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The brain’s structural differences 
between postherpetic neuralgia 
and lower back pain
Jianxing Qiu1,8, Mengjiao Du2,8, Junzhe Yang1, Zengmao Lin3, Naishan Qin1, Xiaowei Sun1, 
Linling Li2, Rushi Zou2, Juan Wei4, Bing Wu4, Jing Liu1,8* & Zhiguo Zhang2,5,6,7,8*

The purpose is to explore the brain’s structural difference in local morphology and between-region 
networks between two types of peripheral neuropathic pain (PNP): postherpetic neuralgia (PHN) and 
lower back pain (LBP). A total of 54 participants including 38 LBP and 16 PHN patients were enrolled. 
The average pain scores were 7.6 and 7.5 for LBP and PHN. High-resolution structural T1 weighted 
images were obtained. Both grey matter volume (GMV) and morphological connectivity (MC) were 
extracted. An independent two-sample t-test with false discovery rate (FDR) correction was used to 
identify the brain regions where LBP and PHN patients showed significant GMV difference. Next, 
we explored the differences of MC network between LBP and PHN patients and detected the group 
differences in network properties by using the two-sample t-test and FDR correction. Compared with 
PHN, LBP patients had significantly larger GMV in temporal gyrus, insula and fusiform gyrus (p < 0.05). 
The LBP cohort had significantly stronger MC in the connection between right precuneus and left 
opercular part of inferior frontal gyrus (p < 0.05). LBP patients had significantly stronger degree in left 
anterior cingulate gyrus and left rectus gyrus (p < 0.05) while had significantly weaker degree than PHN 
patients in left orbital part of middle frontal gyrus, left supplementary motor area and left superior 
parietal lobule (p < 0.05). LBP and PHN patients had significant differences in the brain’s GMV, MC, and 
network properties, which implies that different PNPs have different neural mechanisms concerning 
pain modulation.

Increasing incidence of chronic pain has drawn more and more attention worldwide. It was demonstrated that 
chronic pain could alter brain activity and  networks4,13,14,42,47. Moreover, different types of chronic pain might 
alter different brain regions and networks, which was called brain biomarkers or pain  matrix25,33,36,49. Investiga-
tion on brain network alteration have benefits for revealing central modulation mechanism of pain as well as for 
further research of precise and targeted  therapy9,21,38.

As a common type of chronic pain, peripheral neuropathic pain (PNP)17,40 has typic characteristics of spon-
taneous pain due to inflammation, such as postherpetic neuralgia (PHN)20,22, or due to injury of nerve roots, 
such as lower back pain (LBP) caused by compression of lumbar  discs3,55. Both PHN and LBP may have the same 
pain mechanism and clinical symptoms, but they still induce different central activity and pain biomarkers. A 
large number of neuroimaging studies have explored the brain activity and network  changes16,27,28,30,46 in PHN 
and LBP, and have exposed their neural mechanism of pain modulation. However, most previous studies have 
conducted research on pain patients with healthy subjects as  control27,30, or used self-control before and after 
 therapy16,27. As we know, pain disorders could bring pain feeling and some negative emotion such as depression, 
insomnia and anxiety, which would also alter the brain’s structure and  functions31,33,49. Therefore, it remains 
unclear whether previous findings of altered brain patterns in pain patients were caused by pain or accompany-
ing negative emotion. To solve this problem, using two types of pain diseases as control for each other could 
help exclude emotional influence and facilitate exploring specific brain regions or networks for different types 
of pain. Pain patients always suffer from negative emotions, it is helpful to offset the effects by enrolling patients 
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with comparable pain intensities and emotion scores by questionnaires as control. In addition, making PHN 
and LBP as controls for each other might be more possible to obtain the specific brain biomarker for different 
pain even though both of them belong to PNP. To our best of knowledge, there was no neuroimaging study 
concerning both PHN and LBP.

