
CRSD: a comprehensive web server for composite
regulatory signature discovery
Chun-Chi Liu1,2, Chin-Chung Lin2, Wen-Shyen E. Chen1, Hsuan-Yu Chen3,

Pei-Chun Chang4, Jeremy J.W. Chen2,5,* and Pan-Chyr Yang5

1Department of Computer Science, National Chung-Hsing University, Taichung, Taiwan, ROC,
2Institutes of Biomedical Sciences and Molecular Biology, National Chung-Hsing University, Taichung, Taiwan,
ROC, 3Graduate Institute of Epidemiology, National Taiwan University, Taipei, Taiwan, ROC, 4Departments of
Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan, ROC, and 5NTU Center for Genomic Medicine,
National Taiwan University College of Medicine, Taipei, Taiwan, ROC

Received February 14, 2006; Revised March 19, 2006; Accepted April 4, 2006

ABSTRACT

Transcription factors (TFs) and microRNAs play
important roles in the regulation of human gene
expression, and the study of their combinatory regu-
lations of gene expression is a new research field. We
constructed a comprehensive web server, the com-
posite regulatory signature database (CRSD), that
can be applied in investigating complex regulatory
behaviors involving gene expression signatures
(GESs), microRNA regulatory signatures (MRSs)
and TF regulatory signatures (TRSs). Six well-known
and large-scale databases, including the human
UniGene, mature microRNAs, putative promoter,
TRANSFAC, pathway and Gene Ontology (GO) data-
bases, were integrated to provide the comprehensive
analysis in CRSD. Two new genome-wide databases,
of MRSs and TRSs, were also constructed and further
integrated into CRSD. To accomplish the microarray
data analysis at one go, several methods, including
microarray data pretreatment, statistical and cluster-
ing analysis, iterative enrichment analysis and motif
discovery, were closely integrated in the web server,
which has not been the case in previous studies. Our
implementation showed that the published literature
could demonstrate the results of genome-wide
enrichment analysis. We conclude that CRSD is a
powerful and useful bioinformatic web server and
may provide new insights into gene regulation net-
works. CRSDand the online tutorial are publicly avail-
able at http://biochip.nchu.edu.tw/crsd1/.

INTRODUCTION

Transcriptional regulation of gene expression is mediated by
binding of transcription factors (TFs) to specific regulatory
DNA elements, typically upstream from and close to the tran-
scription start point of a gene (1). Over the past few years,
microRNAs have been shown to play a key role in gene regu-
lation. Therefore, the combinatorial mechanisms of switch
regulations composed by TFs and microRNAs make gene
regulation networks more complex. Those complex regulatory
networks include the same gene targeted by both a TF and
microRNA (2). Most TFs have to recognize specific sequences
within promoter regions to work, and these specific genomic
sequences are known as TF binding sites. In contrast, microR-
NAs play negatively regulating roles in silencing gene func-
tions in biomass (3). A mature microRNA with RISC complex
will target specific mRNA with homology sequences comple-
mentary to the mature microRNA within the 30-untranslated
region (30-UTR) (4).

A previous study predicted that there are 2273 genes with
microRNA target sites conserved in mammals by scanning
30-UTRs from the human, mouse and rat genomes for potential
target sites (5). Moreover, in a five-genome (human, mouse,
rat, chicken and dog) analysis of 30-UTRs,�13 000 regulatory
relationships were detected, which suggests that the conser-
ved microRNAsmight target more than 5300 human genes (6).
However, some studies indicate that it is possible to reliably
predict microRNAs without using genome comparisons (7,8).
Because of a lack of detailed information on microRNA evolu-
tion, the conservation of target sites provides practical
information on predicted target sites, and the new microRNAs
have continuously appeared in possible evolution (5). Thus,
we developed the prediction method that uses the human gen-
ome without relying on conservation. In order to perform
genome-wide microRNA target prediction, the human
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UniGene database (9) was employed to obtain the putative
30-UTR database.

A previous report defined the transcriptional regulatory sig-
nature as the interactions between a TF and a group of genes
with putative binding sites in the promoter sequences (10). We
therefore defined the microRNA regulatory signature (MRS),
the TF regulatory signature (TRS) and the composite regu-
latory signature (CRS) as follows: the MRS consists of the
interactions of a microRNA and a group of genes with the
putative targets of the former in 30-UTR; the TRS is defined as
the equivalent to the transcriptional regulatory signature, and
the CRS is the combination of several MRSs and TRSs for
a common group of genes. The MRS and TRS databases were
integrated to establish a composite regulatory signature data-
base (CRSD) that is also a comprehensive web server for CRS
discovery.

