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Recent discoveries of brain tumor-related genes and fast advances in genomic testing technologies have led to the era of molecular 
diagnosis of brain tumor. Molecular profiling of brain tumor became the significant step in the diagnosis, the prediction of progno-
sis and the treatment of brain tumor. Because traditional molecular testing methods have limitations in time and cost for multiple 
gene tests, next-generation sequencing technologies are rapidly introduced into clinical practice. Targeted sequencing panels using 
these technologies have been developed for brain tumors. In this article, focused on pediatric brain tumor, key discoveries of brain 
tumor-related genes are reviewed and cancer panels used in the molecular profiling of brain tumor are discussed.
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INTRODUCTION

Since the end of the Human Genome Project, a number of 

genomic studies of human disease such as The Cancer Genome 

Atlas (TCGA) and International Cancer Genome Consortium 

have been activated25). Such large scale genome studies were 

enabled by the development of massively parallel sequencing 

technology, also known as next-generation sequencing (NGS), 

which can rapidly generate high-throughput data with low 

per-base cost5,40). 

In addition, targeted anti-cancer therapy has been highlight-

ed with the discovery of cancer driver genes32,67). Such clinical 

needs, in turn, prompted the development of sequencing tech-

nologies and cancer genome studies. TCGA, the large scale can-

cer genome study consortium, started its three-year pilot project 

in 2006, especially about glioblastoma and now completed the 

characterization of 33 cancer types including 10 rare cancers7).

The acceleration of genomic studies in the field of brain tu-

mor led to the discovery of key genes in brain tumor develop-

ment, such as isocitrate dehydrogenase (IDH), H3F3A, and al-

pha thalassemia/mental retardation syndrome X-linked 

(ATRX)52,64). In addition, these genes have been found to be 

deeply involved in the diagnosis and prognosis of brain tumor.

Brain tumor is the most common type of solid cancer in chil-
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dren. Over the past decade, molecular research on brain tumors 

has made unprecedented progress in pediatric brain tumors. 

Unique genomic and epigenomic alterations are continuously 

discovered according to the patients’ age, tumor grade, and his-

tologic differences of brain tumors in large-scale global collab-

orative studies. In addition, the therapeutic paradigm is 

changing as targeted therapies are developed to correct the ge-

netic abnormalities, prompting a new sub-classification of 

brain tumors. In 2016, the new World Health Organization 

(WHO) classification of central nervous system (CNS) tumors 

incorporated the genetic abnormalities into the classification 

and diagnosis of the tumor38). Therefore, some tumors must 

undergo molecular testing, which is essential for accurate di-

agnosis. Sometimes multiple tests are required for each pa-

tient, so multiplex panel tests using NGS method have begun 

to be used in clinical settings to meet the reasonable turn-

around time and the price. 

In this article, the important genetic abnormalities involved 

in brain tumors, especially in pediatric brain tumors, are re-

viewed and the existing brain tumor panels are analyzed to sug-

gest the optimal design of the pediatric brain tumor panel.

GENETIC ABNORMALITIES IN PEDIATRIC 
GLIOMAS

Gliomas are the most common CNS tumors in children and 

adolescents81). Children’s gliomas are mostly low-grade, classi-

fied as grade 1 or grade 2 according to the WHO classification 

of CNS tumors and appear to be slowly growing lesions. Low 

grade glioma (LGG) in children is fundamentally different 

from those of adult which are characterized by IDH mutation 

and have generally good prognosis. Gliomas are currently not 

fully cured, despite efforts to utilize all currently available 

treatment. Therefore, the purpose of the treatment of LGGs, 

which is pursued by neurosurgeons, pediatric oncologists and 

radiation therapists, is to improve the quality of life of patients 

and prevent long-term sequelae.

Among gliomas, the newly included tumors in the WHO clas-

sification revised in 2016 is the diffuse midline glioma, H3 K27M-

mutant, a broad-spectrum central glioma within the astrocytic-

tumor category38). RELA fusion-positive ependymoma was 

classified as a new subtype of supratentorial ependymoma.