Multimodal MRI is the most commonly used neuroimaging method in previous pain-related  studies16,27,28,30,46, 
and it can reveal the functions and structures of the brain from different aspects. Compared with function MRI 
(fMRI) and diffusion tenson imaging (DTI), T1 weighted imaging (T1WI) has the advantages of easier access, 
higher resolution, and relative insensitivity to artifacts (e.g., head motion, susceptibility). However, few  studies12,29 
have explored the GMV changes in PHN from T1WI, let alone MC.

By calculating the inter-regional similarities of local brain morphology from  T1WI7,24,43, MC could help 
characterize structural connectivity and reflect synchronized  development2,15. Previous studies have shown MC 
could be important brain biomarkers of  perception26, neurological  diseases52, and pain  sensitivity58. However, MC 
has not been conducted in pain patients. Considering the mounting evidence on the close relationship between 
pain disorders and other types of structural or functional brain connectivity (DTI tractography or functional 
connectivity)2,35, it is reasonable to hypothesize that MC is a promising brain biomarker of neuropathic pain.

In our study, we explored both the GMV and MC patterns of PHN and LBP patients and gauged the differ-
ences of structural networks between these two types of PNP to find out the possible structural MRI biomarkers 
which were more specific to the diseases. Because PHN and LBP have different causes, we hypothesized that 
PHN and LBP would have different structural networks even if they both belong to PNP.

Material and methods
Ethics statement. This prospective study was approved by an institutional review board (Peking Univer-
sity First Hospital Ethics committment) and was conducted in compliance with the Declaration of Helsinki. All 
participants in this study provided written informed consent.

Participants. Consecutive patients which were confirmed as PHN or LBP by anesthesiologists were 
included. All the subjects were right-handed. For PHN cohort, all participants reported a history of shingles, 
associated pain, and varicella zoster virus infection. All participants reported a history of persistent pain for at 
least 2 months after resolution of the acute shingles episode. For LBP cohort, all participants were suffering from 
chornic lower back pain for at least 6 months according to IASP  criteria32. Pain was primary localized within 
the lumbar or lumbosacral region, accompanying with or without radiation to the buttocks, thighs or legs. In 
addition, all the LBP patients also underwent lumbar MR scanning to identify the herniation of lumbar discs.

None of them had a history of psychiatric or neurological disorders. Individuals with a history of any disorder 
with a potential impact on brain structure (such as hypertension requiring medical treatment, traumatic brain 
injury, diabetes mellitus, rheumatologic disorders, and any other chronic pain disease different from PHN and 
LBP) were excluded from this study. The clinical symptoms of pain were assessed using a numerical rating scales 
(NRS), with a range from 0 (no pain) to 10 (the highest tolerable pain). All of the patients underwent neurologi-
cal and psychological examinations and fulfilled the mini-mental state examination (MMSE). Only the patients 
with the scores above 27 in MMSE were included. Patients with any abnormality detected on brain MRI were 
excluded from our study.

For further characterization of patients, all individuals were asked to complete the Chinese version of the 
Hospital Anxiety and Depression Scale (HADS)57 for measuring anxiety and depression.

Data acquisition and preprocessing. All the brain MRI examinations were performed on a 3.0 T scan-
ner (GE healthcare, 750HD) with a 32-channel phased-array head coil. High-resolution structural T1WI were 
obtained by using a three-dimensional magnetization-prepared rapid gradient-echo (3D-MPRAGE) sequence 
with the following parameters: repetition time (TR) = 8.1 ms; echo time (TE) = 3.7 ms, flip angle =  80; slice thick-
ness = 1 mm without a gap; field of view (FOV) = 240 × 240  mm2; matrix size = 256 × 256. A total of 160 axial 
slices were acquired for each patient.

All structural MRI data processing routines were carried out by using the Statistical Parametric Mapping 12 
(SPM12, https:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ spm12/) Toolbox in MATLAB-R2018b (The MathWork, 
Inc., Natick, MA, US). The preprocessing procedure was as follows. First, the MRI data of each subject were seg-
mented into grey matter (GM), WM and cerebrospinal fluid (CSF). Second, the GM segments were non-linearly 
co-registered by using the inbuilt high dimensional Diffeomorphic Anatomical Registration Through Exponenti-
ated Lie Algebra (DARTEL)5. Third, GM images were normalized to standard Montreal Neurological Institute 
(MNI) space to make the GM images in the same space. Thereafter, the resulting GM images were modulated 
by the Jacobian determinants. Fourth, the GM images were smoothed with an 8 mm full-width-half-maximum 
(FWHM) Gaussian kernel. The GM images of all subjects were used for the further analysis.

