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Hepatocellular carcinoma (HCC) is a type of primary liver cancer with poor prognosis, and
its incidence and mortality rate are increasing worldwide. It is refractory to conventional
chemotherapy and radiotherapy owing to its high tumor heterogeneity. Accumulated
genetic alterations and aberrant cell signaling pathway have been characterized in HCC.
The fibroblast growth factor (FGF) family and their receptors (FGFRs) are involved in diverse
biological activities, including embryonic development, proliferation, differentiation,
survival, angiogenesis, and migration, etc. Data mining results of The Cancer Genome
Atlas demonstrate high levels of FGF and/or FGFR expression in HCC tumors compared
with normal tissues. Moreover, substantial evidence indicates that the FGF/FGFR signaling
axis plays an important role in various mechanisms that contribute to HCC development.
At present, several inhibitors targeting FGF/FGFR, such as multikinase inhibitors, specific
FGFR4 inhibitors, and FGF ligand traps, exhibit antitumor activity in preclinical or early
development phases in HCC. In this review, we summarize the research progress
regarding the molecular implications of FGF/FGFR-mediated signaling and the
development of FGFR-targeted therapeutics in hepatocarcinogenesis.
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INTRODUCTION

Hepatocellular carcinoma (HCC) accounts for 85–90% of primary liver cancer and is commonly
associated with underlying chronic liver disease arising from viral infection, metabolic disorders,
or alcohol abuse (Best et al., 2017). Primary liver cancer has become the sixth most common cancer
in terms of incidence and is the third cause of cancer-related mortality worldwide (Sung et al.,
2021). Despite some improvements in overall survival, the prognosis of patients with HCC remains
poor; the ratio of estimated number of deaths to incident cases is 75% (Craig et al., 2019).
According to the Global Cancer Observatory data, the mortality of HCC will be 1.28 million in
2040 vs. 0.78 million in 2018 (a 64.3% increase), and the incidence will increase by 61.9% (from
1.36 to 0.84 million). The incidence of HCC has a certain gender orientation, with males having a
higher risk. The ratio of HCC incidence is 13.9/4.9 per 100,000 people in the world, and the value is
27.6/9.0 in China. Eastern Asia is recognized as the traditionally highest-risk region, especially
Japan and China.
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Generally, surgery is the predominant therapy for HCC (Bruix
et al., 2005; Llovet et al., 2015). However, the outcome is poor, and
the risk of recurrence and metastasis remains high even after
surgery. Biological therapy is a promising therapy in a series of
cancers that targets the biomarkers or signaling pathway. The
development of HCC is a multistep process, in which epigenetic
changes and genetic alterations accumulate in HCC cells,
including mutations and DNA amplification variations, which
result in cell signaling pathway variation, ultimately leading to the
high heterogeneity of HCC (Moeini et al., 2012).

The fibroblast growth factor (FGF) family and their receptors
(FGFRs) play crucial roles in regulating physiologic cellular
processes, and they contribute to embryonic development,
proliferation, differentiation, survival, angiogenesis, and
migration (Turner and Grose, 2010; Yun et al., 2010; Sandhu
et al., 2014). The deregulation of FGF signaling is frequently
observed in HCC and liver cirrhosis, as well as viral hepatitis.
Evidence shows that the FGF family and FGFRs can be used to
elucidate the development and progression of HCC, even its
treatment (Motoo et al., 1993; Beenken and Mohammadi, 2009).
In this review, we summarize the current research progress
regarding FGF/FGFR signaling in hepatocarcinogenesis and
the potential pharmacological applications of FGFRs in HCC.

Overview of FGFS and FGFRS
FGFs are polypeptide growth factors that regulate diverse
biological activities, ranging from cell growth, development,
differentiation, wound repair to angiogenesis and
tumorigenesis (Beenken and Mohammadi, 2009; Ornitz and
Itoh, 2015). The first FGF-like factor with mitogenic activity
was discovered in 1939 and isolated in the 1970s (Gospodarowicz
et al., 1974). The human-mouse FGF family comprises 22 related
proteins with similar structure and evolution, FGF1–FGF23
(Beenken and Mohammadi, 2009; Cheng et al., 2011).
However, FGF19 only exists in humans, not in mice; it is
highly homologous with FGF15 in mice, which are also
referred as FGF15/FGF19 (Itoh, 2010). The FGF family is
divided into seven subfamilies according to gene evolution
analysis: FGF/1/2/5, FGF3/4/6, FGF7/10/22, FGF8/17/18,
FGF9/16/20, FGF11/12/13/14, and FGF15/19/21/23. FGF
members are also classified into paracrine, endocrine, and
intracrine FGFs on the basis of their mechanisms of action.
The FGF11 subfamily belongs to intracrine FGFs, the FGF19
subfamily is recognized as endocrine FGFs, while the other 15
members of FGFs are paracrine cytokines (Itoh and Ornitz, 2008;
Itoh and Ornitz, 2011).