Low grade gliomas including other astrocytic 
tumors

In the newly revised WHO classification in 2016, pilocytic 

astrocytoma (PA), pleomorphic xanthoastrocytoma (PXA), 

subependymal giant cell astrocytomas are belonging to the 

“other astrocytic tumor”. About 50% of optic pathway PA and 

about 4% of cerebellar PA occurs in families with mutations 

in the neurofibromatosis type 1 (NF1) gene and the rest occurs 

sporadically24). In these gliomas, the most common somatic 

point mutation is BRAF V600E mutation causing BRAF acti-

vation, which is also observed in 33% of ganglioglioma, 70% 

of PXA, and approximately 15% of pediatric LGG4,60). The 70% 

of PA showed one copy gain of BRAF gene, by the fusion be-

tween BRAF gene and KIAA1549 gene located on chromo-

some 7q3458,80). As a result of overactivation of MEK and ERK 

genes in the down-stream of BRAF signaling pathway, glioma-

genesis is known to occur31). BRAF gene duplication is known 

to occur in more than 80% of PA of posterior fossa and 22% of 

the pilomyxoid astrocytoma16). Other BRAF fusion partners 

(FAM131B, SRGAP3, MACF1, RNF130, CLCN6, MRKN1, and 

GNAI1) result in equally strong BRAF activation through the 

loss of the N-terminal of autoregulatory domain73). However, 

the effect of specific BRAF abnormalities on the prognosis is 

unclear81). In one study of 146 childhood PAs, BRAF-KIAA1549 

fusion was associated with a good prognosis while other stud-

ies do not show any association with prognosis74).

The mutations of other genes, including FGFR1, MYB, MYBL1, 

and ATRX, have been identified through whole exome se-

quencing (WES) of these gliomas55).

Diffuse midline glioma, H3 K27M-mutant (WHO 
grade IV)

Gliomas with histone H3 K27M mutation, formerly called 

infiltrating brainstem or pontine glioma have been named as 

“diffuse midline glioma, H3 K27M-mutation” in the revised 

WHO classification30,33). These tumors are classified as astro-

cytic and oligodendroglial tumor category and are classified 

as WHO grade IV glioma of the pediatric population, which 

occur in the midline of CNS, such as thalamus, pons and spinal 

cord. It has been shown that high grade gliomas in children 

have genetic abnormalities and gene expressions different from 

adults and their prognosis is different29,68). In 2014, Histone 

gene mutation was found to be a driver mutation through 

WES33,71,76). This tumor usually differentiates into astrocytes 
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and is morphologically similar to WHO grade IV human astro-

cytoma. In addition to H3 K27M mutation, the mutation of 

TP53 (50%), PPM1D (15%), ACVR1 (20%), PDGFRA (10%), 

and SMARCA4/B (<5% of cases) can be present44,68).

It is known that tumors with this mutation are worse than 

those without the K27M-mutation among the same grade glio-

ma in the same region. Two-year survival rate is generally less 

than 10% when treated with current therapies64,76).

Ependymomas
It is known that the genetic aberration of ependymoma var-

ies depending on the tumor site of the CNS and the biology of 

the tumor follows genetic characteristics50,77). Although the 

morphology of the lesion may be identical, it can be divided 

into three groups according to the location of the tumor be-

cause the gene abnormality is different50). 

About 70% of cases of supratentorial ependymomas are char-

acterized by RELA-C11orf95 fusion and 30% by YAP1 gene 

fusion43,77). It is known that the LAMA2 overexpression group 

show worse prognosis than NELL2 overexpression group among 

the cases of posterior fossa ependymomas1,46). In the spinal 

cord, familial ependymomas are known to associate with NF1 

gene mutation, while the other spinal cord ependymomas do not 

show any specific mutation but it is known that they show three 

types of copy number variation50).

Ependymoma, RELA fusion-positive
This C11orf95-RELA fusion ependymoma is a new genetic 

subtype of the supratentorial ependymoma which has been 

newly included in the 2016 WHO classification. The C11orf95-

RELA gene fusion, which is one of the genetic features of the 

ependymomas above the tent, is associated with the activation 

of NF-κB pathway1,51). The partner gene can be a gene other 

than C11orf95. The grade of this tumor follows a pathologic 

grade that is evaluated according to existing morphologic fea-

tures, but the prognosis is worse in the case of RELA fusion 

than YAP fusion43,51).

