across the
different frequencies for the ACI measure. Changes are

presented for ultra-peripheral non-hubs (R1), peripheral non-hubs

(R2), connector non-hubs (R3) and corresponding hubs (R5–R7)

under the three conditions (Play A = yellow, Play B = red, and Play

AB = green). Kinless hubs and non-hubs are excluded from the

presentation because the number of nodes assuming these roles

was very low. X-axis: Frequency bins; Y-axis: Percentage of

number of nodes.

(TIF)

Table S1 Mean and standard deviation for strength of ACI and

PSI measures calculated separately for intra- and inter-brain

connections in the five frequency bands.

(DOCX)

Table S2 ANOVA results (F, P, and g2 values) for strength of

ACI and PSI measures calculated for hyperbrain, intrabrain and

interbrain connections.

(DOCX)

Text S1 This text describes validation of the coupling
measures on the simulation and results of the ACI and
PSI measures.

(DOCX)

Movie S1 File name: Video S1.mp4. File format: mp4.

Description of data: This movie shows the simultaneous video

and EEG recordings of a pair of guitarists playing an

improvisation. EEG from 15 channels (F7, F3, Fz, F4, F8, T7,

C3, Cz, C4, T8, P7, P3, Pz, P4, and P8) of both guitarist (A and B)

are shown.

(MP4)
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66. Guimerà R, Sales-Pardo M, Amaral LAN (2007) Classes of complex networks
defined by role-to-role connectivity profiles. Nat Phys 3: 63–69.

67. Müller V, Lindenberger U (2012) Lifespan differences in nonlinear dynamics
during rest and auditory oddball performance. Dev Sci 15: 540–556.

68. Pereda E, Quiroga RQ, Bhattacharya J (2005) Nonlinear multivariate analysis of
neurophysiological signals. Prog Neurobiol 77: 1–37.

Inter-Brain Couplings during Musical Improvisation

PLOS ONE | www.plosone.org 16 September 2013 | Volume 8 | Issue 9 | e73852


