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A high volume of diagnostic tests is needed during the coronavirus disease 2019 (COVID-19) pandemic to obtain representative
results. These results can help to design and implement effective policies to prevent the spread of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Diagnosis using current gold standard methods, i.e., real-time quantitative PCR (RT-
gPCR), is challenging, especially in areas with limited trained personnel and health-related infrastructure. The toehold switch-
based diagnostic system is a promising alternative method for detecting SARS-CoV-2 that has advantages such as inexpensive
cost per testing, rapid, and highly sensitive and specific analysis. Moreover, the system can be applied to paper-based
platforms, simplifying the distribution and utilization in low-resource settings. This review provides insight into the

development of toehold switch-based diagnostic devices as the most recent methods for detecting SARS-CoV-2.

1. Introduction

Since its first identification in late 2019 in Wuhan, the Peo-
ple’s Republic of China, the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) has caused a global
pandemic of coronavirus disease 2019 (COVID-19) [, 2].
In April 2022, the Center for Systems Science and Engineer-
ing (CSSE) at Johns Hopkins University (JHU) announced
in their COVID-19 dashboard that the pandemic has led
to more than 490 million confirmed cases with more than
6 million deaths worldwide [3]. Besides increasing the bur-
den on public healthcare systems, COVID-19 negatively
impacts the global economic and social conditions [4]. Pre-
ventive methods such as social distancing, lockdowns, and
travel restriction policies were considered effective in limit-
ing the spread of SARS-CoV-2. Unfortunately, the conse-
quences of these methods have weakened the global
economy [5, 6].

In late 2020, the COVID-19 vaccination program was
started [7-9], and by April 2022, there were more than 11
billion doses of vaccine administered, with more than 64%

of the world population having received at least one dose
of the vaccine [10]. Although the number of vaccinated peo-
ple kept increasing, preventive efforts to control the spread
of COVID-19 via diagnostic tests are still critical. Efficient
diagnostic tests are crucial to prevent the spread of SARS-
CoV-2 infection by identifying positive individuals to be
quarantined and preventing unnecessary quarantine of neg-
ative individuals [11, 12].

The most commonly used diagnostic tests for SARS-
CoV-2 detection are nucleic acid amplification tests
(NAATS), including reverse transcriptase real-time quantita-
tive PCR (RT-qPCR). The workflow of RT-qPCR comprises
the specimen sampling from patients, RNA extraction, con-
version of purified RNAs to DNAs using reverse transcrip-
tase (RT), and amplification of the obtained virus-
originated DNA fragments. These fragments can detect
unique viral RNA sequences in nucleocapsid (N), envelope
(E), spike (S), or RNA-dependent RNA polymerase (RdRp)
genes using the fluorescence signals [13, 14]. The mentioned
method is currently considered the “gold standard” in
COVID-19 diagnostics due to its high sensitivity and
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F1GURE 1: Toehold switch-based diagnostics for SARS-CoV-2. (a) General scheme of toehold switch riboregulator. In the absence of trigger
RNA (SARS-CoV-2 RNA), RBS and start codon are hidden in the hairpin loop structure and inaccessible to the ribosome. (b) In the
presence of SARS-CoV-2 RNA, the RBS and start codon are “released” to translate reporter genes, resulting in expression that acts as a

signal detectable by naked eyes or specific instruments.

specificity and its straightforward quantitative analysis [15,
16]. However, SARS-CoV-2 diagnostic using RT-qPCR
requires substantial hours and relatively expensive instru-
ments, chemicals, and consumables to generate results
[17]. Furthermore, the process involved, such as sample col-
lection from patients, DNA purification and amplification,
and result interpretation, requires skilled technicians, which
increases the costs of the diagnostics [11, 18]. Consequently,
various alternative techniques to detect SARS-CoV-2 RNA
in patient’s samples are being developed to obtain a more
cost-efficient and rapid method.

2. Synthetic Biology-Based Diagnostics

Synthetic biology combines molecular biology and engineer-
ing approach to create new biological functions [19]. Syn-
thetic biology has enabled the construction of biological
systems rationally and systematically [20]. Furthermore, as
the synthetic biology field matured, most components and
parts to build novel biological systems, including diagnostic
systems, are standardized and cataloged [21, 22]. Those
facts, coupled with the availability of various biological data
and the advancement of in silico biological analysis, have
allowed for more straightforward, rapid, and inexpensive
development of diagnostic systems. [23, 24].