FGFs, especially paracrine and endocrine FGFs, transduce cell
signals via binding to and activating tyrosine kinase receptors
(FGFRs) on the surface of the target cells (Eswarakumar et al.,
2005). The human FGFR gene family consists of four members,
FGFR1–4. Except for FGFR4, the other types of FGFRs encode
two alternative splicing variants (b and c). Therefore, seven forms
of FGFR proteins with distinct ligand-binding specificity exist in
humans, FGFRs 1b, 1c, 2b, 2c, 3b, 3c, and 4 (Ornitz and Itoh,
2015). In the binding of FGFs–FGFRs, heparin/heparan sulfate
(HS) and klotho family members (α, β) are needed as co-receptors
(Ornitz and Itoh, 2015). Generally, paracrine FGFs bind to and

activate FGFRs with heparin/HS, and mediate multiple
developmental and physiological processes. By contrast,
endocrine FGFs (FGF15/19/21/23), with a low affinity to HS,
usually require the klotho proteins for high affinity binding and
activating FGFRs in multiple metabolic processes and
carcinogenesis (Itoh, 2010). Research reports that only a few
endocrine FGF affect the progression of HCC (Ornitz and Itoh,
2015). The specific interaction of FGFs–FGFRs with cofactors
activates several intracellular cascades, including Ras/MAPK,
PI3K/Akt, and PLCγ/PKC pathways, to regulate target genes
transcription (Katoh and Nakagama, 2014). Abnormalities of
FGFs/FGFRs will lead to many diseases and are considered as a
risk factor in the development of cancer (Itoh, 2010; Touat et al.,
2015; Mikhaylenko et al., 2018). The gene transcription level
(Figure 1A) and mutation status of (Figure 1B) FGFs/FGFRs
were also investigated in HCC patients based on GEPIA2 and
cBioPortal database (Cerami et al., 2012; Gao et al., 2013; Tang
et al., 2017; Tang et al., 2019). As shown in Figure 1A, the
transcription levels of FGF1, 2, 7, 11–13, 17–19, and 21–22 and
FGFR1–4 in hepatocellular tumor tissues are higher than those in
normal tissues (Figure 1A); In addition, gene mutations, fusions,
and copy number amplification of FGFs/FGFRs are closely
related to the occurrence of HCC. As shown in Figure 1B,
FGF1, 3–7, 9–22 and FGFR1-4 all have different degrees of
genetic changes, especially gene copy number amplification
and deep deletion. Moreover, the FGF1 subfamily and FGF18
could promote angiogenesis, FGF15/19 binding with FGFR4 can
be used as a potential biomarker in HCC. Above all, there is a
growing interest in targeted agents based on FGF and FGFR for
HCC, relevant clinical trials are being carried out, such as
brivanib, dovitinib, FGF401, and BLU-554 (Katoh and
Nakagama, 2014; Katoh, 2016; Spallanzani et al., 2018; Lu
et al., 2019; Subbiah and Pal, 2019; Weiss et al., 2019).

FGF1 Subfamily
FGF1 (aFGF) and FGF2 (bFGF) are the first discovered FGF
family members, which were originally isolated from the brain
and pituitary gland (Gospodarowicz, 1975; Gambarini and
Armelin, 1982; Lemmon and Bradshaw, 1983). The amino
acid homology between FGF1 and FGF2, which belong to the
FGF1 subfamily, is as high as 55%. Due to the lack of a signal
sequence and no secretion, FGF1 and FGF2 cross the membrane
through a process facilitated by binding the cell surface and
extracellular matrix (ECM) heparan sulfate (HS). FGF1 subfamily
members function through an autocrine manner, inducing HCC
proliferation, invasion, and angiogenesis (Kin et al., 1997). The
expression of FGF1 and FGF2 is induced in chronic liver diseases,
and their expression levels are increased in more advanced tumor
stages (Jin-no et al., 1997; Poon et al., 2001; Asada et al., 2003;
Cheng et al., 2011; Sandhu et al., 2014).

Compared with FGF1, the oncogenetic effect of FGF2 in
various tumors has been studied (Baird and Klagsbrun, 1991;
Beenken andMohammadi, 2009; Cheng et al., 2011; Sandhu et al.,
2014; Itoh et al., 2016). In mice transplanted with HCC cells, anti-
basic FGF antibody injection slowed down and suppressed tumor
growth. The deregulation of FGFR3 with specific siRNA inhibits
the HCC cell growth, indicating that FGF2 and its receptors
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(FGFR3) are essential for HCC proliferation (Poon et al., 2001;
Midorikawa et al., 2003). Several studies suggested that FGF2
expression is correlated with the invasiveness and postsurgical
survival of HCC (Poon et al., 2001; Poon et al., 2003).