We used the Automated Anatomical Labeling (AAL) atlas to define the whole brain parcellation for later MC 
network  analysis45. The cerebellar regions were excluded due to incomplete coverage of the cerebellum in several 
participants. Thus, a total of 90 brain regions of interest (ROIs) were defined in this analysis.

GMV and MC estimation. In our study, we extracted two types of features using the preprocessed GM 
images: GMV and MC. GMV of each subject was estimated by voxel-based morphometry (VBM) in the whole 
brain as the local morphological feature. MC is a measure of structural connectivity, and it was calculated in the 
following steps. First, we quantified the GM intensity of each voxel within each ROI in preprocessed GM images. 
Second, the kernel density estimation with automatically chosen  bandwidths10 was used to calculate the proba-
bility density function for each  ROI11. Third, the morphological connectivity for each pair of ROIs was estimated 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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as the similarity between the two probability density functions of this pair of ROIs by using Kullback–Leibler 
 divergence23. The Kullback–Leibler divergence was defined as:

where p(x) and q(x) were the probability density functions of two ROIs p and q , respectively.
Moreover, Kullback–Leibler divergence was converted to a similarity metric  as24:

The range of Kullback–Leibler-based similarity (KLS) is from 0 to 1, where 1 indicates two identical distri-
butions while 0 implies two completely different distributions. Finally, a MC matrix with a size of 90 × 90 was 
acquired for each participant.

Graph-theoretical network analysis. Next, we applied graph theory to estimate the network properties 
of MC, and the network properties including degree, small-worldness, network efficiency, clustering coefficient 
and characteristic path length. The calculation of network properties on MC matrices across all participants were 
performed with the GRETNA  Toolbox51. First of all, a thresholding procedure is commonly used to binarize 
the MC network before performing topological characterization on the morphological connectivity matrices. 
A sparsity threshold, which was defined as the ratio of the number of existing edges divided by the maximum 
possible number of edges in a network, was used to binarize the divided MC  network23. We binarized the MC 
network within a wide range of the sparsity threshold (from 0.05 to 0.4 with an interval of 0.02) because an 
automated method to determine the sparsity threshold is  lacking1,50. Then, we calculated the network properties 
of MC within different sparsity thresholds.

Statistical analysis. Independent-t-test was used for the comparisons of age and scores for pain, anxiety 
and depression between groups.

An independent two-sample t-test with an accompanying false discovery rate (FDR) correction was used 
to identify the brain regions where LBP and PHN patients showed significant GMV difference. Meanwhile, the 
total intracranial volume (TIV) of each subject was estimated and used as a covariate to remove the effect of vari-
ations in brain intracranial volume. Next, in order to explore the differences of MC network between LBP and 
PHN patients, we performed an independent two-sample t-test with FDR correction to correct the problem of 
multiple  comparisons8. Furthermore, we detected the group differences in network properties (including degree, 
small-worldness, network efficiency, clustering coefficient, and characteristic path length) at different sparsity 
thresholds by using the two-sample t-test and FDR correction.

Correlations analysis. Next, for each the feature showing significant group differences, we calculated the 
Pearson’s correlation coefficients between these features (including MC and degree) and pain scores in LBP 
or PHN group, separately. On the other hand, the standard general linear model (GLM) was used by creating 
design matrices for multiple regression analysis of GMV, with pain scores and TIV as regressors. The GLM was 
used to construct pseudo t statistic images, and significant clusters were extracted with voxel-level p < 0.005. 
FDR was finally used to correct the problem of multiple comparisons.

Ethical approval. Ethical approval was obtained from the institutional review board (Peking University 
First Hospital Ethics committment).

Consent to participate. All participants in this study provided written informed consent.