DNA microarrays are often used to generate gene expres-
sion signatures (GESs) of tissues or cells under physiologi-
cal or pathological conditions (11–13). GESs may include
co-regulated groups of genes. Advanced enrichment analysis
and motif discovery can identify these co-regulated groups. A
recent report investigated cancer GESs for the enrichment of
particular gene annotations and metabolic and signaling
pathways (14) using Gene Ontology (GO) (15), the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (16) and
Biocarta pathways databases (http://www.biocarta.com/). In
addition, each GES was also assessed for each significant
enrichment of TRSs (10,17). Previous reports have combined
the GESs, putative promoter sequences and GO annotations to
investigate TF regulatory behavior (17,18), as well as to dis-
cover regulatory motif sequences (18). Enrichment analysis of
MRSs is important but has not been performed. The assess-
ment of all MRSs and TRSs for the significant enrichment of
all GO annotations, KEGG pathways and Biocarta pathways
has not been carried out either.

In this study, these important enrichment analyses were
performed, and an iterative enrichment analysis model and
user-friendly web interface were developed, providing novel
methods to yield comprehensive information in the field of
such complex large-scale databases. We also provided a user-
friendly interface for researchers to perform queries in CRSD
easily, improving system performance using a hash table
algorithm and cache technology. CRSD is a novel and
comprehensive web server that closely integrates several
methods, including microarray data pretreatment, microarray
data statistical and clustering analysis, genome-wide iterative
enrichment analysis and motif discovery, which has not been
the case in previous studies.

MATERIALS AND METHODS

Database construction

The MRS database was constructed using mature human
microRNAs (19) and 30-UTR sequences, and the TRS database
was constructed using TRANSFAC (20) and the promoter
database PromoSer (21). The detailed procedures are descri-
bed in Supplementary Data.

The framework of the CRSD web server

The CRSD has four major functional components: (i) micro-
array data pretreatment, (ii) microarray data statistical and

clustering analysis, (iii) iterative enrichment analysis and
(iv) motif discovery. Figure 1A shows the high-level of the
four major functional components, and Figure 1B shows the
detailed workflows. Users can obtain a preliminary result in
the microarray data pretreatment component and later per-
form further analysis such as microarray data statistical and
clustering analysis, enrichment analysis and motif discovery
(Figure 1A). The CRSD and the online tutorial are publicly
available at http://biochip.nchu.edu.tw/crsd1/.

Microarray data analysis and GES

Microarray data analysis has two major components:
microarray data pretreatment and microarray data statistical/
clustering analysis. The former includes quantile normaliza-
tion (rescaling) (22), data adjustment, data filtration and
standard normalization; the latter includes student’s t-test,
signal-to-noise test, ANOVA test and self-organizing map
(SOM) clustering (23). Student’s t-test and the signal-to-noise
test can determine the group-specific marker genes that can be
treated as a GES. The group-specific marker genes correlating
with one particular group versus all other groups were iden-
tified using the P-value according to the statistical test. The
permutation test was mainly applied to the marker gene selec-
tion using the signal-to-noise approach; however, it also can be
used with student’s t-test. To adjust the P-value for a multiple
hypothesis test, the false discovery rate (Q-value) was esti-
mated using the method in a previous study (10). An example
of microarray data pretreatment and analysis, including quan-
tile normalization, data adjustment, data filtration, standard
normalization and student’s t-test, is given in Supplementary
Figure S1.

Enrichment analysis

CRSD provides various types of enrichment analyses. Supple-
mentary Figure S2 shows an instance of enrichment analysis
for one group of genes (GA) for the significant enrichment of
another (GB). GA or GB could be the genes belonging to a GO
annotation, pathway, MRS, TRS, GES or user input data. The
possible set PA is defined as the set of all possible genes of GA.
We counted the number of genes intersecting GA and GB:
n ¼ c(GA\GB), where c(X) denotes the number of elements
in set X. If GA is a GES, PA will be the set of all detectable
genes in the microarray. If GA is a TRS, PA will be 23 095
genes with promoter sequences. If GA is an MRS, PA will be
54 576 genes with a 30-UTR. If users do not have the exact
information about the possible set of GA, they can consider
assigning the 54 576 genes of UniGene to PA. Next, we cal-
culated the probability of observing an equal or larger
intersection between GA and GB by chance by summing the
binomial distribution probabilities (10) for all intersections of
equal or larger size:

P-value ¼
Xb
i¼n

�
b!
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where N ¼ cðPAÞ‚a ¼ cðGAÞ‚b ¼ cðGBÞ
1