HCC is a devastating disease with high angiogenesis. FGF1 and
FGF2 are correlated with increased sinusoidal capillarization,
which is involved in tumor angiogenesis (Motoo et al., 1993). It
was supported that blocking FGF2 with vascularization inhibitors
leads to a significant reduction in tumor size (Wang and Becker,
1997). FGF2 and VEGF acted synergistically in tumor angiogenesis
to accelerate tumor progression, at least on the angiogenic
maintenance of tumors in HCC patients (Wang and Becker,
1997; Yoshiji et al., 2002). Furthermore, increased levels of FGF2
were detected in the serum of cancer patients who have become
resistant to VEGF-targeted therapy, which suggests the indirect
role of FGF2 in angiogenic resistance. Thus, dual targeting of
VEGF/FGF is a considerable strategy to circumvent therapy
resistance (Casanovas et al., 2005). The latest research claimed
that FGF2 single nucleotide polymorphisms (SNPs) rs308379 A
allele could be regarded as an independent poor prognostic
factor for overall survival in patients with HBV-associated HCC

by multivariate Cox analysis (Kim et al., 2019b). Taken together,
FGF1 and FGF2 are believed to be of great importance in the
development of HCC.

FGF8 Subfamily
FGF8, FGF17, and FGF18 are members of the FGF8 subfamily
with strong homology and evolutionary relationship (Gauglhofer
et al., 2011). Four FGF8 isoforms exist for alternative splicing.
These FGF8 variants, FGF17, and FGF18, which act as local
paracrine molecules, are presumed to bind and activate FGFR2,
FGFR3, and FGFR4 (Zhang et al., 2006; Beenken andMohammadi,
2009). The FGF8 subfamily exerts oncogenic effects in HCC.
According to statistics, at least one member of the FGF8
subfamily and/or their receptors is upregulated to facilitate cell
survival and angiogenesis via activating ERK in the majority of
HCC cases studied (Gauglhofer et al., 2011). FGF8, FGF17, and
FGF18 seem to be important drivers of proliferation, malignant
behavior, and neovascularization in advanced stages of HCC. The
proliferation and neovascularization of myofibroblasts (MFs)
cultured from HCCs can be induced by additional FGF8
subfamily members via the modulation of VEGF pathways

FIGURE 1 | Gene transcription level and mutation status of FGFs/FGFRs in HCC patients were investigated with TCGA database analysis (A) The transcription
levels of FGF1–23 and FGFR1–4was investigated with GEPIA platform (http://gepia.cancer-pku.cn/) between HCC tumor vs. normal samples based on TCGA database
(B) The mutation status of FGF1–23 and FGFR1–4 was displayed based on cBioPortal database (https://www.cbioportal.org/). Altered rate: altered/total profiled.
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(Alessandri et al., 1998). The administration of FGF8, FGF17, or
FGF18 could resist apoptosis and enhance the survival of serum-
starved tumor cells, including HCC-1.2, HepG2, and Hep3B cells,
the mechanism studies have found that these effects were mediated
by ERK and AKT/mTOR signaling pathways (Gauglhofer et al.,
2011; Liu et al., 2015a). Therefore, the role of FGF8 subfamily
members in the occurrence and development of HCC should not
be neglected. Most studies on the current FGF8 subfamily in HCC
mainly focused on FGF8 and FGF18. We will elaborate the activity
andmechanism of these FGFs in HCC, as outlined in the following.

FGF8 was first identified in the SC-3 cell line, which is a
mammary carcinoma cell line of Shionogi mouse and induced by
androgen (Chen et al., 2016; Linscott and Chung, 2016). FGF8
was found to be overexpressed in several solid cancers, including
HCC, but rarely detected in normal adult tissues (Liu et al.,
2015a). Zou et al. confirmed that FGF8 is one of the advanced
markers in stage III–IV HCC tumors with The Cancer Genome
Atlas (TCGA) data and in vitro as well as in vivo. Their study also
demonstrated that increased FGF17 plays a prediction role in
stage II–IV HCC tumors. FGF19 and FGF4 are significantly
upregulated in stage I and function as early markers (which
will be described in detail in the FGF19 subfamily section) (Zou
et al., 2018). The overexpressed or exogenous recombinant FGF8
promotes HCC cell growth by mediating the YAP1/EGFR axis.
Meanwhile, exogenous recombinant FGF8 plays a critical role in
the resistance to EGFR inhibitor gefitinib in HCC cells, but not to
other anticancer chemotherapeutic drugs, such as doxorubicin, 5-
Fu, paclitaxel, RAD001, and oxaliplatin (Liu et al., 2015a).