Results
Clinical characteristics. A total of 54 participants including 38 LBP patients (11 males, 27 females, age: 
59 ± 12) and 16 PHN patients (3 males, 13 females, age: 66 ± 7) were enrolled in the experiment. There was no 
statistical significance between age comparison (t = − 1.852, p = 0.07 > 0.05).

The average pain scores were 7.6 ± 1.6 (rang from 5.5 to 10) in LBP patients, and were 7.5 ± 1.9 (rang from 6 
to 10) in PHN patients. There was no statistical significance between them (t = 0.111, p = 0.912 > 0.05).

There were also no statistical significance in pain duration, scores for psychological state, and the details of 
demographic and clinical characteristics were in Table 1.

Group differences in GMV. The clusters with significant differences in GMV between LBP and PHN were 
shown in Table 2 and Fig. 1. Compared with PHN, LBP patients had significantly larger GMV in temporal gyrus, 
insula and fusiform gyrus (p < 0.05, cluster-level FDR-corrected).

Group differences in MC. Group differences in MC network between LBP and PHN were shown in Fig. 2, 
in which the MC differences appeared as a set of clusters in small areas. We only considered a cluster with more 
than 4 MCs, so a total of 4 clusters were observed. Detailed information of the 4 clusters was shown in Table 3.

Compared with the PHN cohort, the LBP cohort had significantly stronger MC in cluster 1 (including hip-
pocampus and orbital gyrus) and cluster 2 (including inferior occipital gyrus and inferior frontal gyrus of 
triangle) (p < 0.05), and had significantly weaker MC in cluster 3 (including superior parietal gyrus and orbital 
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gyrus) and cluster 4 (including superior parietal gyrus, medial superior frontal gyrus and orbital gyrus) (p < 0.05). 
However, after FDR correction, we only found that the LBP cohort had significantly stronger MC than PHN in 
the connection between right precuneus (PCUN. R) and left opercular part of inferior frontal gyrus (IFGoperc. 
L) (p < 0.05, FDR), and the results were shown in Fig. 3.

MC network properties: differences in degree. The group differences in degree between LBP and 
PHN patients were shown in Fig. 4. LBP patients had significantly stronger degree than PHN patients in left 
anterior cingulate gyrus (ACG. L) and left rectus gyrus (REC. L) (p < 0.05, FDR), while LBP patients had signifi-
cantly weaker degree than PHN patients in left orbital part of middle frontal gyrus (ORBmid. L), left supple-
mentary motor area (SMA. L) and left superior parietal lobule (SPG. L) (p < 0.05, FDR). In addition, there were 
no significant differences in other network properties (small-worldness, network efficiency, clustering coefficient 
and characteristic path length) between LBP and PHN patients.

Correlations analysis. The correlations between pain scores and the features that showing significant 
group differences were shown in Fig. 5. We found that the mean degree of left rectus gyrus in PHN patients was 
significantly positively correlated with the pain scores (R = 0.67, p = 0.005, FDR), and the degree of left rectus 

Table 1.  Demographic and clinical characteristics of the participants.

LBP
(n = 38)

PHN
(n = 16) t p

Age (y) 59 ± 12 66 ± 7 − 1.852 0.07

Pain scores 7.6 ± 1.6 7.5 ± 1.9 0.111 0.912

Pain duration (months) 40 ± 46 22 ± 30 1.665 0.103

Scores for anxiety 9.7 ± 4.6 10.6 ± 5.2 − 0.669 0.507

Scores for depression 11.1 ± 4.9 10.7 ± 5.7 0.272 0.786

Table 2.  Difference in GMV between LBP and PHN. Sup superior, Mid middle, Inf inferior.