If the enrichment analyses are to assess GA for GB1, GB2, . . . ,
GBK, the P-value is calculated for each GB. Then, in order to
adjust the P-value for the multiple hypothesis test, the
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Figure 1. The architecture of CRSD. (A) The high-level workflow for the four main functional components: (i) microarray data pretreatment, (ii) microarray data
statistical and clustering analysis, (iii) iterative enrichment analysis and (iv) motif discovery. CRSD provides three initial procedures using microarray data
pretreatment, enrichment analysis and motif discovery. (B) TheMRS database integrating the microRNA and 30-UTR databases is constructed bymicroRNA target
prediction, and the TRSdatabase is constructed byTFbinding site prediction integrating promoter andTRANSFACdatabases. The detailed data processing paths are
shown in the flowchart, which represents the iterative enrichment analysis among GO, pathway, TRS and MRS.
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Q-value (false discovery rate) was calculated using the method
described previously (10), as follows:

Q-value ¼ K · P-value

R
2

Where K is the number of GB tested against GA, and R is the
ascending order rank of the respective P-value. The alignment
score of the putative microRNA target and the similarity
score of the TF binding site were not considered in enrichment
analysis. Therefore, we defined the target score (T-Score) to
evaluate the significance of the intersection targets, which is
described in the Supplementary Data.

Novel motif discovery

To identify the highly conserved sequences for the novel TF
binding sites in the putative promoter sequences of a group of
input genes, the promoter database and motif discovery tools,
including Gibbs sampling-based GLAM (24) and information
theory-based Weeder (25), were employed. The same strategy
was used to predict the novel targeting sites of microRNAs,
conserved at the 30-UTR of a group of genes, using our
30-UTR database and the motif discovery tools. The motif
discovery component was closely integrated with the enrich-
ment analysis and microarray data analysis, providing a
user-friendly interface for CRSD to efficiently utilize these
comprehensive components.

RESULTS

Database construction

Following these database construction methods, 54 576 puta-
tive 30-UTRs, with an average length of 744 bases, were
obtained. These sequences were used to create the putative
30-UTR database. After the application of threshold and rank
filtration procedures, we constructed the MRS database which
contained 319 MRSs and 615 267 potential regulatory inter-
actions, and the TRS database which contained 494 TRSs and
928 592 potential regulatory interactions.

Design and features of the CRSD

CRSD utilized and integrated six well-known, large-scale
databases, including the human UniGene, mature microRNAs,
putative promoter, TRANSFAC, pathway and GO databases,
to provide a comprehensive knowledge-base. In addition, two
new genome-wide databases, the MRS and TRS databases
were constructed. Users can submit data to CRSD using
three workflows: (i) submitting microarray data to the microar-
ray data pretreatment component, (ii) submitting the GenBank
accession numbers or UniGene IDs of a group of genes to
the enrichment analysis component and (iii) submitting the
GenBank accession numbers or UniGene IDs of a group of
genes to the motif discovery component. Figure 1A shows
these three initial workflows. CRSD also provides a frame-
work that integrates microarray data analysis, enrichment
analysis and motif discovery (Figure 1B). Examples of server
usage are described in the Supplementary Data.

Iterative enrichment analysis

There are five types of enrichment analysis in CRSD: CRSs,
MRSs, TRSs, pathways and GO annotations. For example, a
group of genes can be the input to the enrichment analysis
components for CRS discovery. Then, genome-wide enrich-
ment analysis for all MRSs and TRSs is performed, and the
significant enrichment MRSs and TRSs are output. These out-
put microRNAs and TFs have statistically significant enrich-
ment with the input genes. It is possible that these microRNAs
and TFs can perform gene regulation via a combinatorial
mechanism or act cooperatively on their targets (the input
genes).

Partial screenshots of the results page for the enrichment
analysis for MRSs, TRSs, pathways and GO annotations are
shown in Figure 2A–D. Users can continually investigate the
intersection between the input genes and a significant enrich-
ment group that could be an MRS, TRS, pathway or GO
annotation. Thus, we provide iterative enrichment analysis
and motif discovery for the selected genes of each intersection
in the previous enrichment analysis. For example, carrying out
the discovery of the significant enrichment MRS for a group of
genes (Figure 2A), users can perform other functional options,
including GO annotation, pathway, TRS and motif discovery.

