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Abstract 

Background: Immune checkpoint blockade (ICB) therapy has revolutionized the treatment of lung squamous cell 
carcinoma (LUSC). However, a significant proportion of patients with high tumour PD-L1 expression remain resist-
ant to immune checkpoint inhibitors. To understand the underlying resistance mechanisms, characterization of the 
immunosuppressive tumour microenvironment and identification of biomarkers to predict resistance in patients are 
urgently needed.

Methods: Our study retrospectively analysed RNA sequencing data of 624 LUSC samples. We analysed gene expres-
sion patterns from tumour microenvironment by unsupervised clustering. We correlated the expression patterns 
with a set of T cell exhaustion signatures, immunosuppressive cells, clinical characteristics, and immunotherapeutic 
responses. Internal and external testing datasets were used to validate the presence of exhausted immune status.

Results: Approximately 28 to 36% of LUSC patients were found to exhibit significant enrichments of T cell exhaustion 
signatures, high fraction of immunosuppressive cells (M2 macrophage and CD4 Treg), co-upregulation of 9 inhibitory 
checkpoints (CTLA4, PDCD1, LAG3, BTLA, TIGIT, HAVCR2, IDO1, SIGLEC7, and VISTA), and enhanced expression of anti-
inflammatory cytokines (e.g. TGFβ and CCL18). We defined this immunosuppressive group of patients as exhausted 
immune class (EIC). Although EIC showed a high density of tumour-infiltrating lymphocytes, these were associated 
with poor prognosis. EIC had relatively elevated PD-L1 expression, but showed potential resistance to ICB therapy. The 
signature of 167 genes for EIC prediction was significantly enriched in melanoma patients with ICB therapy resistance. 
EIC was characterized by a lower chromosomal alteration burden and a unique methylation pattern. We developed 
a web application (http:// lilab2. sysu. edu. cn/ tex & http:// liwzl ab. cn/ tex) for researchers to further investigate potential 
association of ICB resistance based on our multi-omics analysis data.

Conclusions: We introduced a novel LUSC immunosuppressive class which expressed high PD-L1 but showed 
potential resistance to ICB therapy. This comprehensive characterization of immunosuppressive tumour microenvi-
ronment in LUSC provided new insights for further exploration of resistance mechanisms and optimization of immu-
notherapy strategies.
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Background
Lung cancer is the most common cancer and the leading 
cause of cancer-related death worldwide [1]. Non-small-
cell lung cancer (NSCLC) accounts for approximately 
85% of lung cancer cases [2]. Besides lung adenocarci-
noma, lung squamous carcinoma (LUSC) is the most 
frequent histologic subtype of NSCLC [3]. However, due 
to the lack of genetic alterations for which targeted treat-
ments are approved, the patients of LUSC have limited 
treatment options except chemotherapy [4].

With the recent development of immune checkpoint 
blockade (ICB) immunotherapy, anti-PD-1/PD-L1 
immune checkpoint inhibitors have been approved for 
the first-line treatment of NSCLC in patients with high 
tumour programmed death-ligand 1 (PD-L1) expres-
sion (≥50%) [5]. However, only 45.2% of patients met 
the screening criteria and benefited from the immune 
checkpoint blockade therapy [6, 7]. A significant fraction 
of patients had drug resistance to this immunotherapy. 
On the other hand, ICB therapy can cause unique tox-
icity and subsequently immune-related adverse events 
through enhanced immune responses [8].

ICB therapy aims to reinvigorate dysfunctional or 
exhausted T cells to eliminate tumours [9]. Tumour 
microenvironment (TME) consists of cancer cells, 
immune cells, stromal cells, and cytokines. The TME 
components dynamically regulated T cell exhaus-
tion [10]. The success of ICB therapy by reinvigorat-
ing exhausted T cell relies heavily on the complex 
interactions between the cancer cells and the compo-
nents of TME [11]. However, the knowledge of molecu-
lar mechanism of resistance to immune checkpoint 
inhibitors is limited. Therefore, to predict the patients’ 
response or resistance to ICB therapy and to tailor rea-
sonable treatments, characterizing TME molecular fea-
tures and consequently identifying potential therapeutic 
markers are greatly required.

The TME of LUSC is highly complex and heteroge-
neous, but little is known about how TME impacts the 
efficacy of immunotherapy in LUSC. Virtual microdissec-
tion analytical approach based on non-negative matrix 
factorization (NMF) has enabled effective deconvolu-
tion on the gene expression signals derived from tumour 
cells, inflammatory cells, stromal cells, and cytokines 
from bulk tumour samples [12, 13]. In this study, we 
aimed to dissect the RNAseq expression data of 624 
human LUSC samples and isolate transcriptomic signals 
released from immunosuppressive TME through NMF. 

Consequently, we identified and validated an exhausted 
immune class of LUSC with immunosuppressive molecu-
lar features and potential ICB resistance. We also associ-
ated the exhausted immune class with multi-omics data 
to investigate the underlying ICB resistance mechanism. 
Finally, we constructed an interactive web application for 
researcher to explore immunotherapy resistance based 
on the multi-omics analysis results.

Methods
LUSC datasets and resources
The gene expression profiles of total 624 LUSC human 
samples were retrieved from The Cancer Genome Atlas 
(TCGA) (497 bulk RNA sequencing [RNAseq] datasets) 
[14] and Gene Expression Omnibus (GEO) (127 microar-
ray datasets) (Additional file 1: Fig. S1). Due to the differ-
ences of clinical features and treatment regimens resulted 
from different tumour stages, we divided the 497 TCGA 
LUSC patients into the late-stage group (stage IIA to IV, 
250 patients) for training and the early-stage group (stage 
I to II, 247 patients) for internal validation. The relevant 
data of mutation, copy number variation, methylation, 
and clinic pathology were obtained from the TCGA Data 
Portal (https:// tcga- data. nci. nih. gov/ tcga/, June 4th, 
2020). The NMF analysis was conducted for the data of 
protein-coding genes. Other 127 LUSC microarray sam-
ples (Affymetrix Human Genome U133 Plus 2.0 Array) of 
patients from two independent datasets were utilized for 
external validation. The survival data in two independent 
datasets, including GSE30219 [15] and GSE37745 [16], 
were acquired through GEOquery [17] in the R pack-
age (https:// www.r- proje ct. org). The data for clinical 
outcomes and gene expression profiles of 28 melanoma 
patient samples (GSE78220) with anti-PD-1 therapy 
was retrieved from GEO [18]. These samples included 
15 responding and 13 non-responding pre-treatment 
tumours and were profiled by RNAseq. Their response 
patterns were based on irRECIST [19]. More details for 
these datasets are listed in Additional file  2: Table  S1. 
The software tools used in this study are summarized in 
Additional file 2: Table S2.