NEURONAL AND MIXED NEURONAL-GLIAL 
TUMORS

Thirteen tumors belong to mixed neuronal-glial tumors, in-

cluding dysembryoplastic neuroepithelial tumor, ganglion cell 

tumor, papillary glioneuronal tumor, rosette-forming glioneu-

ronal tumor, central neurocytoma, extraventricular neurocyto-

ma, cerebellar liponeurocytoma and paraganglioma.

Diffuse leptomeningeal glioneuronal tumor was newly in-

cluded in the revised 2016 WHO classification.

Gangliocytoma and ganglioglioma
It is known that approximately 20–43% of neuroepithelial 

neoplams and ganglioglioma show BRAF V600E mutation and 

the frequency of this mutation increases with the degree of ma-

lignancy31,51). BRAF V600E mutation is related to the use of a tar-

geted therapeutic agent for this mutation, such as vemurafenib. 

The BRAF V600E mutation also has been reported to be asso-

ciated with the worse prognosis of ganglioglioma39,81).

Diffuse leptomeningeal glioneuronal tumor (Inter-
national Classification of Diseases for Oncology 
[ICDO] code and WHO grade not yet assigned)

There are few reported cases of diffuse leptomeningeal glio-

neuronal tumors (DLGNT). WHO grade has not yet been es-

tablished in this tumor20).

A recent report showed the presence of BRAF duplication in 

about 44% and BRAF V600E mutation in about 11%15). Other 

aberrations in MAPK/ERK pathways including RAF1, FGFR1, 

NF1, and MYB or MYBL1 were also reported81). Low grade na-

ture of DLGNT was reported, but cases having nuclear atypia, 

high Ki-67 index and glomerular vascular proliferation may 

show bad prognosis11).

CNS EMBRYONAL TUMORS

The most significant change in the revised 2016 WHO clas-

sification is the CNS embryonal tumor, previously referred to 

as the CNS primitive neuroectodermal tumor (CNS PNET). 

The reason for the change in the name of the tumor is to pre-

vent confusion with the extracranial PNETs, such as Ewing sar-

coma. Among CNS embryonal tumors, medulloblastoma (MB) 

is classified according to the combination of tumor genetics and 

morphological subtype38). Embryonal tumor with multilayered 

rosettes (ETMR; chromosome 19 microRNA cluster [C19MC] 

altered, and not otherwise specified [NOS]) is newly added to 

the 2016 WHO classification, which is characterized by gene 

amplification at the site of the microRNA clusters on chromo-
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some 1938,69).

However, if morphologically CNS PNET, described above, is 

not genetically clear, it is classified as “CNS embryonal tumor, 

NOS”. ETMR can strongly express Lin28 or show the amplifica-

tion of C19MC locus on 19q13.42 chromosome region or 

both69,70).

Medulloblastomas
MB is the most common embyonal tumor of the CNS and is 

common in children. Most occur in the cerebellum but excep-

tionally, WNT activated tumors can occur in the dorsal brain-

stem22). In accordance with the known genetic abnormalities 

and morphologic features, it is classified by two classification 

systems, i.e., genetically determined and morphologically de-

termined classification38).

Genetic MB classification is composed of WNT-activated, 

Sonic Hedgehog (SHH)-activated, group 3 and group 4. 

CTNNB1 mutation and monosomy 6 are the characteristics 

of WNT subtype18). The germline or somatic mutation of the 

TP53 gene is observed in SHH-activated MB, but not observed 

in the WNT-activated MB or group 3 and group 4 MBs69). The 

SHH MB with TP53 gene mutation is known to have a poor 

prognosis82).

In contrast, group 3 and group 4 MBs are immunohistochem-

ically and molecular-genetically overlapped and they show copy 

number variations in variable chromosomal loci53). In many hos-

pitals, these two groups are classified as non-WNT/non-SHH 

groups because group 3 and group 4 cannot be easily categorized 

by conventional laboratory tests. Tumors with either MYC or N-

MYCN gene amplification or anaplastic/large cell type have 

poorprognosis82). Generally, group 3 has the worst prognosis19,53). 