No. Cluster Cluster size

MNI

Peak t value p value Brain regionsx y z

1 3544 42 − 2 − 32 4.27 0.001

Temporal_Inf_R
Temporal_Sup_R
Temporal_Mid_R
Fusiform_R
Insula_R
Temporal_Pole_Sup_R

2 2796 − 41 − 14 − 15 3.91 0.002

Temporal_Sup_L
Insula_L
Temporal_Inf_L
Heschl_L
Temporal_Pole_Sup_L

Figure 1.  Difference in GMV between LBP and PHN. (LBP > PHN, P < 0.05, Cluster-level FDR corrected.). 
GMV differences observed when comparing LBP and PHN patients. After controlling for total intracranial 
volume, Increased GMV in LBP was observed in several brain regions, ie., the temporal gyrus, fusiform gyrus 
and Insula (p < 0.05, Cluster-level FDR corrected).
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Figure 2.  Group differences in MC network between LBP and PHN. (A) Group differences in MC network 
between LBP and PHN. Increased MC in LBP patients were observed in red regions, i.e., cluster 1 and cluster 
2 (p < 0.05). On the other hand, decreased MC in LBP patients were observed in blue regions, i.e., cluster 3 and 
cluster 4 (p < 0.05). Color bar represents t values. (B) Clusters with different MC in LBP compared with PHN. 
Red lines represent increased MC in LBP, while blue lines represent decreased MC in LBP. Color bar represents 
different brain regions.

Table 3.  Clusters with significant different MC between LBP and PHN. a independent two-sample t-test.

Cluster Region-pairs of brain t value p value a

1 Hippocampus_L—Frontal_Med_Orb_L 2.3403 0.0231

1 Hippocampus_R—Frontal_Med_Orb_L 2.1732 0.0343

1 ParaHippocampal_L—Frontal_Med_Orb_L 2.0144 0.0491

1 ParaHippocampal_R—Frontal_Med_Orb_L 2.0993 0.0407

1 Hippocampus_L—Frontal_Med_Orb_R 2.0634 0.0441

1 Hippocampus_R—Frontal_Med_Orb_R 2.2518 0.0286

1 ParaHippocampal_L—Frontal_Med_Orb_R 2.2095 0.0316

1 ParaHippocampal_R—Frontal_Med_Orb_R 2.1778 0.0340

1 Hippocampus_L—Rectus_L 2.1966 0.0325

1 Hippocampus_R—Rectus_L 2.3418 0.0231

1 ParaHippocampal_R—Rectus_L 2.1585 0.0355

2 Occipital_Mid_R—Frontal_Inf_Tri_L 2.2629 0.0278

2 Occipital_Inf_L—Frontal_Inf_Tri_L 3.0399 0.0037

2 Occipital_Inf_R—Frontal_Inf_Tri_L 2.6729 0.0100

2 Occipital_Inf_L—Frontal_Inf_Tri_R 2.8535 0.0062

2 Occipital_Inf_R—Frontal_Inf_Tri_R 2.1962 0.0326

3 Parietal_Sup_L—Frontal_Inf_Tri_L − 2.5317 0.0144

3 Parietal_Sup_R—Frontal_Inf_Tri_L − 2.5476 0.0138

3 Parietal_Sup_R—Frontal_Inf_Tri_R − 2.0434 0.0461

3 Parietal_Sup_L—Frontal_Inf_Orb_L − 2.3819 0.0209

3 Parietal_Sup_R—Frontal_Inf_Orb_L − 2.0119 0.0494

3 Parietal_Sup_L—Frontal_Inf_Orb_R − 2.1010 0.0405

3 Parietal_Sup_R—Frontal_Inf_Orb_R − 2.3625 0.0219

3 Parietal_Sup_R—Rolandic_Oper_L − 2.4294 0.0186

4 Parietal_Sup_L—Frontal_Sup_Medial_R − 2.6469 0.0107

4 Parietal_Sup_R—Frontal_Sup_Medial_R − 2.2846 0.0264

4 Parietal_Sup_L—Frontal_Mid_Orb_L − 2.5650 0.0132

4 Parietal_Sup_R—Frontal_Mid_Orb_L − 2.2882 0.0262

4 Parietal_Sup_L—Frontal_Mid_Orb_R − 2.3211 0.0242
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gyrus in PHN patients within different sparsity were positively correlated with the pain scores (see Fig. 5B). 
However, there were no significantly correlations between MC or GMV and pain scores in PHN patients, and no 
correlations between these different features (including MC, degree and GMV) and pain scores in LBP patients.