Identification of exhausted immune class by unsupervised 
clustering
A virtual microdissection analysis was firstly conducted 
on the bulk RNAseq-based gene expression profiles of 
a training cohort of 250 patients using NMF in R [13, 
20] (Additional file  1: Fig. S1). The factorization rank r 
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which defines the number of clusters is the most criti-
cal parameter in NMF. When r equalled 4, the highest 
cophenetic correlation coefficient (Additional file 1: Fig. 
S2A) was obtained and the TCGA training cohort data-
set was effectively decomposed (Fig. 1A) [20]. Therefore, 
r was set to be 4 in this study. Following the approach 
in a previous study [12], the immune and the stromal 
enrichment scores were calculated by the single sample 
gene set enrichment analysis (ssGSEA) [21, 22], which 
was wrapped in GSVA [23] to uncover immune and 
stromal-related expression patterns. When integrating 
the immune and stromal enrichment scores with the 4 
NMF-identified clusters, we observed that Cluster 2 had 
higher enrichment scores (Fig. 1B) compared with other 
clusters. Therefore, Cluster 2 herein was referred as the 
‘immune-stromal cluster’.

Secondly, we wanted to investigate the abundance 
of specific immune cells in tumours belonging to the 
immune-stromal cluster. A number of signatures repre-
senting various immune cells (Additional file 2: Table S3) 
were collected and used to compute the enrichment 
scores based on the expression profiles by ssGSEA. Then 
the enrichment scores of immune cells were integrated 
with the clusters to identify the abundance of specific 
immune cells in the immune-stromal cluster. In addi-
tion, the absolute fraction data of 22 infiltrating immune 
cells, which was inferred by the CIBERSORT algorithm 
[24] based on gene expression profiles, was down-
loaded from the TIMER database [25] (http:// timer. cistr 
ome. org/ infil trati on_ estim ation_ for_ tcga. csv. gz). And 
the leukocyte fraction data (TCGA_all_leuk_estimate.
masked.20170107.tsv), which was estimated based on 
DNA methylation in Thorsson’s study [26], was retrieved 
from https:// gdc. cancer. gov/ about- data/ publi catio ns/ 
panim mune. The tumour-infiltrating lymphocyte (TIL) 
percentage, which was evaluated through pathological 
images of TCGA tumours including LUSC, can be found 
in the supplementary table (Table  S1) in Saltz’s study 
[27]. The absolute fraction data of 22 infiltrating immune 
cells, the leukocyte fraction, and the TIL percentages 

for TCGA LUSC patients were extracted and then com-
pared between the immune-stromal cluster and the rest 
clusters to verify the enrichment of lymphocytes in the 
immune-stromal cluster by Wilcoxon rank-sum test.

Finally, the expression profile analysis of multiple 
inhibitory receptors was performed, and the gene sig-
natures representing T cell exhaustion were scored by 
ssGSEA. We observed that the immune-stromal cluster 
overexpressed multiple inhibitory receptors and had high 
T cell exhaustion-related signature enrichment scores. 
Consequently, we defined the patient population within 
the immune-stromal cluster as the exhausted immune 
class (EIC) and the rest population as the rest class. We 
used the method extractFeature [28] wrapped in NMF 
to extract the relevant genes (named as metagene-spe-
cific genes) in order to characterize the EIC expression 
pattern.

Molecular characterization of exhausted immune class
The analyses by GSEA [22] and ssGSEA were conducted 
to evaluate the enrichment of molecular pathways and 
gene expression signatures in the EIC. The data of gene 
expression signatures was collected from previous studies 
[29–32] to represent distinct immune cells and exhausted 
T cells involved in various diseases (e.g. hepatocellular 
carcinoma, melanoma, and chronic infection). The hall-
mark gene sets and the KEGG pathway signatures were 
collated from MSigDB (https:// www. gsea- msigdb. org/ 
gsea/ msigdb). ClueGO [33], a Cytoscape [34] plugin, 
was applied to generate the functionally grouped net-
work of KEGG pathways to interpret the biological roles 
of metagene-specific genes. To identify the differentially 
expressed genes between the EIC and the rest class, the 
reads-count data of the training cohort was downloaded 
from TCGA. DESeq2 was used for gene differential 
expression analysis with false discovery rate (FDR) less 
than 0.05 and log2 fold change (log2FC) greater than 1 
[35]. Of the metagene-specific genes, the differentially 
expressed genes (FDR < 0.05, log2FC ≥ 1) between the 
EIC and the rest class were defined as the exhausted 

(See figure on next page.)
Fig. 1 The identification and molecular characterization of EIC. A The heatmap of gene expression clusters for 250 late-stage (IIA-IV) LUSC samples 
by unsupervised NMF illustrates 4 distinct expression patterns. B Stromal and immune enrichment analysis defined the cluster 2 of four expression 
patterns as an immune-stromal cluster. High and low gene enrichment scores are delineated in red and grey, respectively. C The enrichment scores 
of gene signatures identified the immune cells for the immune-stromal and other clusters. D The comparison of the absolute fractions of TME cells 
inferred by CIBERSORT between two classes. E,F Box plots show the differences of leukocyte fraction and TIL percentage between two classes. G 
Box plots show different expression levels of multiple inhibitory receptors in the immune-stromal cluster compared to the other clusters. H The 
consensus-clustered heatmap of 250 LUSC samples defined the immune-stromal cluster as exhausted immune class (EIC). High and low gene 
enrichment scores are represented in red and grey, respectively. I GSEA analysis indicated the EIC showed significant enrichments of hallmark gene 
sets and KEGG pathways related to cytokine, T cell receptor, epithelial mesenchymal transition, and apoptosis. J The functionally grouped network 
of KEGG pathways by ClueGO/CluePedia for the interpretation of metagene-specific genes’ biological roles. Colourless and colour nodes represent 
metagene-specific genes and KEGG pathway terms, respectively. Node colours represent distinct functional groups. Node size represents the 
significance of KEGG pathways. The more significant KEGG pathways are, the larger highlighted nodes. All statistical differences of two classes were 
compared by Wilcoxon rank-sum test; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001

http://timer.cistrome.org/infiltration_estimation_for_tcga.csv.gz
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Fig. 1 (See legend on previous page.)
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immune classifier genes for identifying the EIC in the 
training cohort from TCGA. GSEA was applied to iden-
tify activated pathways and hallmark gene sets enriched 
in the EIC.

Internal validation of EIC in early‑stage TCGA LUSC
To confirm the presence of exhausted immune status 
in early-stage LUSC, we performed NMF and ssGSEA 
analysis on the bulk RNAseq-based expression profiles 
of 247 early-stage samples by using the same approach 
described above. Similarly, we also obtained 4 clus-
ters for the early-stage LUSC cohort. When integrat-
ing the enrichment scores of early-stage samples for the 
signatures used in the late-stage LUSC cohort, we also 
observed that Cluster 2 had higher immune cell, stromal, 
and TEX-related signature enrichment scores. Therefore, 
Cluster2 was identified as EIC for the early-stage LUSC. 
The proportion of immune cells, leukocyte fraction, TIL 
percentage, and the expression of multiple inhibitory 
receptors were compared between the EIC and the rest 
class in these samples. GSEA was conducted to identify 
the enrichment of hallmarks and KEGG pathways. We 
used ssGSEA to calculate the enrichment score of 167 
exhausted immune classifier genes obtained in the train-
ing stage and defined it as the EIC score. Receiver operat-
ing characteristic (ROC) analysis was utilized to evaluate 
the predictive capacity of the EIC score.

