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Abstract. The repair of small endothelial wounds is 
an important process by which endothelial cells main- 
tain endothelial integrity. An in vitro wound model 
system was used in which precise wounds were made 
in a confluent endothelial monolayer. The repair pro- 
cess was observed by time-lapse cinemicrophotogra- 
phy. Using fluorescence and immunofluorescence mi- 
croscopy, the cellular morphological events were 
correlated with the localization and distribution of ac- 
tin microfilament bundles and vinculin plaques, and 
centrosomes and their associated microtubules. Single 
to four-cell wounds underwent closure by cell spread- 
ing while wounds seven to nine cells in size closed by 
initially spreading which was then followed at ~1 h 
after wounding by cell migration. These two processes 

showed different cytoskeletal patterns. Cell spreading 
occurred independent of centrosome location. How- 
ever, centrosome redistribution to the front of the cell 
occurred as the cells began to elongate and migrate. 
While the peripheral actin microfilament bundles (i.e., 
the dense peripheral band) remained intact during cell 
spreading, they broke down during migration and were 
associated with a reduction in peripheral vinculin plaque 
staining. Thus, the major events characterizing the clo- 
sure of endothelial wounds were precise in nature, fol- 
lowed a specific sequence, and were associated with 
specific cytoskeletal patterns which most likely were 
important in maintaining directionality of migration 
and reducing the adhesion of the cells to their neigh- 
bors within the monolayer. 

T 
HE presence of an intact endothelial monolayer is im- 
portant in maintaining normal blood vessel integrity. 
It appears that small denuding injuries occur in vivo 

(Reidy and Schwartz, 1984) and these reendothelialize very 
rapidly without requiring endothelial proliferation (Reidy 
and Schwartz, 1983, 1984). This rapid repair is thought to 
occur by a process in which endothelial cells respond to focal 
loss of an adjacent cell by the extrusion of lamellipodia 
which undermine dead cells and rapidly cover the denuded 
area (Hansson and Schwartz, 1983; Reidy and Schwartz, 
1983; Wong and Gotlieb, 1984). 

Cytoskeletal fiber systems are important in regulating en- 
dothelial cell shape change during repair processes (Wong 
and Gotlieb, 1984). Microfilaments appear to play a role in 
the force-generation machinery of the cytoskeleton (Kreis 
and Birchmeier, 1980) and in cell substratum adhesion 
(Singer, 1982; White et al., 1983; Wong et al., 1983), while 
the centrosome and its associated microtubules have a role 
in the directional migration of endothelial cells during large 
endothelial wound repair (Gotlieb et al., 1981, 1983). Al- 
though the cytoskeleton is important during endothelial re- 
pair, little is known about the sequence of cytoskeletal events 
which occur during rapid reendothelialization. 

The present experiments were designed to characterize the 
sequence of cytoskeletal events occurring in those endo- 

thelial ceils participating in the rapid repair of a small in vitro 
endothelial wound. Since the micropipette wounding model 
system has many similarities to in vivo small wound repair 
(Wong and Gotlieb, 1984), it was used to study reen- 
dothelialization of discrete small wounds of known cell size 
(Wong and Gotlieb, 1984). Fluorescence and immunofluo- 
rescence microscopy and time-lapse cinemicrophotography 
were used to correlate the organization of microfilaments, 
microtubules, and centrosomes with the motile activity of 
the cells occurring during closure of the wound. 

Materials and Methods 

Endothelial Cell Cultures 

Cells were isolated and cultured by the enzyme dispersion method as previ- 
ously described (Gotlieb and Spector, 1981). Cells were grown on 22 × 
22-mm glass coverslips in 35-mm Falcon cell culture dishes (Becton Dick- 
inson, Oxnard, CA) in M199 with 5% FBS (Gibco Laboratories, Grand Is- 
land, NY). Cultures were fed every 2 d and 24 h before experimentation. 