Discussion
In our study, we investigated the brain’s regional characteristics (GMV) and the brain’s inter-regional structural 
connections (MC) of PHN and LBP. Our results revealed that GMV and MC are capable of detecting the dif-
ferences of the brain structure between two types of pain disorders, and the structural differences might be the 
specific areas for pain modulation.

Figure 3.  Group differences in MC between LBP and PHN after FDR correction. (A) Group differences in MC 
between LBP and PHN after FDR correction. Significantly increased MC in LBP (p < 0.05, FDR) were observed 
between right precuneus (PCUN. R) and left opercular part of inferior frontal gyrus (IFGoperc. L). (B) Bar plots 
showing the group difference in MC between LBP and PHN. * indicated p < 0.05, FDR corrected.

Figure 4.  Group differences in degree between LBP and PHN within different sparsity. Significantly increased 
degree in LBP patients were observed in red regions, including left ACG and left REC (p < 0.05, FDR). 
Significantly decreased degree in LBP were observed in blue regions, including left SMA, left SPG and left 
middle ORB (p < 0.05, FDR).
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In recent years, the whole brain  connectivity16,27,28,30,46 has been widely explored in pain research. It has been 
widely recognized that pain is modulated by brain networks which consist of a set of inter-connected brain 
regions, not only by the separate brain  areas28,56. Brain connectivity analysis, such as small-world networks and 

Figure 5.  Correlations between pain scores and degree in PHN within different sparsity. (A) Correlations 
between pain score and mean degree of the left rectus gyrus (REC.L) in PHN patients. The mean degree of the 
REC.L was significantly positively correlated with the pain score (R = 0.67, p = 0.005). (B) Correlations between 
pain score and mean degree of the REC.L in PHN patients within different sparsity.
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WM tractography, has become popular in investigating pain-related changes. Previous studies have shown that 
sMRI-derived MC is a promising measure of individual-level structural connectivity to investigate cognition, 
perception, and neurological  disorders26,52,53. Some studies used fMRI-derived functional connectivity in the pre-
diction of individual pain  thresholds41,44, while it was also found that MC is related to functional  connectivity37. 
Therefore, it is reasonable to consider the use of MC in pain research. A recent  study58 has also found that the 
predictive capability of MC was significantly higher than the regional morphological features like GMV in pre-
diction of individual pain sensitivity.

For the number of MCs in cluster, the different MCs between LBP and PHN patients were scattered in the 
whole brain, while only a few clusters could be clearly observed. By counting the number of clusters with the same 
number of MCs, we found a cluster containing 5 MCs was an inflexion point of the number of clusters, which 
means that most clusters only had 1–4 MCs. Actually, the number of clusters with 1, 2, 3, 4, or ≥ 5 MCs was 92, 
40, 10, 4, and 4, respectively. Therefore, to better illustrate the different MCs between two types of patients, we 
only discussed significant clusters with more than 4 MCs (i.e., the number of MCs ≥ 5).

As for the physiological principle of inter-regional MC, some researchers have proposed the axon tension 
 theory48: anatomically connected brain regions are modulated by a mechanical force, resulting in similar morpho-
logical properties. This theory could also be applicable to pain patients: brain regions involving pain modulation 
showed similar morphological distribution. In our study, most of brain regions detected, including ACG, medial 
frontal gyrus, SMA and superior parietal lobule, have been demonstrated to have a relationship with pain in 
previous studies. Our results could further prove the capability of MC in detecting brain connectivity involving 
pain modulation in two types of PNP disorders (PHN and LBP).