Prediction of ICB therapy for EIC
The tumour immune dysfunction and exclusion (TIDE) 
algorithm [36] was used to predict potential ICB ther-
apy response. We also retrieved the public data of mel-
anoma tumour expressions and the clinical outcomes 
of patients treated with anti-PD-1 [37] to validate the 
association between ICB therapy resistance and 167 
exhausted immune classifier genes. Specifically, the EIC 
scores of melanoma tumour samples were calculated 
by ssGSEA using the 167 exhausted immune classifier 
genes and compared between the responders and the 
non-responders.

Analysis of genomic mutation, chromosomal alteration, 
and methylation profile for EIC
Maftools [38] was used to visualize and analyse somatic 
mutations and the total number of somatic mutations 
was counted. The statistical information of neoantigens 
for LUSC patients was obtained from Rooney’s study 
[39]. The copy number data generated by GISTIC2.0 [40] 
for TCGA LUSC samples was retrieved from the cBio-
Portal for Cancer Genomics database (http:// www. cbiop 
ortal. org), followed by the data extraction for the copy 
number alterations of cytobands and focal genes. Specifi-
cally, the amplification and deletion data for cytobands of 

each LUSC sample was extracted from the file ‘all_lesions.
conf_99.txt’, and the amplification and deletion data for 
focal genes was extracted from the file ‘all_thresholded.
by_genes.txt’. Both files were generated by GISTIC2.0 
and available from http:// www. cbiop ortal. org. Then we 
assessed the difference in somatic mutations, the number 
of neoantigens, and the copy number alterations between 
the EIC and the rest class.

The genomic methylation data for 367 LUSC patient 
samples of all tumour stages was obtained from TCGA. 
The 367 patients were a subset of 497 patients used in 
RNAseq data analysis. The methylation CpGs’ Beta-
value data of different samples was merged into a Beta-
value matrix in which columns corresponded to samples 
and rows to CpGs. To correct the probe design bias in 
the Illumina Infinium 450K DNA methylation data, the 
Beta-value matrix was normalized by the Beta-mixture 
quantile normalization method using ChAMP in R [41]. 
We then performed a linear model using ‘limma’ in R to 
identify the significant CpG sites (FDR adjusted p-value < 
0.05) that were differentially methylated between the EIC 
and the rest class identified by transcriptome analysis 
(deltaBeta >0.2). We only selected differentially methyl-
ated CpG sites located in the promoter regions of differ-
entially expressed genes in the EIC compared with the 
rest class. The selected CpG sites were used to generate 
and cluster supervised heatmaps based on the Euclidean 
distances aggregated by Complete-linkage. Finally, the 
correlations between the methylation level of promoter 
regions and the corresponding gene expression were 
computed.

Validation of EIC in independent datasets
The robustness of exhausted immune classifier genes 
was evaluated by an unsupervised Random Forest proce-
dure [42]. Based on the expression value of these genes, 
we used the randomForest R package to perform an 
unsupervised learning on the training cohort with the 
parameter ‘ntree = 500’, and then visualized the samples 
distribution through the function ‘MDSplot’ wrapped in 
this package. The ability of exhausted immune classifier 
genes to predict exhausted immune status was validated 
in two additional datasets by using NMF. The gene sig-
natures related to T cell exhaustion (Additional file  2: 
Table  S3) were applied to validate and characterize the 
EIC captured by the classifier in each dataset.

Highly visual interactive web application
Based on the analysis data in this study, we used ‘shiny’ 
in R to build an interactive web application (http:// 
lilab2. sysu. edu. cn/ tex & http:// liwzl ab. cn/ tex) for 
other researchers to explore potential mechanisms of 
immunotherapy resistance at multi-omics level. The 

http://www.cbioportal.org
http://www.cbioportal.org
http://www.cbioportal.org
http://lilab2.sysu.edu.cn/tex
http://lilab2.sysu.edu.cn/tex
http://liwzlab.cn/tex
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web application has included several immunotherapy 
resistance-related analysis modules, such as exhausted 
immune classifier module, signature expression module, 
somatic mutation module, clinical prognosis module, 
microRNA module, and methylation module. The source 
codes generated to build the web application are avail-
able at the GitHub repository (https:// github. com/ Lilab- 
SYSU/ LUSC_ Tex) [43].

Protein expression analysis
To investigate protein expression alterations in EIC, the 
protein expression data of 319 LUSC patients was down-
loaded from TCGA. This data included 487 proteins 
profiled by reverse-phase protein arrays (RPPAs). The 
319 LUSC patients were a subset of 497 patients for the 
training and internal validating cohort used in the bulk 
RNAseq data analysis. Then the protein expression was 
compared between the EIC and the rest class. The signifi-
cantly upregulated proteins in EIC were identified. More-
over, we explored these protein expression profiles of 
LUSC on the immunohistochemically stained images via 
the pathology section of the Human Protein Atlas (HPA; 
https:// www. prote inatl as. org/) [44]. Specifically, we 
searched the genes in HPA and found 12 LUSC patient 
samples which had the quantity information of the cor-
responding protein expressions in immunohistochemi-
cally stained images. Typical images were then selected 
to demonstrate the IDO protein expression level.

Statistical analysis
All statistical discrete analyses were performed in SPSS 
(version 19.0, IBM) and R (version 3.5.1, http:// www.r- 
proje ct. org). We correlated the EIC and the rest class 
with TIL percentage, copy number alteration, mutation 
number, and neoantigen number by the Wilcoxon rank-
sum test for continuous data. Kaplan–Meier estimate and 
log-rank testing were used to perform the survival analy-
sis for overall survival (OS) and progression-free survival 
(PFS). We incorporated all clinicopathological variables 
into Cox model to identify the combination of variables. 
Two-tailed or one-tailed P-values < 0.05 were consid-
ered statistically significant. Pearson correlation was 
applied to measure the strength of the linear relationship 
between two variables.