If there are cerebrospinal metastases, the prognosis is poor and 

the recurrence is common2,53). MB with extensive nodularity 

usually has a good prognosis9). If genetic testing is not possible or 

the results are ambiguous, it can be diagnosed as MB, NOS.

In order to genetically classify MBs, originally it is necessary 

to examine the mutation of several genes and chromosome copy 

number variation. Currently, immunohistochemistry can be 

used to classify MB72). However, it is not easy to interpret the im-

munoreactivity and match with genetic subgroup.

Recently, according to Cavalli et al.9), the genetic groups of MB 

can be further subdivided. That is, it is subdivided into WNTα 
to β, SHHα to δ, group 3α to γ, and group 4α to γ, which better 

reflect the prognosis and clinical characteristics9).

Embryonal tumor with multilayered rosettes, 
C19MC altered, and NOS, WHO grade IV

This tumor is one of the malignant CNS tumors. It is com-

posed of multiple layers of rosettes and broad neuropil, and also 

has genetic characteristics of C19MC in chromosomal band 

19q13.42 amplification or fusion with Tweety family member 1 

(TTYH1) gene35,47). This can be confirmed by fluorescence in situ 

hybridization (FISH). These tumors are very rare and can occur 

in the cerebrum, brain stem, and cerebellum.

If the tumor is morphologically compatible but has not un-

dergone genetic tests or has no abnormality of this gene by the 

molecular test, it is diagnosed as an “embryonal tumor with mul-

tilayered rosettes, NOS”. This tumor is a very rapidly growing 

WHO grade IV tumor with a poor prognosis, and the average 

survival time with the current treatment is 12 months (reported 

up to 24–36 months), and the relationship between the gene al-

teration and the prognosis should be studied37).

CNS embryonal tumor, NOS
Most of the tumors diagnosed as “CNS-PNET” in the past 

are now diagnosed as “CNS embryonal tumor, NOS”. These tu-

mors are very rare CNS neuroepithelial tumor with poor differ-

entiation, and the specific morphological features or classifi-

able genetic abnormalities of these tumors have not yet been 

revealed26,38). Most of these tumors express Lin28 immunohis-

tochemically69,70). The prognosis of this tumor is very poor (WHO 

grade IV), and worse than that of the MB3).

Atypical teratoid/rhabdoid tumor (AT/RT)23)

AT/RT are characterized by the mutation of SMARCB1 (95%) 

or SMARCA4 (about 2%) genes23). When the mutation of those 

genes is not examined or this mutation is not found in spite of 

compatible histology, it is diagnosed as “CNS embryonal tumor 

with rhabdoid features”.

A rare case of a malignant neoplasm characterized by atypical 

morphology and rhabdoid features with acquisition of the sec-

ondary SMARCB1 mutations in PXA and GG was reported65).

GERM CELL TUMORS

Germinoma
CNS Germ cell tumor (GCT) has been known to have a com-

mon chromosomal abnormality 12p redundancy, i(12p), which 



J Korean Neurosurg Soc 61 | May 2018

380 https://doi.org/10.3340/jkns.2018.0057

was found in studies of malignant testicular tumors14). The most 

common cytogenetic abnormality in extragonadal germinomas 

is the 12p overlap61). However, specific genes on i(12p) associat-

ed with the development of GCT are not known.

Cytogenetic abnormalities as driver mutations in childhood 

GCT include the loss of 1p and 6q, the changes in sex chromo-

somes, and 12p abnormalities with some gains62). The most com-

mon chromosomal imbalance is an increase in the X chromo-

some, as well as an increase in 1p, 8p, and 12q, and a loss in 13q 

and 18q62). The most frequent gene abnormality in CNS GCTs 

is XXY, similar to Klinefelter syndrome which tends to develop 

GCTs in the intracranium49).

In the intracranial pure germinomas, mutations of KIT/

RAS gene were frequently detected, and mutations in the KIT 

gene exones 11, 13, and 17 as well as KIT amplification were 

found in 23–25% of intracranial GCTs63). It is thought to con-

tribute to the development of GCTs. MYC or MYCN amplifi-

cation can be observed in a small number of GCTs21).