Many  studies16,27,28,30,46 have utilized various MRI techniques to reveal the brain’s structural and functional 
abnormalities of PHN and LBP from different perspectives. Previous two PHN  studies12,29 have shown that 
reduced GMV was found in the bilateral insula, precentral gyrus and right middle frontal gyrus (MFG) while 
increased GMV was found in the bilateral thalamus, right PHG, lentiform nucleus of PHN patients, as compared 
with normal controls. There were also a number of sMRI studies with various results in investigation of LBP. 
Generally, LBP patients had larger GMV than healthy people in bilateral putamen and left posterior  thalamus39, 
and in temporal lobes, S1, S2,  M146. On the other hand, PHN patients also showed greater GMV in both thalamus 
and basal  ganglia12,29, which suggested that these two regions were the main parts involved in pain modulation 
of both PHN and LBP. That could be the explanation for why both the GBV and MC results of these two areas 
showed no significance in PHN-LBP comparison in our study. These two regions may play the same role in 
modulating either PHN or LBP. In the following, we will discuss some major regions and connections identified 
in the present study.

(1) Temporal gyrus. Many regions in the temporal gyrus showed greater GMV for PHN than for LBP, as shown 
in our study. In previous studies with healthy controls, temporal gyrus showed no significant changes in 
PHN, while showed greater GMV in  LBP46. The same results could be found for fusion  gyrus30. In addition, 
temporal gyrus was reported to have a great relationship with hearing ability. Therefore, LBP might affect 
auditory regions’ activity while PHN might not.

(2) Insula. Insula has been involved in modulating various types of pain diseases, including LBP and PHN. 
Previous studies showed that the GMV of insula was smaller in both PHN and LBP, as compared with 
healthy  people6,29. However, from PHN-LBP comparison in our study, insula seemed to be affected more 
by PHN because the GMV of insula was larger in LBP than in PHN.

(3) ACG. ACG, which is often regarded to have a close relationship with acute pain or visceral  pain19,34, showed 
more MC patterns in LBP, as compared with PHN. In Luchtmann’s  study30 with 12 LBP patients, GMV 
of ACG was larger than that of healthy people. Also, ACG showed increased functional connectivity in 
 LBP18,54. However, ACG was not found to lead to any change of GMV in PHN patients, and was also hardly 
found to have significant activity during other BOLD or CBF studies. Our results also showed ACG had 
more increased MC in LBP. Therefore, ACG might have specific connectivity in LBP patients as compared 
with PHN.

(4) Medial orbital gyrus. In Ung’s  study46 with 45 LBP patients, left medial orbital gyrus was reported to have 
decreased GMV than healthy people. However, few studies have mentioned change of medial orbital gyrus 
in PHN. From the results in this study, we speculated that medial orbital gyrus might be affected much by 
LBP.

(5) SMA. In previous connectivity studies, SMA showed decreased functional  connectivity54 and nodal 
 efficacy28 in LBP, in comparison with healthy controls. SMA also showed decreased MC in LBP compared 
with PHN. Therefore, SMA, which was repeatedly reported to have been involved in pain modulation, 
might also have specific connectivity alteration in LBP when compared to PHN.

There were several limitations in our study. First, we lacked healthy subjects with matched age and gender 
as normal control. Our results could only demonstrate that the brain alterations were the differences between 
PHN and LBP. However, most previous studies have already showed the aberrant brain structure and activity 
in pain patients compared with normal control. Besides, using patients as control has the benefits of offsetting 
negative emotion influence. In further study, we would also enroll normal controls for exposing more specific 
and comprehensive brain alterations for PNP. Second, we lacked a detailed evaluation scale for emotion, such 
as the questionnaire for sleep, anxiety and so on. In future study, we would also collect more behavioral data for 
investigating pain intensity and emotion evaluation. Third, we just investigated the MC in one modality of MRI 
(T1WI). If multimodal MRI, such as BOLD and DTI, can be acquired, the results might be more persuasive 
and accurate.
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In conclusion, we compared structural characteristics and network features between PHN and LBP by using 
GMV and MC, respectively. We have obtained reasonable results, which are consistent with previous studies and 
add new knowledge. For example, ACG might be involved more in LBP modulation, while the network efficacy 
of medial orbital gyrus might be disrupted more in LBP compared with PHN. Our results showed that, LBP 
and PHN have different neural mechanisms concerning pain modulation. T1WI-based MC and GMV could be 
potentially used as neural markers to classify pain disorders.

Data availability
All tha data and materials were available at any time.
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