Results
Identification and characterization of a novel exhausted 
immune class in late‑stage LUSC
We performed a NMF analysis on the bulk RNAseq-
based gene expression profiles of 250 late-stage LUSC 
samples in the training cohort and isolated the tran-
scriptomic signals related to TEX in TME. The dataset 
of training cohort was effectively separated into four 

expression clusters (Fig. 1A). LUSC patients in cluster 2 
possessed both high immune and stromal enrichment 
scores calculated by ssGSEA with bulk RNAseq-based 
gene expression profiles [12], indicating the significant 
enrichment of immune cell and stromal component gene 
expression signatures. Subsequently, we herein named 
this group as the immune-stromal cluster (Fig. 1B). The 
immune-stromal cluster also showed the significant 
enrichment of the signatures of immune cells (Fig.  1C), 
including immune cell subsets, T cells, B cells, mac-
rophages, tertiary lymphoid structures (TLS), Tem, th1 
cell, cytotoxic cells, and T.NK. metagene (all, P < 0.001). 
To further verify the enrichment of these immune cells in 
the immune-stromal cluster, the absolute proportions of 
immune cells, which were imputed by CIBERSORT using 
bulk RNAseq data, were compared between the immune-
stromal and the rest clusters. Consistent with our enrich-
ment analysis by ssGSEA, the immune-stromal cluster 
had higher proportions of CD8 T cells, macrophages, 
and B cells than the rest clusters (Fig. 1D). Moreover, the 
leukocyte fraction estimated by DNA methylation [26] 
was significantly higher in the immune-stromal clus-
ter (median fraction 0.40) than that in the rest clusters 
(median fraction 0.23) (Fig.  1E). Similarly, the tumour-
infiltrating lymphocytes (TILs) evaluated through the 
pathological images [27] were significantly higher in the 
immune-stromal cluster (median TILs percentage 10.35) 
than that in the rest clusters (median TILs percentage 
8.25) (Fig. 1F).

To explore TEX in LUSC, we carried out an expres-
sion profile analysis of multiple inhibitory recep-
tors, such as CTLA4, PDCD1 (known as PD-1), LAG3, 
BTLA, TIGIT, HAVCR2 (known as TIM-3), IDO1, 
SIGLEC7, and VISTA. These inhibitory receptors were 
significantly upregulated in the tumour samples within 
the immune-stromal cluster (fold-change > 2, Ben-
jamini-Hochberg false discovery rate [FDR] < 1.1 × 
 10−7) (Fig. 1G). Meanwhile, patient samples within the 
immune-stromal cluster showed a significant enrich-
ment of multiple gene sets for identifying TEX (Fig. 1H), 
such as CD8 TEX revealed by mass cytometry profiling 
(CyTOF) (CD8_TEX_CyTOF, P < 0.001) [29], human 
gene sets homologous to CD4 TEX (CD4_TEX_Mouse, 
P < 0.001) and CD8 TEX (CD8_TEX_Mouse, P < .001) 
in mice with chronic viral infection [30], CD8 TEX in 
hepatocellular carcinoma (HCC) (CD8_TEX_HCC, P < 
.001) [45], and CD8 TEX in melanoma patients (CD8_
TEX_Melanoma, P < 0.001) [32].

Based on the above expression analysis of inhibitory 
receptors and the enrichment scores of TEX signal gene 
sets, we identified a new population subgroup belong-
ing to the immune-stromal cluster, accounting for 36.4% 
of the training cohort (91/250), referred herein as the 

https://github.com/Lilab-SYSU/LUSC_Tex
https://github.com/Lilab-SYSU/LUSC_Tex
https://www.proteinatlas.org/
http://www.r-project.org
http://www.r-project.org


Page 7 of 20Yang et al. Genome Medicine           (2022) 14:72  

exhausted immune class (EIC) (Fig.  1H). The rest sub-
population group in the training cohort was defined 
as the rest class. To further validate the T cell exhaus-
tion of EIC, we collected 3 gene signatures which char-
acterize three immunosuppressive cell types (NK cells, 
macrophages, and CD4_Treg_cells) involved in TEX reg-
ulation, and 4 hallmark gene sets of cytokines that pro-
mote TEX [31] (Fig. 1H). The high enrichment scores of 
the above gene sets verified the immunosuppressive TME 
of the EIC. The above results demonstrated that we suc-
cessfully identified an exhausted immune class, which 
showed a significant enrichment of gene expression sig-
natures of exhausted T cells and other immunosuppres-
sive cells in TME.

Cytokine enrichment is a specific molecular feature of EIC
To characterize molecular features of EIC, gene set 
enrichment analysis (GESA) based on the gene expres-
sion profile of the training cohort identified 48 KEGG 
pathways (Additional file  1: Fig. S2B) and 17 hallmark 
gene sets (Additional file  1: Fig. S2C) with enrichment 
in the EIC. Particularly, cytokine-related pathways and 
hallmarks, such as cytokine and cytokine receptor inter-
action pathway, chemokine signalling pathway, and com-
plement hallmark (Fig.  1 I), were significantly enriched 
in the EIC. Previous studies suggested that severely 
exhausted T cells may suffer from apoptosis [46, 47], and 
our analysis showed that apoptosis hallmark was signifi-
cantly enriched in the EIC. These implied severe T cell 
exhaustion in the EIC of late-stage LUSC.

In total, 253 metagene-specific genes representing 
the EIC expression pattern were extracted by NMF and 
grouped into a network of KEGG pathways by ClueGO 
(Fig.  1 J) to further reveal their molecular functions. 
Most of these genes were also associated with cytokine 
and its complements, which mediate immune response 
and inflammatory response. Transcriptomics compari-
son between the EIC and the rest class identified 167 
significantly different genes (FDR < 0.01 and fold-change 
> 2), which were a part of the metagene-specific genes 
aforementioned. These genes were defined as exhausted 
immune classifier genes that can be used to confirm 
the exhausted immune status in LUSC, including 165 
upregulated genes related to immunosuppression, such 
as chemokine and chemokine receptors (CCL13, CCL18, 
CCR4, CCR2, CXCR3, CCL7, and CCL19), interleu-
kin receptor molecules (IL2RA, IL21R, and IL17REL), 
tumour necrosis factor-related molecules (TlNFSF8 
and TNFRSF9), complement-related molecules (C7 and 
C4BPA), and WNT6 (FDR < 0.001) (Additional file  2: 
Table S4). The above characterization of molecular func-
tions indicated that cytokine-related expression signals 

played a dominant role in the exhausted immune status 
of LUSC.

Internal validation of EIC in early‑stage TCGA LUSC
To verify whether exhausted immune class existed in 
early-stage LUSC, we performed NMF on the bulk 
RNAseq-based gene expression profiles of the addi-
tional 247 early-stage TCGA LUSC samples and subse-
quently obtained 4 clusters (Fig.  2A). When integrating 
the clusters with signature enrichment scores calculated 
by ssGSEA with bulk RNAseq-based gene expression 
profiles, we observed that stromal and immune enrich-
ment scores of Cluster 2 were higher than those of other 
clusters (Fig.  2B). Moreover, Cluster 2 also showed a 
significant enrichment of gene expression signatures of 
immune cells (CD8 T cells, T cells, macrophages, Tem, 
th1 cell, cytotoxic cells, NK cell, and exhausted CD8 T 
cells [all, P <0.001]) and other cytokine hallmarks related 
to TEX (Fig. 2B). Therefore, Cluster 2 was defined as the 
Exhausted Immune class in the early-stage TCGA LUSC 
samples. Consistent with the EIC in the late-stage LUSC, 
the samples in the EIC of early-stage LUSC had higher 
proportions of immune cells (CD8 T cells, macrophage, 
and NK cells) imputed by CIBERSORT (Fig. 2C), higher 
leukocyte fraction (Fig.  2D), and higher tumour-infil-
trating lymphocytes percentage (Fig.  2E) than the rest 
samples. And co-upregulation of multiple inhibitory 
receptors was also observed in the EIC of early-stage 
LUSC (Fig. 2F). GSEA analysis showed significant enrich-
ments of cytokine pathways and complement hallmarks 
in the EIC of early-stage LUSC. However, we did not 
observe enrichment of apoptosis hallmark in the EIC of 
early-stage LUSC, suggesting that the EIC of early-stage 
LUSC had a lower level of TEX than the EIC of late-stage 
LUSC. The ROC curve with an AUC of 0.918 (Fig.  2H) 
showed that our 167 exhausted immune classifier genes 
had good performance in predicting EIC.