FGF18 is conserved among different species, including humans,
mouse, and rats, whose amino acid identity is 99% (Hu et al., 1998;
Ohbayashi et al., 1998; Haque et al., 2007). Similar to FGF2, FGF18
also acts as a mitogen in embryonic limb development and is
especially required in the development of bone, cartilage, and
alveologenesis (Hajihosseini and Heath, 2002; Liu et al., 2007;
Hung et al., 2016; Zhang et al., 2019a; Wang et al., 2019; Antunes
et al., 2020; Hagan et al., 2020). FGF18 plays a key role in regulating
the biological activity of tumor cells and immediately surrounding
tissue cells of the tumor microenvironment via multiple signaling
pathways (Shimokawa et al., 2003; Sonvilla et al., 2008; Gauglhofer
et al., 2011; Zhang et al., 2019a; Zhang et al., 2019b; Jomrich et al.,
2019). Pronounced overexpression of FGF18 accelerates
tumorigenesis via mediating cell proliferation, invasion, and
angiogenesis, which is correlated with poor overall survival in
patients and has been addressed in multiple types of cancers, such
as HCC, colorectal carcinomas, ovarian cancers, and gastric cancer
(Gauglhofer et al., 2011; Koneczny et al., 2015; El-Gendi et al., 2016;
Flannery et al., 2016; Zhang et al., 2019a; Zhang et al., 2019b;
Jomrich et al., 2019; Kulbe et al., 2019). Animal studies also
confirmed the oncogenic role of FGF18. FGF18 overexpression
in the liver of transgenic mice induced a marked increase in liver
weight and hepatocyte proliferation (Reinhold and Naski, 2007).
Significantly increased expression levels of FGF18 were detected in
rat hepatocellular adenoma and carcinoma via the autocrine
pathway. Studies demonstrated that the oncogenic role of
FGF18 could be directly suppressed by miR-139 in HepG2 and
Huh7 cells, the downregulation of FGF18 is related to the
inhibition of cell invasion, migration, angiogenesis and

promotion of apoptosis (Yang et al., 2017). Similarly, silencing
FGF18 with specific siRNA decreased the viability and clonal
proliferation of HCC cell lines, but elevated apoptotic activity in
HCC cell lines (Gauglhofer et al., 2011).

Of note, various growth factor systems in the liver tumor
microenvironment of inflammatory cells, small vessels, MFs, and
ECM components will accelerate hepatocarcinogenesis (Sagmeister
et al., 2008). FGF8 subfamily members are related to tumor–stroma
communication. FGF18 and FGF17 contribute to replicative DNA
synthesis inMFs. Moreover, all FGF8 subfamily members participate
in the tube formation of endothelial cells, which is essential for
neoangiogenesis (Gauglhofer et al., 2011). FGF18 increases protein
synthesis and cell growth to induce HCC vascularization in liver-
specific endothelial cells, which are associated with the function of
ribosomal protein RPS6 (Clevers, 2000). Consistently, FGF18
expression and secretion are upregulated in a high-RPS15 A-
expression HCC tumor microenvironment; FGF18 interacts with
FGFR3 and contributes to angiogenesis by inducing the Wnt/
β-catenin signaling pathway in endothelial cells (Guo et al., 2018).
Similar to other FGFs, FGF18 also prefers to induce the formation of
new blood vessels in HCC via directly or indirectly regulating VEGF
of tumor cells and surrounding tissue cells of the tumor
microenvironment. Taken together, FGF18 contributes to the
progression of HCC via paracrine and autocrine ways.

FGF19 Subfamily
The FGF19 subfamily consists of FGF15/19, FGF21, and FGF23.
Although Fgf15/19, FGF21, and FGF23 have only about 22–35%
amino acid identity, phylogenetic and gene locus analyses suggested
that they belong to one subfamily (Itoh and Ornitz, 2004, 2008;
Mikhaylenko et al., 2018). FGF15 and FGF19 are the mouse and
human orthologs, respectively, which share 53% amino acid
homology. We refer to them collectively as FGF15/19 unless
referring to a specific ortholog (Itoh and Ornitz, 2011). FGF19
subfamily members have been identified in vertebrates but not
invertebrates (Itoh and Ornitz, 2004; Itoh, 2007). In contrast to
other FGFs, FGF19 subfamily members act in an endocrine way
because of the low binding affinity to HS, which facilitates their
diffusion over long distances from the tissue of production and the
secretory area, and act as endocrine hormones (Zhang et al., 2006;
Goetz et al., 2007; Itoh, 2010; Tulin and Stathopoulos, 2010; Beenken
and Mohammadi, 2012). Endocrine FGFs need the assistance of
klotho proteins to adjust the interaction of FGFs and corresponding
FGFRs to mediate biological activity via triggering classical FGF
pathways (Choi et al., 2006; Beenken andMohammadi, 2012; Kuro-
o, 2012). FGF23 activates FGFR1c via binding with a-klotho, which
originates from the bone, secreted by osteocytes/osteoblasts, but is
responsible for phosphate homeostasis and vitamin D
administration in the kidney (Urakawa et al., 2006; Fon Tacer
et al., 2010; Ersoy, 2014; Fukumoto, 2019; Pereira et al., 2019).
Targeted ablation of FGF23 in mice causes severe
hyperphosphatemia, along with osteoporosis, vascular
calcification, atherosclerosis, sterility, and survival reduction but
no significant effect on liver diseases (Shimada et al., 2004).