Among the emerging synthetic biology-inspired diag-
nostic platforms for COVID-19 are toehold switch- and
clustered regularly interspaced short palindromic repeats/
CRISPR-associated- (CRISPR/Cas-) based systems. Both

systems detect the genetic materials from pathogens and
report the detection via visual signal.

The toehold-based system uses an RNA switch containing
sequences complementary to the target SARS-CoV-2 RNA
(Figure 1(a)) [18, 25]. The binding of target SARS-CoV-2
RNA will activate the reporter gene’s expression, resulting in
a visually observed product. Meanwhile, the CRISPR/Cas-
based systems involve CRISPR RNA (crRNA) that is specifi-
cally designed to bind the target pathogen DNA or RNA and
activate the nonspecific cleavage activity of Cas nuclease (i.e.,
Cas12 and Casl3) to cleave quenched fluorescent DNA or
RNA reporter [26-28]. The cleaved DNA or RNA reporter
will emit a fluorescence signal which can be detected visually.
Both systems can be applied to a paper-based and wearable
platform that simplifies diagnosis, reduces analysis costs, and
facilitates storage and deployment in areas lacking advanced
infrastructures and medical experts [29].

Both systems have been developed to detect the presence
of SARS-CoV-2 in patients’ samples, and comprehensive
reviews on the CRISPR/Cas-based system for COVID-19
diagnosis were reported [30-32]. This review focuses on dis-
cussing the application of toehold switches for COVID-19
diagnosis.

3. Toehold Switch-Based SARS-CoV-2
Diagnostic Systems

Toehold switches are riboregulators that control gene
expression via base pairing with target RNA sequences.
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COVID-19 diagnostic system developed by Chakravarthy et al 2021
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FIGURE 2: General scheme of the currently developed toehold switch-based diagnostics for COVID-19: (a) a system developed by
Chakravarthy et al. [40] which utilized NASBA (nucleic acid sequence-based amplification) for amplifying trigger RNA from patient’s
nasopharyngeal swab sample and toehold switch-based biosensor with lacZ as a reporter gene, (b) a system developed by Koksaldl et al.
[41] which utilized NASBA for amplifying trigger RNA from patient’s nasopharyngeal swab sample and toehold switch-based biosensor
with superfolder GFP as a reporter gene, (c) a system developed by Park et al. [42] which utilized reverse transcription loop-mediated
amplification (RT-LAMP) for amplifying trigger RNA from patient’s saliva sample and toehold switch-based biosensor with lacZ as a
reporter gene, and (d) a trigger RNA amplification-free system developed by Hunt et al. [43] which detected SARS-CoV-2 RNA from
patient’s saliva sample using toehold switch-based biosensor with NanoLuc as a reporter gene.
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The main component of toehold switches is the RNA hair-
pin structure which contains the ribosome binding site
(RBS) sequence and start codon (AUG) [33]. The upstream
region of the hairpin comprises a single-stranded toehold
sequence complemented with the target RNA (trigger
RNA). The binding of trigger RNA to the toehold sequence
will open the hairpin structure and release the RBS, initiating
the downstream reporter gene’s translation (Figure 1(b))
[34]. The advantage of using a toehold switch as an RNA
biosensing device lies in the unpaired nature of the toehold
sequence that can be designed to detect a wide range of trig-
ger RNA, including full-length mRNA. Those features
enable the utilization of riboregulators in various applica-
tions [35].

Pardee et al. [36] have successfully applied the toehold
switch for diagnostic purposes. The portable diagnostic
device consisted of a plasmid with the toehold switch and
reporter gene encoding sequences, in vitro cell-free tran-
scription, and translation systems that were immobilized
onto paper or other porous materials [37]. The device suc-
cessfully detected antibiotic resistance genes, Ebola virus,
Zika virus, dengue virus, and various gut bacteria with high
specificity and sensitivity [38, 39].

As demonstrated previously, the toehold switch-
diagnostic devices were stable for long-term storage at room
temperature, enabling the use of the device area with limited
medical resources. Furthermore, such diagnostic devices can
be designed based on the sequence of the genetic materials of
the target pathogen, enabling a short design for the produc-
tion cycle. Finally, the devices can cost as little as 0.04 USD
per sensor using an in-house cell-free expression system
than 4.00 USD (reagents only) for PCR-based tests [36, 38].