EIC had poorer prognosis in late‑stage LUSC
We investigated the prognostic value of exhausted 
immune status by correlating the classes with clinico-
pathologic variables. Previous studies suggested that the 
high densities of TILs correlated with favourable prog-
noses such as longer progression-free survival (PFS) or 
improved overall survival (OS) [48, 49]. In our study, 
the higher percentage of TILs was observed in the EIC 
compared with the rest class in both late-stage and 
early-stage LUSC (Figs.  1 F and 2E). However, in the 
late-stage LUSC, Kaplan–Meier estimates demonstrated 
that patients within the EIC had significantly poorer OS 
(P < 0.001; Fig. 3A) and PFS (P < 0.01; Fig. 3D) than the 
rest class. Multivariate survival analysis using the Cox 
regression model indicated that the EIC was retained as 
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an independent prognostic factor for OS (P <0.001) in 
the late-stage LUSC (Fig. 3G). With regard to the early-
stage LUSC, there was no difference of both OS and PFS 
between the EIC and the rest class (Fig. 3 B,E). Finally, we 

investigated prognostic value in all stage LUSC patients. 
As expected, patients within the EIC exhibited worse 
OS and PFS than within the rest class (Fig. 3 C,F). These 
results verified that although abundant T cells existed 

Fig. 2 Internal validation of EIC on 247 early-stage (I–II) LUSC samples. A The heatmap of gene expression clusters for 247 early-stage (IIA–IV) LUSC 
samples by unsupervised NMF illustrates 4 distinct expression patterns. B Heatmap shows the cluster 2 (defined as EIC) exhibited high enrichment 
scores of gene signatures of T cell exhaustion, immunosuppressive cells, and immunosuppressive cytokine. C The comparison of the absolute 
fraction of TME cells between the EIC and the rest class. D,E Box plots show the differences of leukocyte fraction and TIL percentage between 
two classes. F Box plots shows the different expression levels of multiple inhibitory receptors between two classes. G Cytokine-, T cell receptor-, 
and epithelial mesenchymal transition-related hallmark gene sets and KEGG pathways enriched in the EIC. H ROC curve evaluated the predictive 
capacity of 167 exhausted immune classifier genes in early-stage LUSC samples. All statistical differences of two groups were computed by 
Wilcoxon rank-sum test; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001
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Fig. 3 Prognosis analysis for the EIC and the rest class across different stages of LUSC. A–C Kaplan–Meier estimates of overall survival for the EIC 
and the rest class across late-stage, early-stage, and all-stage LUSC. Survival data was limited to maximum 5 years (60 months). D–F Kaplan–Meier 
estimates of progression-free survival for the EIC and the rest class across late-stage, early-stage, and all-stage LUSC. P-values were calculated by 
log-rank test. Survival data was limited to maximum 5 years (60 months). G,H Multivariate Cox regression analysis on four variables (class, gender, 
tumour stage, and age) for late-stage and all-stage LUSC
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in the EIC, the majority of T cells were in the immuno-
suppressive status and lost the effector function to con-
trol tumour progress, resulting in poorer prognosis. The 
survival results also verified that the EIC in the late-stage 
LUSC showed more severe T cell exhaustion than in the 
early-stage LUSC.

EIC is associated with immunotherapy resistance
To investigate the response of patients within the EIC to 
ICB therapy, we compared PD-L1 expression between 
the EIC and the rest class and found that the EIC had a 
higher expression level of PD-L1 than the rest class in 
both early-stage and late-stage LUSC (Fig.  4 A,B). We 
also used the tumour immune dysfunction and exclusion 
(TIDE) algorithm [36] to predict ICB therapy response 
and observed that the EIC had higher TIDE prediction 
scores than the rest class in both early-stage and late-
stage LUSC (Fig. 4 A,B). A higher TIDE prediction score 
is usually associated with worse ICB response. Our result 
suggested that although patients within the EIC had high 
PD-L1 expression, they were possibly resistant to ICB 
therapy.

To further validate the immunotherapy resistance of 
EIC, we calculated the enrichment score of 167 exhausted 
immune classifier genes on the RNAseq data of 28 meta-
static melanoma patients (GEO: GSE78220) treated with 
anti-PD-1 [18] and 497 LUSC patients of all tumour 
stages from TCGA (Project ID: TCGA LUSC, dbGaP 
Study Accession: phs000178) [14]. We found the mela-
noma patients who did not respond to ICB therapy had 
higher enrichment scores than those who respond to ICB 
therapy (Fig.  4C). As expected, the patients within the 
EIC also showed higher enrichment scores than the rest 
class, further evidencing the resistance of EIC (Fig. 4D). 
We observed a higher expression level of TGFB1 in the 
EIC than in the rest class (Fig. 4E), and this is consistent 
with Mariathasan’s study which found cytokine TGFβ 
(encoded by TGFB1) suppressed anti-tumour immuno-
therapy [50]. These all suggested the ICB therapy resist-
ance of EIC.

EIC has distinctive methylation patterns
De novo DNA methylation programs can promote T cell 
exhaustion, and blocking these programs can enhance 
exhausted T cell rejuvenation, aiding tumour control 
by immune checkpoint blockade [51]. To explore epige-
netic alteration related to deregulated genes in the EIC, 

a whole-genome methylation profiling analysis on the 
TCGA cohort of all tumour stages was conducted and 
found that 216 CpG sites located in 162 immune-related 
gene promoter regions were differentially methylated in 
the EIC compared to the rest class (FDR<0.05) (Fig.  5 
A,B and Additional file 2: Table S5). A total of 111 of 162 
genes had significant correlations between methylation 
and gene expression (Additional file  2: Table  S6). This 
indicated that the EIC showed specific methylation pro-
files, and most of the 162 genes were significantly associ-
ated with their promoter methylations.