Compared with FGF23, FGF15/19 and FGF21 need ß-klotho
(KLB) as co-receptor to bind to their FGFRs. Both of them can
activate the IIIc isoform of FGFR1, two and 3. However, only FGF19
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activates FGFR4 in vitro. The abundant expression of ß-klotho in the
liver indicates that FGF15/19 and FGF21 act in the liver, which has
been confirmed by multiple studies (Kharitonenkov et al., 2008;
Yang et al., 2012a; Ding et al., 2012; Schumann et al., 2016; Agrawal
et al., 2018; Ritchie et al., 2020). FGF19 is involved in postprandial
gut–liver communications and acts as a growth factor for
hepatocytes as well as hepatic bile acid synthesis (Kir et al.,
2011). However, numerous pieces of evidence indicated that
FGF15/19 is not physiologically expressed in the liver, but
pathological FGF19 expression was detected in liver tissues of
patients with liver diseases, including hepatitis C virus cirrhosis,
cholestasis, and HCC (Inagaki et al., 2007; Naugler et al., 2015).
FGF15/19 function as a driver for HCC (Miura et al., 2012; Mellor,
2014; Repana and Ross, 2015; Li et al., 2016b; Cui et al., 2018; Lin
et al., 2019b Maeda et al., 2019; Raja et al., 2019). FGF21 is
predominantly produced by the liver and also expressed in
adipose tissue, skeletal muscle, pancreas, and many other organs.
FGF21 is now considered as a key regulator of stress response in
humans (Luo et al., 2017; Wu et al., 2017). Under stress conditions,
elevated circulating FGF21 levels mostly appear to be derived from
the liver, which has been confirmed in a series of liver-related disease
models, such as liver inflammation; liver injury elicited by ethanol,
drugs, or ischemia/reperfusion; liver regeneration; and
hepatocarcinogenesis (Yang et al., 2013a; Ye et al., 2014; Ye et al.,
2016; Desai et al., 2017; Wu et al., 2017; Ritchie et al., 2020). Taken
together, the liver is recognized as a major direct or indirect target
organ for FGF15/19 and FGF21 because of their expression in the
liver with physiological and pathological conditions. Meanwhile, ß-
klotho and FGFR4 are predominantly expressed in the liver.
Therefore, FGF15/19 or FGF21, FGFR4, and ß-klotho coreceptor
signaling system play as key regulators in hepatocarcinogenesis
(Alvarez-Sola et al., 2017). Here, we will review the role of
FGF15/19 and FGF21 on HCC in detail.

Abnormal FGF15/19-FGFR4 signaling pathway is an important
cause of HCC, which is a complex and strongly heterogeneous type
of cancer. Through genomic analysis, FGF19 gene amplification has
been characterized in a subset of HCC tumors from patients with
poor prognosis, and the expression of FGF19 is almost 48% in
resected HCCs. After curative resection, circulating levels of FGF19
inHCC patients decreased. Furthermore, FGF19 protein expression
in HCC tissues is significantly related to larger tumor size, advanced
disease stage, and early recurrence (Sawey et al., 2011; Miura et al.,
2012). In childhood hepatoblastoma, FGF19 gene amplification is
not as prevalent as in adult HCC (approximately 5%) but
significantly related to the degree of aggressiveness (Elzi et al.,
2016). Animal studies showed that muscle-specific FGF19
transgenic mice at 10 months of age were used to generate liver
cancer formation (Nicholes et al., 2002). And FGF15 participates in
liver regeneration after partial hepatectomy inducing hepatocellular
proliferation, FGF15−/−mice showed lesser and smaller tumors, and
histological neoplastic lesions were also smaller than those in
FGF15+/+ animals (Uriarte et al., 2015). The above studies
proved that high levels of FGF19 contribute to the development
of HCC, function as an independent prognostic factor for survival,
and may predict early recurrence of HCC after curative
hepatectomy (Miura et al., 2012; Li et al., 2016b; Alvarez-Sola
et al., 2017; Gao et al., 2017; Cui et al., 2018; Raja et al., 2019).