The development of toehold switch-based COVID-19
diagnostic devices has been reported since 2021 (Table 1).
Chakravarthy et al. [40] developed PHAsed NASBA-
translation optical method (PHANTOM), a toehold
switch-based biosensor coupled with isothermal NASBA
(nucleic acid sequence-based amplification) to detect the
SARS-CoV-2 genome (Figure 2(a)). In the PHANTOM sys-
tem, RNA from SARS-CoV-2 in a patient’s sample was
extracted and then amplified isothermally using NASBA. A
specifically designed toehold-based biosensor then detected
the 36-nt amplification product (trigger RNA) in an
in vitro transcription-translation (IVTT) assay. As a reporter
gene, lacZ produces f-galactosidase to catalyze the colori-
metric reaction of substrates such as ortho-nitrophenyl-f-
galactoside (ONPG) or chlorophenol red-f-D-galactopyra-
noside (CPRG). The PHANTOM system can efficiently
detect the presence of viral RNA in patient samples, which
correlated well with the Ct value from the RT-qPCR test.

A similar system was developed by Koksaldl et al. [41]
which coupled NASBA with a toehold switch-based biosen-
sor to detect trigger sequences from the S gene and ORFlab
of SARS-CoV-2 that cost less than 1.00 USD per reaction. In
contrast with PHANTOM, this diagnostic system uses a
superfolder green fluorescent protein (sfGFP) as a reporter
gene (Figure 2(b)). The system successfully detected the
SARS-CoV-2 RNA from the nasopharyngeal swab sample
in a relatively short period, i.e., 60 minutes via highly sensi-

tive detectors of a microplate reader, or 2 hours through eye
visibility with minimal requirement of 1800 viral RNA
copies.

Park et al. [42] reported the development of a toehold
switch-based COVID-19 diagnostic system with a relatively
faster turnaround time than other similar systems. The diag-
nostic system coupled toehold switch-based biosensor with
reverse transcription loop-mediated amplification (RT-
LAMP) using lacZ as a reporter gene (Figure 2(c)). The diag-
nostic system detected SARS-CoV-2 RNA in the patients’
saliva samples. The sensitivity of this system relies on its
RT-LAMP strategy, which can amplify 120 copies of target
SARS-CoV-2 RNA in 20 minutes. The short amplification
time shortens the overall target RNA detection to only 70
minutes.

Finally, Hunt et al. [43] reported the toehold switch-
based COVID-19 diagnostic device that did not require an
amplification step. The system comprises lyophilized cell-
free protein synthesis (CFPS) and toehold switch riboregula-
tor that can detect capsid protein gene region in the SARS-
CoV-2 genome with NanoLuc as a reporter gene
(Figure 2(d)). The system detected the presence of SARS-
CoV-2 RNA in saliva samples in just 7 minutes with an esti-
mated cost of 0.50 USD. Similar to the system developed by
Park et al., the components of this diagnostic device, i.e., toe-
hold switch module and IVTT, were successfully immobi-
lized in paper matrices which simplified the distribution
and utilization of the COVID-19 diagnostic system in devel-
oped and developing areas.

4. Conclusion and Future Perspectives

The ongoing COVID-19 pandemic has emphasized the
importance of diagnostic testing in outbreak control [44,
45]. Efforts to end the COVID-19 pandemic require the
accurate utilization of diagnostic testing in high volumes
and the rapid use of the results to help implement the appro-
priate therapy and policy, preventing further disease spread
[46]. Conducting such high throughput diagnostic tests is
challenging, especially in areas with limited health personnel
and infrastructures. The World Health Organization has
developed the ASSURED (affordable, sensitive, specific,
user-friendly, rapid and robust, equipment-free, and deliver-
able to end-users) criteria as a benchmark for diagnostics
tests in resource-limited settings [47].

As described in this review, the currently developed toe-
hold switch-based COVID-19 diagnostic has met the
ASSURED criteria with low-cost, rapid, and highly sensitive
and specific analysis advantages. Toehold switch-based
COVID-19 diagnostics also provide more logistical benefits
and ease of use than currently used diagnosis methods such
as RT-qPCR. Furthermore, the short design to the produc-
tion cycle of the diagnostics offers a valuable edge to cope
with the emergence of new variants of SARS-CoV-2 [48].

To date, there are no commercial toehold switch-based
diagnostics for COVID-19. To produce a commercial diag-
nostic test kit, it must pass clinical testing and trials, includ-
ing benchmarking against existing diagnostic tools to ensure
the quality of the analysis results [27]. Additionally, the



specificity and sensitivity of the toehold switch-based diag-
nostics for COVID-19 need to be evaluated in an in-field sit-
uation, where environmental conditions such as high
temperatures, humidity, or dust might reduce the perfor-
mance of the diagnostics [49].
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