Endothelial Wounding 

Individual endothelial cells were removed from confluent cultures using a 
micropipette guided by a micromanipulator as previously described (Wong 
and Gotlieb, 1984). No partial cell fragments were left behind and all cells 
adjacent to the wound were able to participate in wound closure. 
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Cinemicrophotography 
The motile activity of the cells was recorded by 16-mm time-lapse cine- 
microphotography. The cells were observed under a constant temperature 
of 37°C and humidified in 5% CO2 and air in an environmental chamber, 
as previously described (Wong and Gotlieb, 1984). Still 35-mm photo- 
graphs were taken at 15-min intervals using 2415 Technical Pan film (Kodak 
Canada, Toronto, Ontario). Two frames were taken at each time point, one 
focused on the lamellipodia to dearly delineate the cell shape, and the 
other on the centrosome which is visible in endothelial cells as a dark 
perinuclear area under phase-contrast optics (Gotlieb et al., 1981). Centro- 
somes in living cells were best visualized by stopping down the condenser 
diaphragm to about one-third open. The 2415 film was used at an ASA rating 
of 125 and processed with Kodak D-19 developer for 4 min as per the 
manufacturer's instructions. 16-ram time-lapse cinemicrophotography was 
carried out at a rate of one frame every 15 s using Kodak 7276. The film 
was commercially processed by PFA Laboratories (Toronto, Ontario). 

Assessment of Wound Repair 
All time-lapse cinemicrophotographic recordings were started 15 rain be- 
fore wounding and continued until 60 min after wound closure. In prelimi- 
nary experiments, at least six wounds of each wound size from 1-12 cells 
were studied. Since we found that one- to four-cell wounds closed by cell 
spreading alone while those greater than six cells in size closed by spreading 
followed by cell migration, we studied three sizes of wounds: single cell 
wounds, three- to four-cell, and seven- to nine-cell wounds. 15 wounds were 
analyzed for each wound size. In five additional long-term experiments for 
each of the three wound sizes, cultures were continuously observed from 
3 h before wounding to 24 h after wound closure. 

Visualization of Endothelial Cell Cytoskeleton 
30 wounds in each group were double stained at 30 min, 1, 2, and 3 h after 
wounding. For the colocalization of both microfilaments and microtubules, 
cells were fixed in 3% formaldehyde, washed with PBS, and then treated 
with 0.1% Triton X-100 in PBS for 3 min. The coverslips were incubated se- 
quentially with rabbit antiserum raised against tubulin (a generous gift of 
Dr. V. I. Kalnin, Department of Anatomy, University of Toronto, Toronto, 
Canada) (Connolly et al., 1977) followed by a fluoresceinated goat IgG 
raised against rabbit IgG (Miles-Yeda, Toronto) and then with rhodamine- 
labeled phalloidin (Molecular Probes, Junction City, OR). The coverslips 
were gently washed five times with PBS between each step for a total of 25 
min. After the final wash, the coverslips were mounted in glycerol/PBS, 1:1. 
Cells were also stained with each reagent separately. To colocalize F-actin 
with vinculin, coverslips were first treated with 0.2% Triton X-100 in 0.1 M 
KCI/0.01 M Tris-HCl, pH 7.5 for 2 min at 4°C before fixation (Wong and 
Gotlieb, 1986). Controls included preabsorption of the tubulin antibody 
with tubulin, staining with the secondary antibody alone, and competition 
with excess phalloidin (Wong and Gotlieb, 1984). 

Analysis of Centrosome Position 
Since the location of the centrosome has been identified in the live en- 
dothelial cell through the use of phase-contrast optics (Gotlieb et al., 1981), 
we were able to locate and track the centrosome in the cells participating 
in wound closure. 

Wound closure was analyzed by projecting the time-lapse cine film, 
frame by frame, onto a calibrated grid. The sequential position of cells and 
their centrosomes was traced out onto a series of clear acetate sheets. By 
lining up and overlaying these sheets, the association between centrosome 
redistribution and cell activity was assessed. Cell migration was defined as 
the forward displacement of both the leading and trailing edge of the cell. 
The trailing edge was defined as the part of the cell circumference facing 
away from or at 180 ° to the leading lamellipodia. 