The function of FGF19 is dependent on the expression of FGFR4
andKLB (Kurosu et al., 2007; Lin et al., 2007; Fon Tacer et al., 2010).
Increased expression of FGFR4 or KLB and the decreased
expression of SULT2A1 and KNG1 (FGF19 signaling repression
targets) have also shown to be associated with shorter survival or
development of multiple tumors, respectively (Desnoyers et al.,
2008; Ho et al., 2009; French et al., 2012; Lin et al., 2019b; Raja et al.,
2019). FGF19 may enhance its biological effects on HCC by
activating multiple growth factor pathways. FGF19 positively
regulates the expression of the EGFR ligand amphiregulin and
connective tissue growth factor (CTGF) to regulate the growth and
survival of HCC cells (Castillo et al., 2006; Castillo et al., 2009;
Urtasun et al., 2011; Latasa et al., 2012; Uriarte et al., 2015). FGF19
increases the invasive capabilities of human HCC cell lines by
promoting epithelial–mesenchymal transition (EMT) via a GSK3β/
β-catenin pathway (Miura et al., 2012; Zhao et al., 2016).
Oncogenomic screening also demonstrated that the amplification
and overexpression of FGF19 occurs along with those of CCND1,
known as an oncogene in HCC (Sawey et al., 2011). Non-cell-
autonomous activation of IL-6/STAT3 signaling is involved in
FGF19-driven hepatocarcinogenesis (Zhou et al., 2017).

As a risk factor to HCC development, the overexpression of
FGF19 was also detected in patients with hepatitis C virus cirrhosis
and biliary cirrhosis. Hepatic tissue protein of FGF19 and FGFR4 is
significantly correlated with histopathologic changes from fatty liver
to HCC via regulating the epithelial cell adhesion molecule (Li et al.,
2016b). Ileum-derived FGF15/FGF19 could contribute to
hepatocarcinogenesis in the presence of pro-tumorigenic
conditions, such as chronic viral infection and alcohol
consumption. FGF15 overexpression accelerates fibrosis and
hepatocarcinogenesis via the upregulation of amphiregulin (AR),
TGF-β, and CTGF (Uriarte et al., 2015). In a nonalcoholic
steatohepatitis (NASH)-HCC mouse model, FGF15/FGFR4
signaling plays a critical role in HCC initiation and development
via stimulating EMT and Wnt/β-catenin signaling (Cui et al., 2018).
Thefindings lend support to the pro-tumorigenic potential of FGF15/
FGF19 in the metabolic disorder microenvironment and address the
importance of the role that FGF15/FGF19 play inHCCdevelopment.

Taken together, the FGF15/19-FGFR4 pathway contributes to
the development of HCC. Its stimulation either through the
amplification or overexpression of FGF15/19 in human HCC
cells and tissues and its antitumoral effects by knocking down
FGF19, FGFR4, or KLB or by the overexpression of dominant-
negative FGFR4 variants in liver cancer cells in vitro and in vivo
models have been shown to impact HCC cell proliferation, survival,
EMT, migration, invasion, and drug resistance (French et al., 2012;
Miura et al., 2012; Mellor, 2014; Repana and Ross, 2015; Alvarez-
Sola et al., 2017; Gao et al., 2017; Cui et al., 2018; Kang et al., 2019;
Kim et al., 2019a; Lin et al., 2019b; Raja et al., 2019; Weiss et al.,
2019). The FGF19–FGFR4–KLB signal cascade was amplified via
the activation of PI3K/AKT, RAS/RAF/MAPK, RAS/Ral/mTORC1,
and GSK/β-catenin cell signaling pathways to further mediate the
development and progression of HCC (Figure 2) (Wan et al., 2016).
High levels of FGF19 can be used as an independent prognostic
factor for survival and may predict early recurrence of HCC after
curative hepatectomy (Lin et al., 2019b). Meanwhile, targeting
FGF19 by shRNA or anti-FGF19 antibody neutralization or

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6503885

Wang et al. FGF/FGFR Signaling in Hepatocellular Carcinoma

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FGFR kinase inhibitors, LY2874455, BLU-554, and INCB06207, has
been shown to inhibit the clonogenicity and tumorigenicity of
FGF19 abnormal HCC (Hagel et al., 2015; Repana and Ross,
2015; Gao et al., 2017; Joshi et al., 2017; Kim et al., 2019a;
Hatlen et al., 2019; Weiss et al., 2019). FGF19 could be a
promising molecular target for the treatment of human HCC.