In particular, multiple genes were regulated by their 
promoter methylations and involved in the TGF-β signal-
ling pathway, which plays an important role in immune 
evasion [52] and immunotherapy resistance [50]. For 
example, ARTN is a ligand of transforming growth fac-
tor-beta (TGF-beta) superfamily proteins and binds vari-
ous TGF-beta receptors, leading to the recruitment and 
activation of SMAD family transcription factors [53, 54]. 
We observed that ARTN exhibited a higher methylation 
level in its promoter region and a lower gene expres-
sion level in the EIC compared to the rest class (Fig.  5 
C–E). On the contrary, the transcription factor SMAD7, 
which can be activated by TGF-β to attenuate or restrain 
immune cell activation [55], showed a lower methylation 
level and a higher expression in the EIC (Fig. 5 C–E). In 
addition, plasma membrane-associated class I myosin 
(MYO1G), C-C Motif Chemokine Receptor 4 (CCR4), 
and interferon regulatory factor 7 (IRF7) were also over-
expressed and lowly methylated in the EIC (Fig. 5 C–E). 
MYO1G is abundant in T and B lymphocytes and mast 
cells [56], and CCR4 is a novel-specific molecular target 
for immunotherapy in Hodgkin lymphoma, able to regu-
late the cell trafficking of various leukocyte types [57].

EIC shows no difference in tumour mutational burden 
or number of neoantigens, but has a lower burden of copy 
number alterations
Genomic mutations of tumours had a strong associa-
tion with immunotherapy outcome [58, 59]. We depicted 
a landscape of commonly mutated genes between the 
EIC and the rest class in both late-stage and early-stage 
LUSC. There was no significant difference of individual 
gene mutation between the EIC and the rest class (Fig 6 
A,D). We also linked the burden of somatic mutations, 
and mutated neoantigens with the exhausted immune 
status in LUSC. We did not observe significant changes 

Fig. 4 Prediction of ICB therapy resistance. A,B Patients in the EIC showed a relatively higher expression level of PD-L1 and higher TIDE prediction 
score for ICB therapy. C Metastatic melanoma patients with no response to anti-PD-1 therapy had higher enrichment scores of 167 exhausted 
immune classifier genes compared to patients with response. D The EIC showed higher enrichment score than the rest class in all tumour stage 
TCGA LUSC. E Box plot shows higher expression of TGFB1 in the EIC than rest class

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Fig. 5 Distinctive methylation signatures characterized the EIC of LUSC. A Hierarchical clustering heatmap of 216 CpG methylation values located 
within 162 immunosuppression-related gene promoters show significant difference between the EIC and the rest class (FDR< 0.05, diff > 0.2). 
B Boxplot displays the mean methylation levels of 216 CpG sites within 162 immune exhaustion-related gene promoters for 2 classes. Wilcoxon 
rank-sum test (p<0.0001). Exhausted vs Rest: p=5.1E−15. C–E Correlations between expression and promoter methylation levels for deregulated 
genes in the EIC to the rest class. CARTN exhibited significantly lower expression in the EIC, while SMAD7, IRF7, CCR4, and MYO1G were synergistically 
overexpressed (P < 0.001, Wilcoxon rank-sum test). D The expressions of ARTN, SMAD7, IRF7, CCR4, and MYO1G negatively correlated with their 
promoter methylation level for the whole training cohorts. ESMAD7, IRF7, CCR4, and MYO1G had lower promoter methylation levels mirroring higher 
expression levels in the EIC, whereas ARTN had an opposite status. Red dots in the plotting represent the members of EIC, and blue dots represent 
the members of the rest class
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of the burden of tumour mutations or neoantigens 
between two classes in both late-stage (Fig.  6 B,C) and 
early-stage (Fig. 6 E,F) LUSC. These results indicated that 
somatic mutations and relevant neoantigens showed no 
significant association with immunosuppressive TME. 
Recent studies on molecular characteristics of cancer 
patients treated with immune checkpoint inhibitors 
demonstrated that tumour mutational burden (TMB) 
and gene expression profile-based biomarkers, such as 
IFNγ-6-related and T cell-inflamed gene expression pro-
files, had a low correlation and thus were independently 
predictive of response [60–63]. These studies also indi-
cated that these biomarkers combined with TMB could 
improve the prediction of response. In our study, the EIC 
score was calculated by ssGSEA based on gene expres-
sion profiles, and the EIC patients showed no difference 
in TMB compared with the rest class patients. Therefore, 
we investigated the correlation between the EIC score 
and TMB. As Fig.  6G displays, there was no significant 
correlation between the EIC score and TMB across the 
LUSC cohorts of late-stage (R=−0.017, P=0.79), early-
stage (R=−0.053, P=0.41), and all-stage (R=−0.039, 
P=0.39), indicating that the EIC score was independently 
predictive of immunotherapy resistance. Both our result 
and the literature evidences supported that the combina-
tion of the EIC score and TMB may improve the predic-
tion of response to immunotherapy.

On the other hand, we observed the samples of EIC 
showed lower burden of copy number alterations in cyto-
bands. Specifically, the EIC had a lower number of cyto-
band amplifications than the rest class in both late-stage 
(Fig. 6 H) and early-stage LUSC (Fig. 6 L), and EIC had 
a lower number of cytoband deletions too (Fig.  6 I,M). 
With regard to the amplification (Fig. 6 J,N) or deletion 
(Fig.  6 K,O) of driver genes, we found these genes also 
had lower alteration frequency in the EIC than the rest 
class.

External validation of the novel exhausted immune class 
across two independent datasets
To validate the presence of exhausted immune status 
in the training cohort of 250 LUSC samples, we per-
formed unsupervised random forest clustering by using 

167 exhausted immune classifier genes. As displayed in 
the MDS plot (Additional file  1: Fig. S3A), most of the 
patients were successfully separated into two clusters, 
which were consistent with the classifications for the 
EIC and the rest class. The ability of exhausted immune 
classifier genes to predict immune exhaustion status 
was estimated in two additionally independent testing 
datasets (n=127 LUSC samples). Similar to the training 
cohort, about 30–35% of LUSC samples were successfully 
identified as EIC across the testing datasets. Based on the 
gene expression profiles, the molecular characterization 
of the testing datasets also verified that the EIC showed 
both high immune and stroma enrichment scores.

Taking GSE30219 (n=61 LUSC samples) as an example, 
19 (31%) LUSC samples were predicted as the EIC, which 
had remarkable enrichment of immune exhaustion signa-
tures (CD8_TEX_CyTOF, CD4_TEX_Mouse, CD8_TEX_
Mouse, CD8_TEX_HCC and CD8_TEX_Melanoma; all, 
P < 0.001), TGF-β signalling pathway promoting TEX 
(P < 0.001), IFN signatures (INFTERFERON_GAMA_
RESPONSE and INTERFERON_ALPHA_RESPONSE; 
both, P < 0.001), and hallmark genes regulated by NF-kB 
in response to TNF (TNFA_SIGNALING_VIA_NFKB, 
P <0.001) (Additional file  1: Fig. S3B). Furthermore, 
Kaplan–Meier survival analysis showed that the immune 
exhaustion status was also correlated with poor prog-
nosis (P=0.013) (Additional file 1: Fig. S3D). In another 
example of GSE37745 (n=66 LUSC), 23 (34%) patients 
also showed the enrichment of T cell exhaustion sig-
natures and exhausted molecular features (Additional 
file  1: Fig. S3C). Kaplan–Meier survival analysis on the 
66 patients based on immune exhaustion status indicated 
that 23 of the 66 patients tended poor prognosis (Addi-
tional file 1: Fig. S3E).