To numerically assess the proportion of cells which show centrosomal 
redistribution, the wounds were fixed within 10 min after wound closure and 
stained for tubulin. These wounds were photographed, printed, and the lo- 
cation of the centrosome determined using the nucleus and the center of the 
closed wound as reference points (Rogers et al., 1985, 1986). The centro- 
some in each endothelial cell participating in wound repair was classified 
as being "Toward; "Away 7 or "Middle" with respect to the nucleus and the 
center of the wound. A centrosome classified as Toward was located be- 
tween the nucleus and the side of the cell closest to the center of the wound 
while one which was Away was located between the nucleus and the side 
of the cell facing away from the wound. A centrosome in the Middle was 

located along the side of the nucleus. For the analysis of the control intact 
monolayer, the photograph of the intact monolayer was overlaid on a num- 
bered grid, transluminated, and the reference point determined by random 
number selection. Nine 3-4-cell wounds, 17 7-9-cell wounds, and nine non- 
wounded cultures were examined in this fashion. The numbers were 
grouped into Toward, Middle, or Away categories and an analysis of vari- 
ance was carried out. If the null hypothesis (i.e., control = small wound 
= large wound) was rejected, then a Newman-Kuels test was carded out 
to determine the experimental protocols that were significantly different 
from each other (Zar, 1974). 

Results 

Endothelial Wound Repair 
The morphology of single cell wound closure has been previ- 
ously characterized using time lapse cinemicrophotography 
(Wong and Gotlieb, 1984). Briefly, the cells facing the 
wound underwent retraction after removal of the single cell. 
Focal cell membrane ruffling with extension of small filopo- 
dia into the wound occurred within 5 min after wounding. 
This ruffling became generalized, involving the entire side of 
the cell abutting upon the wound. Thereafter the extrusion 
of the broad flat lamellipodia was observed. The sides of the 
cell remaining in contact with the monolayer did not show 
marked ruffling activity. 

Circular three- to four-cell wounds underwent closure in 
a fashion similar to that of single cell wounds in that extru- 
sion of lamellipodia from all of the cells abutting upon the 
wound occurred. No cell migration or cell mitosis was ob- 
served. Cells immediately behind the first row of cells bor- 
dering on the wound did not participate in wound closure. 

The removal of seven to nine cells from the confluent cul- 
ture was followed by retraction of all the cells abutting upon 
the wound (Fig. 1 A). Within 5 min, cell ruffling and the be- 
ginning of lamellipodia extrusion was observed. By ~30 
rain, broad flat lamellipodia appeared (Fig. 1 B) and became 
more prominent over the next 30 min. By 60-90 min, cell 
elongation became apparent (Fig. 1 C) and cell migration 
occurred usually within the next 60 min. Wound closure oc- 
curred within 90 min after the onset of migration (Fig. 1 D). 
Observations of intact monolayers before wounding did not 
show any cell migration. 

Organization of Microfilaments, Microtubules, and 
Centrosomes During Repair 
The repair of one- to four-cell wounds by lamellipodia extru- 
sion was not accompanied by centrosomal redistribution. 
Cells with their centrosome facing away from the wound be- 
haved in the same manner as those with their centrosome fac- 
ing toward the direction of lamellipodia extrusion. The anal- 
ysis of centrosome position after the repair of three- to 
four-cell wounds revealed a distribution similar to that of in- 
tact controls (Table I) in that the proportion of cells with cen- 
trosomes in the Toward, Middle, or Away position did not 
differ significantly from those of intact, nonwounded con- 
trols. No centrosomal redistribution was observed in closed 
one- or three- to four-cell wounds even after 24 h after wound 
closure. 