Non-germinomatous germ cell tumor
In the yolk sac tumor (YST), chromosome 1p36 gain, 6q loss 

and chromosome 1 and chromosome 20 abnormalities have 

been reported41). In addition, i(12p), which is characteristic of 

other malignant GCTs of testis and ovary, can be detected12,54). 

Embryonal carcinoma and choriocarcinoma show similar cy-

togenetic abnormalities, i(12p)64,65).

Immature teratomas are usually diploid, whereas YST can be 

diploid, tetraploid or aneuploid66). Chromosomal abnormalities 

include gain of chromosomes X, 1, 3, 8, 12, and 14, i(12p) and 

loss of X and Y. There may be loss of 1q and rearrangement of 

3q and 6q13,57,78).

CURRENT STATUS OF TARGETED NEXT-
GENERATION SEQUENCING IN BRAIN TUMORS

There has been a great progress in the understanding of mo-

lecular characteristics of brain tumors by genome-wide study, 

such as WES and whole genome sequencing (WGS)10,48). How-

ever, targeted NGS panel composed of limited number of genes 

is required for the routine clinical practice of brain tumor diag-

nosis and treatment. For the clinical NGS test of brain tumors, 

we should consider the spectrum of sequencing panel (pan-

cancer panel or organ-specific panel), target enrichment meth-

od (hybrid capture or amplicon sequencing), type of tissues 

(fresh frozen [FF] or formalin-fixed paraffin-embedded [FFPE] 

tissues) and gene contents27). The summary of targeted NGS 

panels used for brain tumors in recent publications is shown in 

Table 1. There are three types of panel : pan-cancer, brain tu-

mor-specific and glioma-specific panel.

Pan-cancer panels and organ-specific panels have pros and 

cons. Pan-cancer panels are usually composed of more than 300 

genes of major oncogenes, tumor suppressor genes and drugga-

ble genes frequently altered in various type of cancers. Because 

of large target region, pan-cancer panels show better perfor-

mance in copy number alterations (CNA). However, pan-cancer 

panels usually require more time and cost. Moreover, genes sole-

ly mutated in certain type of cancer with rare frequency, such 

as HIST1H3B or HIST1H3C are not covered by pan-cancer 

panels. Organ-specific panels consist of lower number of genes 

than pan-cancer panel, so we can reduce the time and cost for 

the NGS test. In addition, organ-specific panel covers cancer 

type-specific genes with rare mutation rate. However, organ-spe-

cific panel have limitations in the clinical trial enroll and CNA 

analysis.

Because the target region of NGS panel is smaller than 1% of 

human genome, we should enrich the region of interest in the 

genome. There are two types of target enrichment method, which 

are hybrid capture and amplicon method. Hybrid capture meth-

od uses DNA or RNA baits complementary to target sequences. 

The baits are hybridized to target sequences, and collected by 

magnetic beads. Amplicon sequencing method enriches target 

sequences by PCR amplification. Hybrid capture method is 

suitable for NGS panels with more than 50 genes as well as com-

prehensive genomic analysis including single nucleotide varia-

tion (SNV), indel, CNA and structural variation. However, hy-

brid capture method takes longer hands-on time and turn-around 

time, and usually requires more than 200 ng of genomic DNA. 

Amplicon sequencing method has easier workflow, short turn-

around time and requires small amount of genomic DNA (more 

than 20 ng). However, amplicon sequencing is usually used for 

NGS panels composed of less than 50 genes, and has a limit to 

CNA analysis.

FFPE tissue is widely used in the histological diagnosis due 

to the preservation of morphology, fast tissue preparation, and 

low cost for storage. However, FFPE tissue has several issues in 

molecular testing, such as the fragmentation of DNA, crosslink-

ing, and cytidine deamination. For those reasons, DNA extract-
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ed from FF is preferred in NGS test. However, several commer-

cially available DNA extraction kit for FFPE yield high quality 

of DNA from FFPE tissues34). So, both of FF and FFPE tissues 

can be used in clinical NGS test. When the test was performed 

with FFPE tissues, C to T transition with low variant allele fre-

quency could be false-positive call caused by cytidine deami-

nation. Enzymatic removal of deaminated cytosine by UDP 

glucuronyl transferase can reduce that error75).