The correlation between the clinical outcomes and 
the immune exhaustion status suggested that exhausted 
immune cells cannot control the progression of the 
tumour, leading to deteriorated survival. The predic-
tion of ICB response by TIDE for both GSE30219 and 
GSE37745 also suggested that the EIC showed potential 
resistance to ICB therapy (Additional file 1: Fig. S3F&G).

Fig. 6 Association of EIC with somatic mutations, neoantigens, and copy number alteration. A, D The landscape of most frequently mutated 
genes between the EIC and the rest class in late-stage and early-stage LUSC, respectively. B, E Box plots show the number of mutations between 
two classes in late-stage and early-stage LUSC, respectively. C, F Box plots show the number of neoantigens between two classes in late-stage 
and early-stage LUSC, respectively. G Pearson correlation analysis between scaled the EIC score and the number of mutations across LUSC cohorts 
of late-stage, early-stage, and all-stage, respectively. H, L Box plots show significant difference of amplification burden of cytoband between two 
classes in late-stage and early-stage LUSC, respectively. I, M Box plots show significant difference of deletion burden of cytoband between two 
classes in late-stage and early-stage LUSC, respectively. For late-stage (J) and early-stage (N) LUSC, the frequency of patients with amplification of 
driver genes in two classes. For late-stage (K) and early-stage (O) LUSC, the frequency of patients with deletion of driver genes in two classes. All 
statistical significances of two classes were computed by Wilcoxon rank-sum test; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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IDO protein expression is higher in EIC
We explored the difference in protein expressions 
between the EIC and the rest class using the RPPA data 
of LUSC. As expected, EIC showed significantly higher 
PD-L1 and IDO (Indoleamine-2,3-dioxygenase encoded 
by IDO1) protein expressions than the rest class in both 
late-stage (Fig.  7A) and early-stage (Fig.  7B) LUSC, 
consistent with the transcriptomic expression analysis 
aforementioned (Fig.  1G and Fig.  2 F). As well known, 

the evaluation of PD-L1 protein expression by immu-
nohistochemistry was applied to select NSCLC patients 
to receive anti-PD-1 inhibitor treatment. Therefore, we 
investigated the IDO protein expression of different 
LUSC patients by immunohistochemically stained tis-
sue images from HPA. We observed that LUSC patients 
showed different IDO immunohistochemical expres-
sion quantities. For example, Fig. 7 C shows three LUSC 
patients had different IDO expression quantities of less 

Fig. 7 IDO protein expression analysis in EIC. A, B Boxplots showing protein expression difference between the EIC and the rest class in late-stage 
and early-stage LUSC, respectively. Wilcoxon rank-sum test was utilized to perform comparision analysis. C The immunohistochemically stained 
tissue images show different expression levels of IDO protein across three LUSC patients from HPA
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than 25%, between 25 and 75%, and more than75%, 
respectively. Additionally, high IDO activity was reported 
to be associated with primary resistance to immunother-
apy in NSCLC [64]. These evidences indicated different 
IDO expressions of LUSC patients at the levels of tran-
scriptomics, proteomics, and stained tissues, suggest-
ing that IDO immunohistochemical expression may be 
a potential biomarker of immunotherapy resistance of 
LUSC with high PD-L1 expression.

Discussion
Immunotherapy, especially ICB therapy, has revolution-
arily transformed the treatment of LUSC and remarkably 
improved the overall survival of advanced-stage patients 
[5, 6]. However, more than half of the patients with high 
PD-L1 expression showed resistance to immune check-
point inhibitors [6, 65]. Additionally, immune-related 
adverse events are frequent. Current understanding of 
the mechanisms of ICB therapy resistance remains lim-
ited. Immunosuppressive TME, which consists of tumour 
cells, immune cells, and other stromal components, 
may play a vital role in ICB resistance [65]. Thus, char-
acterizing the molecular features of immunosuppres-
sive TME is fundamental for identifying LUSC patients 
with ICB resistance and thus optimizing immunotherapy 
strategies.

In our study, we used NMF to deconvolute the gene 
expression signals derived from exhausted T cells, 
immune cells, and stromal components in TME of LUSC; 
then, we successfully identified a novel immunosup-
pressive class of LUSC (~30% of 624), herein defined as 
the EIC. Consistent with the exhausted immune class 
observed in head and neck squamous cell carcinoma [66] 
and hepatocellular carcinoma [67], our EIC had both 
high immune and stromal enrichment scores, which sug-
gested the presence of abundant immune cells and stro-
mal components. As expected, the EIC had specifically 
molecular features, including high immune cell infiltra-
tion, co-upregulation of multiple inhibitory receptors, 
enhanced immunosuppressive cytokine expression, and 
elevated PD-L1 expression. Of these immune cells, the 
M2 subtype of tumour-associated macrophages and CD4 
Treg cells, as immunosuppressive cells, played a vital 
role in immune evasion and impacted ICB therapy [68, 
69]. The EIC broadly existed in different tumour stages, 
but there was a potential difference at the T cell exhaus-
tion level between early-stage (stages I–II) and late-stage 
(stages IIA to IV) LUSC. A previous study suggested that 
severely exhausted T cell may undergo apoptosis [70]. 
The apoptosis hallmark gene set was enriched in the EIC 
of the late stage, but not in the EIC of the early stage, sug-
gesting that the EIC of the late stage had a higher T cell 
exhaustion level.

Previous observations indicated that high densities of 
TILs correlated with favourable prognosis [71]. Our EIC 
also had a high percentage of TILs. However, the EIC 
showed both poor overall survival and progression-free 
survival in late-stage LUSC; on the other hand, the EIC 
showed no significant difference in early-stage LUSC. 
This suggested that although there was a high T cell infil-
tration in TME, most T cells were in exhausted status and 
lacking of effector function to control tumour progress 
and to prolong survival time of the EIC patients. This also 
validated the EIC showed more severe immunosuppres-
sion in the late stage than in the early stage.

Clinical outcome analysis further confirmed that the 
EIC of LUSC had immunosuppressive TME. To under-
stand the impact of immunosuppressive TME on ICB 
therapy, we used the TIDE algorithm to predict response 
to ICB therapy and observed that the EIC had higher 
TIDE prediction scores for resistance to ICB therapy 
[36]. Then 167 exhausted immune classifier genes for 
identifying EIC in LUSC were also significantly enriched 
in melanoma patients who showed no response to anti-
PD-1 therapy. This further evidenced EIC’s potentiality 
of resistance to ICB therapy. A previous study indicated 
cytokine TGFβ promoted tumour immune evasion and 
resistance to ICB therapy [50], and the elevated expres-
sion level of TGFB1 in our EIC also verified the potential 
resistance of the EIC patients.