FGF21 consists of 210 amino acids inmice and 209 amino acids
in humans (Motoo et al., 1993). Similar to FGF19/15 and FGF23,
the effects of FGF21 are limited by the tissue-specific expression
and signaling of different isoforms of FGFRs and KLB. As an
inducible stress-sensing hepatokine, FGF21 expression is
associated with the loss of normal functional capacity of
hepatocytes due to pathogenic processes. In the normal
condition, the expression of FGF21 is only detectable at a low
level in the liver. However, the expression of hepatic FGF21 is
increased significantly in liver diseases, such as partial hepatectomy
and regeneration, hepatosteatosis, and irreversible hepatic damage
from chronic hepatitis, cirrhosis, and even chemical (DEN
treatment) and genetic-induced hepatocarcinogenesis
(disruptions in LKB1, p53, MST1/2, SAV1, and PTEN) in
mouse models and human patient samples (Yang et al., 2013a;
Ye et al., 2014; Ye et al., 2016; Desai et al., 2017; Wu et al., 2017;
Ritchie et al., 2020). Studies showed that FGF21 concentrations are
increased in liver tissues at an early stage in human subjects and
mouse model along with type 2 diabetes or steatohepatitis.
However, when HCC develops, FGF21 protein levels are
decreased in liver tissues. FGF21 knockout mice fed a high-fat
and high-sucrose diet show significantly worse fibrosis, and 78% of
mice develop HCC. By contrast, only 6% of WT mice develop

HCC. The loss of FGF21 protein in the liver is associated with
hyperproliferation and aberrant p53 and TGF-β/Smad signaling
during the development of HCC (Liu et al., 2016b). Other studies
showed that forced expression of FGF21 could delay the initiation
of chemically induced hepatocarcinogenesis, implying the potential
anticancer properties of FGF21 (Huang et al., 2006). Related
studies indicated that FGF21 is required to limit the progression
of HCC carcinogenetic transformation during metabolic liver
injury in diabetic subjects, which mainly function at the stage of
HCC initiation (Zhang et al., 2015; Singhal et al., 2018). Moreover,
Wu L et al. found similar results in patients with CHB. Their results
showed that serum FGF21 in CHB patients exhibited a dramatic
increase with the occurrence of ACLF and in CHB patients who
developedHCC (Wu et al., 2017). Additionally, the high expression
of FGF21, FGF19, and FGFR4 is significantly associated with better
survival in a multivariate analysis with potential prognostic factors
(Yoo et al., 2017). The above studies indicated that FGF21may be a
useful biomarker in monitoring tumorigenesis and evaluating the
survival of patients with liver-related diseases/HCC.

Other FGFS
Besides the above FGFs, other FGFs are also involved in the
development and progression of HCC. Overexpressed FGFs,
including FGF4, FGF5, FGF9, and FGF22, were detected in
HCC tumors but not in samples of cirrhotic tissues (Mas et al.,
2007). FGF5 and FGF9 activate FGFR1c with HS in human HCC.
FGF5 functions as amajor target of miR-188–5p, and its restoration
could reverse the inhibitory action of miR-188–5p on HCC cell
proliferation andmetastasis (Fang et al., 2015). Similarly, FGF9 is as

FIGURE 2 | FGF19–FGFR4 signaling pathways in HCC. FGF19, FGFR4, and KLB comprise the complex, and the activated complex stimulates a cascade of
pathways, including the PI3K/AKT, RAS/RAF/MAPK, RAS/Ral/mTORC1, and GSK3β/β-catenin pathway. FGF19–FGFR4–KLB (β-klotho) signals are involved in
proliferation, angiogenesis, anti-apoptosis, EMT, invasion, and drug resistance in target cells.
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a target of miR-140–5p, and its overexpression attenuates the effect
of miR-140–5p onHCC growth andmetastasis (Yang et al., 2013b).

Additionally, indirect evidence showed that FGF5 knockout
mice could render NASH, which will provide tumor
microenvironment and further induce HCC (Hanaka et al.,
2014). Missiaglia et al.’s study show that the FGF13 gene was
significantly associated with the occurrence of liver metastasis
and shorter disease-free survival (Missiaglia et al., 2010). Further
study is needed to confirm the underlying relationship.

FGFRS
The FGFR family consists of FGFR1–4, which are highly conserved
transmembrane tyrosine kinases receptors. FGFs transduce a series
of biology activity by binding with FGFRs, HSPGs, and klotho type
co-receptors. Evidence shows that FGF/FGFR signaling is involved
in HCC development and progression, even in cancer treatment.
Preclinical data have demonstrated that nearly 50% of HCC were
directly or indirectly caused by FGF/FGFR abnormality. The
signaling axis of FGF/FGFR is a tissue-specific manner based on
the interaction of FGFs, FGFRs, HSPGs, and klotho type co-
receptors. Consistent with the high expression levels of FGFR3
and FGFR4 in the liver, the overexpression of FGFR3 and/or
FGFR4 was detected in the majority of HCC cases compared
with the relatively rare upregulation of FGFR1 and/or FGFR2
(Cappellen et al., 1999; Paur et al., 2015).