Selection of gene contents for brain tumor panel is based on 

the classification of brain tumors and corresponding oncogen-

ic pathways. For the diagnosis and classification of gliomas, 

IDH1, IDH2, ATRX, TP53, CIC, FUBP1, BRAF genes and 

telomerase reverse transcriptase (TERT) promoter are usually 

included. For the detection of 1p/19q co-deletion in oligoden-

droglioma, additional genomic regions which exist in 1p or 19q 

can be included in the panel. To diagnose diffuse midline glio-

ma, H3F3A, HIST1H3B, and HIST1H3C should be tested. For 

the classification of MB, APC, CTNNB1, TP53, PTCH1, SMO, 

SUFU, KDM6A, MYC, MYCN genes and TERT promoter can 

be used. For the diagnosis of AT/RT, SMARCB1 (INI1) and 

SMARCA4 (BRG1) can be included. For the therapeutic intent, 

druggable or potentially druggable target such as HER2, ALK, 

MET, ROS1, KIT, PDGFRA, FGFR1, FGFR3, BRAF can be in-

cluded in NGS panel. 

For now, targeted NGS panel for brain tumors has several 

limitations. First, reliable detection of copy number alteration 

is limited due to uneven target coverage, the absence of matched 

normal data, or the lack of coverage uniformity34). Second, nu-

cleotide sequences with high GC content such as TERT pro-

moter usually show lower depth of coverage17). Third, exact clas-

sification of MB and ependymoma based on NGS panel test is 

limited because of the classification of those tumors are main-

ly based on transcriptome and methylome analysis9,50).

CONCLUSION

The molecular abnormalities of pediatric brain tumors and 

current status of targeted brain cancer panels were reviewed. 

Due to the completion of the human genome project and the 

development of gene abnormality testing techniques, the revo-

lution of genomic tests for human diseases are actively under-

Table 1. Summary of targeted next-generation sequencing panel used for brain tumor in recently published studies

Study
Number of 

tested genes
Number of 

patients
Sample 

type
Tumor type used 

in study
Target 

enrichment method
Spectrum 
of panel

Name of 
panel

Blumenthal 
  et al. (2016)6)

236, 315 43 FFPE Glioma Hybrid capture Pan-cancer FoundationOne

Dubbink 
  et al. (2016)17)

12 139 FFPE Glioma Amplicon Glioma-specific

Nikiforova 
  et al. (2016)45)

30 54 FF, FFPE Glioma and 
  non-glioma

Amplicon Glioma and 
  non-glioma

GlioSeq

Sahm 
  et al. (2016)59)

130 150 FFPE Glioma and 
  non-glioma

Hybrid capture Glioma and 
  non-glioma

Carter 
  et al. (2017)8)

25, 151, 99, 131 50 FFPE Glioma Hybrid capture Pan-cancer Comprehensive 
  cancer gene set

Johnson 
  et al. (2017)28)

315 282 FFPE Glioma Hybrid capture Pan-cancer FoundationOne

Kline 
  et al. (2017)36)

510 31 FFPE Glioma and 
  non-glioma

Hybrid capture Pan-cancer UCSF500 Cancer 
  Gene Panel

Movassaghi 
  et al. (2017)42)

315 71 FFPE Glioma Hybrid capture Pan-cancer FoundationOne

Ramkissoon 
  et al. (2017)56)

300 203 FFPE Glioma and 
  non-glioma

Hybrid capture Pan-cancer OncoPanel

Zacher 
  et al. (2017)79)

20 121 FF, FFPE Glioma Amplicon Glioma-specific

FFPE : formalin-fixed paraffin-embedded, FF : fresh frozen
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way. Even if morphologically tumors are belonging to the same 

group, it is found that the prognosis and response to the treat-

ment depend on the gene abnormality. Therefore, pathologic 

diagnosis has been transformed into the integrated diagnosis 

reflecting the gene abnormality in the revised 2016 WHO clas-

sification of CNS tumors. Brain cancer panel using targeted se-

quencing will be helpful to such integrated diagnosis and tar-

get therapies to cure diseases.
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