In seven- to nine-cell wounds the initial period of cell 
retraction and lamellipodia extrusion showed no centro- 
somal redistribution. After 60-90 min, as the cells began to 
elongate all the cells abutting upon the wound began to posi- 
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Figure I. Reendothelialization of a nine-cell wound. Phase-contrast micrograph of sequential observations of wound repair after the removal 
of nine cells at time points: (A) zero, (B) 30, (C) 90, and (D) 150 min. Extrusion of prominent lamellipodia was present (B) at 30 min 
and cell elongation (C) became discernible by 90 min. (D) Note the redistribution of the centrosome which began at •60 min giving 
rise to a situation where all the centrosomes, including those which were originally on the opposite Side of the nucleus, are facing the 
center of the closed wound. Small arrows in B and C demarcate the margins of the wound and larger arrows in B and D point out the 
location of the centrosome which is adjacent to the nucleus of the cell. Bar, 20 ~tm. 

tion their centrosomes toward the direction of eventual cell 
movement (Fig. 1). 

Cinephotographic observations made during redistribu- 
tion of  the centrosome showed that the centrosome either 
moves around a stationary nucleus, or  the nucleus and cen- 
trosome rotate together as a unit. In the former method of 
redistribution, the centrosome may move either around the 
nucleus or over the nucleus but not under it. The localization 
of centrosomes in closed wounds by tubulin staining (Fig. 2) 
showed a significant shift of  the distribution toward the front 
of  the cell (Table I). 

Rhodamine-phaUoidin staining of cells facing the wound 
edge showed marked splaying of that part of the dense pe- 

Table L Centrosome Distribution at Wound Closure 

Toward Middle Away 

-X* SEM X SEM X SEM 

% % % 

Control, nonwounded 23 + 3.1 39 + 4.7 38 + 5.7 
Small wound 28 + 7.5 41 + 6.8 31 5:6.9 
Large wound 64~ + 4.3 35 + 4.2 1.0¢ + 0.4 

* Percent cells, mean of experiments at each size (see text). 
¢ p > .001 large wound vs. control and small wound, Newman Kuels multiple 
range test. 
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Figure 2. Photomicrograph of cells stained by immunottuorescence for tubulin after the repair of a nine-cell wound. This photomicrograph 
was taken at the focal plane of the centrosomes where the centrioles (both large and small arrows) can be identified. Note the location 
of the centrosome of the cells that have undergone translocation (small arrows). Centrosomes of cells which did not participate in cell 
translocation are noted by large arrows. N, nucleus; square, center of the closed wound. Bar, 20 Ixm. 

ripheral band (DPB) ~ associated with the extruding lamel- 
lipodia. As shape change began to occur there was a progres- 
sive reduction in the DPB in the rest of the periphery of the 
cell and some cells showed the presence of central microfila- 
ment bundles parallel to the long axis of the cell (Fig. 3). 

Double staining for microtubules and microfilaments in 
ceils demonstrating centrosomal redistribution during the 
cell elongation stage showed that this redistribution occurs 
before the complete loss of the DPB (Fig. 4). 

Colocalization of microfilaments and vinculin showed that 
during repair, the loss of the DPB was associated in time and 
place with the reduction of vinculin plaques. Thus in the 
same cell abutting on the wound, the reduction of the DPB 
along the sides of the cell was associated with a reduction 
in vinculin plaques, while the persistence of the DPB at the 
back of the cell was associated with prominent vinculin 
plaques. 

D i s c u s s i o n  

These experiments show for the first time the sequence of 
major cytoskeletal events which occur during the process of 
small wound reendothelialization in vitro. By using two sizes 
of in vitro small wounds, we have been able to identify a 

1. Abbreviation used in this paper: DPB, dense peripheral band. 

spreading event and a migration event, and characterize each 
with respect to specific organizational changes in the cyto- 
skeleton. The cells adjacent to the wound first extrude promi- 
nent lamellipodia to close the wound. This is a spreading ac- 
tivity without translocation of the rest of the cell and without 
a change in the shape of the whole cell. In this process the 
dense peripheral band of actin microfilaments remains intact 
and centrosomes do not undergo relocation. After ,,ol h, if 
the wound remains open, a series of events occur in which 
the centrosome relocates to the front of the cell, the DPB be- 
comes reduced or absent, and the cell elongates and translo- 
cates toward the wound. 