DISCUSSION

DNA microarrays are a powerful tool for massive parallel
analysis of gene expression and have been applied in various
biological studies in the post-genomic era to identify GESs
(11–13). How to interpret and characterize these expression
signatures is always perplexing to researchers. In the past few
years, it has become increasingly clear that gene regulation
can be modulated not only by TFs but also by microRNAs (2).
To resolve the complex regulatory behaviors of gene expres-
sion, the development of a comprehensive and powerful
bioinformatics tool is absolutely necessary. Therefore, we
developed CRSD which can be applied to investigate
complex regulatory behaviors involving GESs, MRSs and
TRSs. In order to discover composite regulatory behaviors,
CRSD provides several functions. (i) Microarray data analysis
can be utilized to identify the GESs. (ii) Genome-wide itera-
tive enrichment analysis can be utilized to discover the sig-
nificant enrichment microRNAs and TFs associated with the
GESs. The predicted TFs and microRNAs can be further
confirmed by electrophoretic mobility shift assays (and/or
reporter assays) and real-time RT–PCR, respectively. (iii)
Motif discovery can be employed to predict the TF binding
sites and microRNA targeting sites for each group of genes in
the intersection between the GES and one of the significant
MRSs, TRSs, pathways or GO annotations. The predicted TF
binding sites and microRNA targeting sites can be used to
discover novel TFs and microRNAs. There are many scenarios
in this workflow. For example, if a user identifies a GES for
lung cancer tissues and finds a significant enrichment pathway
associated with this GES, then the novel TF binding sites of
the genes in the intersection between the GES and the pathway
can be discovered using the motif discovery function in
CRSD. The results may imply that the target genes with the
predicted TF binding site are co-regulated in lung cancer and
related to the predicted pathway.
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In this study, genome-wide enrichment analysis was per-
formed for the CRS prediction of pathways and GO annota-
tions. A total of 159 human KEGG pathways and 293 human
Biocarta pathways were processed, and we report the signifi-
cant MRSs and TRSs for each pathway in Supplementary

Table S1. In addition, a total of 4479 GO annotations related
to the human genome were processed, and we report the
significant MRSs and TRSs for each GO annotation in Supple-
mentary Table S2. The T-Score was calculated in these
analyses and is reported in both tables. Some previous studies

Figure 2. Partial screenshots of the results page for the enrichment analysis. (A) The results page for significant enrichmentMRSs showing the total number of target
genes of microRNA hsa-miR-500, the retrieved set (intersection) of input genes, P-value,Q-value, microRNA targets and additional analysis buttons, including GO
annotation, pathway,TRS andmotif discovery of the interactiongenes. (B) The results page for significant enrichment TRSs showing the total number of target genes,
the retrieved set of input genes,P-value,Q-value, TF binding sites, and additional analysis buttons. (C) The results page for significant enrichment pathways showing
the total number of pathway genes, the retrieved set of input genes, P-value,Q-value, the interaction genes, and additional analysis buttons. (D) The results page for
significant enrichment GO annotations showing the total number of genes of the GO annotation, the retrieved set of input genes, P-value, Q-value, the interaction
genes and additional analysis buttons.
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have demonstrated the predictions of microRNA targets
performed in CRSD. For instance, microRNA hsa-miR-15a
and hsa-miR-7 can regulate BCL2 (26) and EGFR (27), respec-
tively. Our MRS database also predicted that hsa-miR-15a and
hsa-miR-7 can regulate BCL2 and EGFR, respectively. Previ-
ous studies also have supported our predicted TFs having
significant enrichment with the pathway (Supplementary
Table S3); the results for predicted TFs are in detail in the
Supplementary Data.

The TRANSFAC database is the most commonly used
repository for TF binding sites (28) and has been used in
many studies (1,10,18). We used the matrices for the verte-
brate group in the TRANSFAC database that are cross-species
motifs. The identification of species-specific motifs may be an
important issue in TF binding site discovery; however, we
cannot currently find an accurate and suitable human-specific
motif database. Further analyses of species-specific motifs
may be necessary.

In this study, each promoter in the human putative promoter
database contains 2000 bases upstream of and 100 bases
downstream of the transcription start point. However, previous
studies have demonstrated that TF binding sites might be
located downstream of transcription start points (29,30)
beyond the region we have reported; indeed, the current ver-
sion of server cannot cover the TF binding sites in the intron,
30-UTR, or a region distant from the transcription start point,
which is a limitation of this web server. Other regions such as
30-UTRs and introns for TF binding sites should be taken into
account in future work.

In summary, we have developed a user-friendly interface
and powerful platform for researchers to carry out their work
easily. CRSD closely integrates the approaches of microarray
data analysis, genome-wide iterative enrichment analysis and
motif discovery with both well-known public databases and
ours. By means of CRSD analyses, investigators can explore
the complex regulatory behaviors involving GESs, MRSs
and TRSs and may obtain new insights into gene regulation
networks.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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