Blocking de novo DNA methylation program may 
reactivate the effector function of exhausted T cell and 
improve the effectiveness of ICB therapy [51]. Our inves-
tigation of the epigenetic alterations indicated that the 
EIC exhibited a unique methylation pattern. Similar to 
a previous study in HCC [67], some exhaustion-related 
genes with differentially methylated promoters were 
involved in the TGF-β signal pathway. In particular, 
ARTN and SMAD7 were differentially expressed in the 
EIC compared to the rest class, and their gene expres-
sions were significantly correlated with their promoter 
methylation. ARTN encoded a secreted ligand of the 
TGF-β protein superfamily and its high expression was 
associated with the progression of NSCLC [72]. On the 
contrary, ARTN in our EIC had a lower expression level 
and a higher promoter methylation level, which were cor-
related with poor PFS. Additionally, a previous study sug-
gested that the overexpression of SMAD7 may suppress 
tumour progression by antagonizing TGF-β [73], while 
the high expression and low methylation of SMAD7 in 
our EIC were associated with poor prognosis for LUSC. 
These suggested that there was a potential mecha-
nism for regulating immunosuppressive TME by DNA 
methylation.

A previous study suggested that high tumour muta-
tion burden and neoantigen load were related to the 



Page 17 of 20Yang et al. Genome Medicine           (2022) 14:72  

response to ICB therapy [74]. Interestingly, in our study, 
neither mutational burden nor neoantigen load showed 
a significant association with the EIC which has high 
lymphocyte infiltration. The EIC scores for predicting 
EIC were computed based on gene expression profiles; 
therefore, we reviewed recent studies on the associa-
tion between TMB and gene expression profile-based 
biomarkers for predicting response to immunotherapy. 
Cristescu’s study on pan-tumour genomic biomarkers for 
predicting clinical response to PD-1 checkpoint blockade 
indicated that TMB and T cell-inflamed gene expression 
profiles were independently predictive of response and 
showed weak correlation [61]. KEYNOTE-028, a clinical 
trial to evaluate the associations between the biomark-
ers (e.g. TMB, PD-L1, and T cell-inflamed gene expres-
sion profile) and the clinical efficacy of pembrolizumab 
across 20 cancers, demonstrated that the correlations of 
TMB with gene expression profile and PD-L1 were low 
[62]. In addition, recent studies on the immunotherapy 
of melanoma exhibited that TMB and IFNγ-related gene 
expression show no significant correlation and both are 
able to predict response independently [60, 63]. Moreo-
ver, TMB did not correlate with the proportion of CD8 
T cells estimated by CIBERSORT using gene expression 
profiles [60]. These studies also demonstrated that the 
combination of gene expression profile-based biomark-
ers and TMB could improve the prediction of response 
to ICB therapy [60, 61]. Consistently, our EIC score had 
no significant correlation with TMB, suggesting that the 
combination of the EIC score and TMB may improve the 
prediction of response to immunotherapy. Specifically, 
the patients who had high EIC scores and low TMB may 
have the higher likelihood of immunotherapy resistance, 
but this needs to be validated in patients treated with 
immune checkpoint inhibitors in clinical trials. Addition-
ally, the genomic differences (mutation burden and neo-
antigen) of tumour between the EIC and the rest class in 
LUSC were also similar to those in other tumours such as 
head and neck squamous cell carcinoma [66] and hepa-
tocellular carcinoma [67]. These evidences suggested 
that tumour-intrinsic mutations may not impact immu-
nosuppressive microenvironment and the EIC score is 
independently predictive for potential immunotherapy 
resistance. However, we found that the EIC had a lower 
chromosomal alteration burden and a lower frequency of 
copy number alteration for the driver genes (e.g., AKT1, 
DDR2, KEAP1), suggesting that copy number alteration 
may play an important role in regulating immunosup-
pressive microenvironment.

The robustness of EIC was successfully verified in three 
validating datasets including 374 LUSC samples. The EIC 
in the validation datasets also showed potential resistance 
to ICB therapy and tended to poor prognosis, verifying 

its predictive value. However, this finding needs further 
validation on LUSC patients treated with ICB therapy.

Understanding the molecular features of immunosup-
pressive TME is critical for finding successful solutions 
of TEX reversion and immunotherapy. Comprehen-
sively multidimensional data analysis unfolded a com-
plex immunosuppressive network that may be dominated 
by cytokines in TME for LUSC. In our study, tumours 
within the EIC overexpressed PD-1 and CTLA-4, but did 
not have a higher tumour mutation burden than those 
within the rest class. However, recent clinical trials indi-
cated that patients benefitting from anti-PD-1 antibody 
plus anti-CTLA-4 antibody were associated with a high 
tumour mutational burden. Therefore, patients within 
the EIC may not be able to respond to the immunother-
apy with the two antibodies. Our comparison between 
the EIC and the rest class indicated that signal alterations 
related to TGF-β occurred in both transcriptome and 
epigenome. Thus, patients within the EIC may benefit 
from TGF-β inhibition plus ICB. In this regard, a phase 
1b/2 clinical trial testing the novel TGF-ß inhibitor, gal-
unisertib, in combination with nivolumab in advanced 
refractory solid tumours and in recurrent or refractory 
NSCLC, or in hepatocellular carcinoma, is currently 
ongoing (NCT02423343). The rest patients who was lack-
ing of the characteristics of immunosuppressive TME 
may be selected by immunohistochemical assay to deter-
mine the tumour-expressed PD-L1 status for eligibility.

Protein expression analysis indicated that PD-L1 and 
IDO were significantly increased in EIC, and this was 
consistent with the high transcriptomic expressions of 
two corresponding genes. IDO is an immune regulatory 
enzyme which suppresses T cell response. A recent study 
demonstrated that high IDO activity is associated with 
primary resistance to immunotherapy in NSCLC [64]. In 
our study, a high IDO protein expression level illustrated 
the potential immunotherapy resistance of EIC. Volaric’s 
study based on immunohistochemistry also demon-
strated that IDO is a targetable mechanism of immune 
resistance frequently coexpressed with PD-L1 [75]. In 
addition, through checking immunohistochemically 
stained tissue images from HPA, we found that LUSC 
patients had different IDO protein expressions. Overall, 
these evidences suggested that IDO immunohistochem-
istry may be a biomarker for identifying patients with 
potential immunotherapy resistance.

Conclusions
In conclusion, we identified an immunosuppres-
sive class accounting for approximately 30% LUSC 
patients, which had elevated PD-L1 expression but 
showed potential resistance to ICB therapy and uniquely 
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immunosuppressive molecular features of TME. Our 
findings provide new insights for understanding the 
molecular mechanism of ICB therapy resistance and tai-
loring appropriate immunotherapy strategies for patients 
with different molecular characteristics.
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