It is important to note that some of the cytoskeletal events 
described in our study have been shown to occur in vivo at 
an endothelial wound edge. After wounding, the peripheral 
actin is reduced (Gabbiani et al., 1983) and centrosome 
redistribution does occur (Rogers et al., 1985). 

The centrosome plays a major role in the determination of 
cell polarity. Data from various biological processes includ- 
ing cytotoxic T-cell killing (Geiger et al., 1982; Kupfer et al., 
1983), mammary epithelial cells (Dylewski and Keenan, 
1984), and chemotaxis of neutrophils (Malech et al., 1977; 
Schliwa et al., 1982; Anderson et al., 1982) and macro- 
phages (Nemere et al., 1985) bear out this relationship. In 
the specialized case of cell migration, several studies have 
shown that the position or redistribution of the centrosome 
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determined the direction of cell movement in amoebae 
(Swanson and Taylor, 1982), 3T3 cells (Albrecht-Buehler 
and Bushnell, 1979), fibroblasts (Kupfer et al., 1982), and 
endothelial cells in vitro (Gotlieb et al., 1981, Mascardo and 
Sherline, 1984) and in aortic organ culture (Rogers et al., 
1986). It has been shown in endothelial cells that redistribu- 
tion occurs before cell migration (Gotlieb and Wong, 1988). 
Although it is accepted that the centrosome plays a role in 
the formation of microtubules, especially after depolymer- 
ization by colchicine-like compounds (de Brabander, 1982a, 
b; Dustin, 1984), the mechanism of interaction between cen- 
trosome redistribution and polarized cell activities, such as 
cell migration, is not well defined. Centrosomal redistribu- 
tion in endothelial cells however can occur independent of 
cell migration (Gotlieb et al., 1983). The presence of a 
wound edge, even if migration is inhibited, is enough to in- 
duce centrosome redistribution. It should also be noted that 
centrosomal redistribution requires intact microtubules 
(Gotlieb et al., 1981) and that there may be microtubule-mi- 
crofilament interactions that enhance the redistribution 
(Schliwa et al., 1982; Gotlieb et al., 1983; Euteneuer and 
Schliwa, 1984; Pollard et al., 1984). It has been recently 
suggested on the basis of morphological and immunocyto- 
chemical studies that microtubules in migrating fibroblasts 
select and stabilize focal long-lived contacts which function 
to nucleate the assembly of stress fibers (Rinnerthaler et al., 
1988), especially toward the leading lamellipodia. 

Figure 3. Photomicrograph of nine-cell wound cultures fixed and 
stained with rhodamine-phalloidin at specific times after wound- 
ing. (A) At 75 min after injury, the initial lamellipodia extrusion has 
occurred and cell elongation is beginning. Note the splaying of the 
DPB (/arge arrow) at the site of lamellipodia extrusion, the attenua- 

tion of the rest of the DPB at the cell periphery, and the continuing 
presence of the DPB in cells behind those participating in the 
wound response (arrowhead). (B) Cells fixed immediately after 
wound closure, 2.5 h after wounding. Cells are elongated towards 
the center of the closed wound and some cells show central 
microfilaments (small arrow) oriented parallel to the direction of 
cell translocation. Arrowheads, DPB. Bar, 30 Ixm. 

Figure 4. Photomicrograph of a nine-cell wound fixed and double stained at 75 min after wounding to localize (A) tubulin and (B) F-actin. 
(A) The majority of cells abutting the wound possess centrosomes (c) directed Towards the wound as opposed to Middle or Away, and 
(B) show a reduction of the DPB, especially along the sides of the cells, n, nucleus. Bar, 30 ~m. 
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In wound repair, the effector capacity of the centrosome 
is thought to be related to its close association with the Golgi 
apparatus (Rogalski and Singer, 1984; reviewed by Dustin, 
1984). Using a transcribed viral protein as a probe for Golgi 
function, it has been shown that cell membrane insertion of 
this protein occurs preferentially in the area in front of the 
centrosome (Bergman et al., 1981, 1983). Although bio- 
chemical function of the Golgi apparatus and the quantity of 
protein inserted into the membrane remained unchanged af- 
ter disruption of the centrosome-Golgi apparatus associa- 
tion, polarized addition of the protein was impaired (Rogal- 
ski et al., 1984). Thus, the centrosome may play a central 
role in directing Golgi apparatus substances toward the cell 
periphery. 

In our study, centrosome redistribution did not occur dur- 
ing the directional lamellipodia extrusion occurring to rel~air 
wounds of one to four cells in size. Only when cell translo- 
cation was to occur did this mechanism come into play. Sev- 
eral implications arise from these observations. It is possible 
that centrosome-directed Golgi flow toward the membrane 
can occur in a manner independent of centrosome location 
by using preexisting microtubules which already extend to- 
ward the area of lamellipodia extrusion. An alternative ex- 
planation is that the directional extrusion of lamellipodia is 
an event independent of centrosome location. The cell mem- 
brane participating in cell spreading may come from the 
numerous blebs and folds found on the surface of cells (Follet 
and Goldman, 1970; Erickson and Trinkaus, 1976; Soni et 
al., 1980). During cell translocation however, active cell cy- 
cling becomes necessary because the membrane reservoir 
has been depleted by the preceding cell spreading. At present 
there is no direct evidence to support either concept. 

The DPB is markedly reduced in cells undergoing elonga- 
tion and translocation. This attentuation of the DPB is ac- 
companied by a concomitant loss of peripheral vinculin. 
Since the presence of peripheral vinculin plaques may be im- 
portant in the ability of endothelial cells to maintain close 
cell-cell contact (Wong and Gotlieb, 1986), it is noteworthy 
that peripheral vinculin is lost during cell migration. Al- 
though this might reduce the ability of the endothelium to 
maintain a tight monolayer (Shasby et al., 1982), one might 
speculate that this occurs to allow each endothelial cell to 
move less hindered by its neighbors. In fact, our cells in 
confluent monolayers do not show any significant migration 
whereas at the large wound edge migrating endothelial cells 
readily move in an independent fashion. 

The central microfilaments also redistribute from a ran- 
dom orientation to one in which the microfilaments are often 
lined up parallel to the cell's axis of movement. Similar ob- 
servations have been reported in our laboratory using an in 
vitro large scrape wound model system (Gotlieb et al., 
1984). Redistribution of central microfilament bundles have 
also been observed in in vivo injury to corneal (Gordon et 
al., 1982) and rabbit aortic endothelium (Gabbiani et al., 
1983). The reason this occurs during cell translocation is not 
clear, however several possibilities have been proposed. 
These fibers may serve to pull the cell body forward during 
cell locomotion by using actomyosin mechanisms anchored 
at cell adhesion plaques (discussed by Buckley, 1981). Alter- 
natively, Albrecht-Buehler (1977) has suggested from his 
studies on 3T3 cells that such structures act as intracellular 
positioning elements. 

This study shows that the repair of defects in an in vitro 
endothelial monolayer is a multistep process involving a 
spreading event and, if necessary, a migration event, each 
characterized by specific distribution of cytoskeletal systems. 
Since one of the major initial events in the pathogenesis of 
atherosclerosis involves endothelial cell repair of monolayer 
defects, understanding these cytoskeletal events is important 
to the understanding of the atherogenic process. Studies have 
shown that centrosome redistribution may be modulated 
using blood-derived products (Mascardo and Sherline, 1984; 
1987). Since platelet-derived growth factor has been shown 
to remove vinculin from adhesion plaques (Herman and 
Pledger, 1985), the release of platelet-derived growth factor 
at endothelial injury sites might also act to enhance the 
migration phase of repair. Having characterized the specific 
cytoskeletal events that occur, it is now possible to begin a 
systematic study of the regulation of the cytoskeletal modula- 
tors of endothelial repair. 
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