FGFR4 is a human hallmark in the study of HCC disease
mechanism and drug development owing to its innate advantages.
The liver uniquely possesses a complete FGFR4 activating
machinery, including FGFR4, FGF19, and KLB, and the specific
structure of FGFR4 could be distinguished from that of other
FGFRs. FGFR4 overexpression has been found in 30% to almost
50% ofHCC tissues (Desnoyers et al., 2008; French et al., 2012; Raja
et al., 2019). Two different FGFR4 gene polymorphisms have been
associated with increased levels of a-fetoprotein in HCC patients
(Ho et al., 2009; Yang et al., 2012b; Sheu et al., 2015; Xie et al.,
2015). FGFR4 modulates downstream pathways, such as PI3K/
AKT and RAS/RAF/MAPK, which are predominantly involved in
tumor proliferation and anti-apoptosis. As discussed in the FGF19
section, the abnormality of FGF19-FGFR4-KLB is involved in
HCC cell proliferation, survival, EMT, migration, and invasion
(Ho et al., 2009; Yang et al., 2012b; French et al., 2012; Lin and
Desnoyers, 2012; Liu et al., 2015b; Gu et al., 2015; Sheu et al., 2015;
Lin et al., 2019b). FGF19 or FGFR4 functions as a potential
therapeutic target for the treatment of HCC patients, which is
an active topic in the field of clinical liver oncology (Zhong et al.,
2014; Hagel et al., 2015; Repana and Ross, 2015; Sheu et al., 2015;
Gao et al., 2017; Joshi et al., 2017; Cui et al., 2018; Kim et al., 2019a;
Hatlen et al., 2019; Subbiah and Pal, 2019; Weiss et al., 2019).

The roles of other FGFRs on HCC have been explored. FGFR1
promotes HCC progression and is targeted by a series of
microRNAs. Studies showed that the polymorphisms of FGFR1
are related to HBV-related HCC, but they do not have an
independent role in tumorigenesis and progression (Wang et al.,
2013; Xie et al., 2015). The high expression of FGFR2 induced by
FGF7 stimulation is correlated with poor pathologic
differentiation, which might increase the incidence of HCC
recurrence. FGFR2 fusion mutations are reported in 13–20% of

patients with intrahepatic cholangiocarcinoma (Harimoto et al.,
2010; Chen et al., 2013; Jun et al., 2020). Interestingly, FGFR2-IIIb
expression in HCC tissues and cell lines was lower than that in
primary human hepatocytes and nontumorous tissue, and reduced
expression of FGFR2IIIb induces amore aggressive growth of HCC
(Amann et al., 2010). The role of FGFR2 in HCC is controversial
and needs to be further determined. In cancers, FGFR3-mediating
signals are often activated by manifold mechanisms, such as
activating receptor mutations, translocations, altered splicing,
upregulation of FGFs and/or FGFR3, and defects in negative
feedback loops. The various mechanisms were reported to be
associated with the development and progression of different
kinds of cancers, including HCC. Bettina Grasl-Kraupp et al.
found that the level of at least one of the two FGFR3 subtypes
on the surface of tumor cells is significantly increased in 50% of
HCC cases. The concentration of FGFR3 in tumor tissue is
positively correlated with the primary tumor size and the
recurrence probability. Other previous works identified that
FGFR3 overexpression is correlated with lung metastasis and
angiogenesis of HCC (Paur et al., 2015; Li et al., 2016a; Liu
et al., 2016a; Zhuang et al., 2018).

Hepatocellular Carcinoma Therapeutics
Targeted to FGFRS
Considering the established roles of aberrant FGF/FGFR signaling
in liver cancer oncogenesis, inhibitors of the FGF/FGFR signaling
axis may be promising for HCC treatment, which slow or halt HCC
tumor growth, target angiogenesis and metastasis, and reverse
acquired resistance to anticancer agents. The development of
FGFR inhibitors started from the earliest multi-target inhibitors
to pan-FGFR inhibitors and then to selective FGFR4 inhibitors and
irreversible FGFR4 inhibitors (French et al., 2012; Shen et al., 2013;
Katoh and Nakagama, 2014; Mellor, 2014; Choi et al., 2015; Joshi
et al., 2017; Ettrich and Seufferlein, 2018; Spallanzani et al., 2018;
Kim et al., 2019a; Lin et al., 2019a; Doycheva and Thuluvath, 2019;
Hatlen et al., 2019; Weiss et al., 2019).

Sorafenib is a landmark in the field of targeted therapy for liver
cancer, which is the first approved targeted therapy for HCC and was
approved by the FDA in 2007. It is an oral multi-target tyrosine kinase
inhibitor with targets including CRAF, BRAF and vascular endothelial
growth factor receptor (VEGFR1/2/3) and platelet-derived growth
factor receptor (PDGFR) and other tyrosine kinase receptors (KIT,
FLT-3, RET, RET). Moreover, for intrahepatic cholangiocarcinoma
(ICC), which belong to a type of primary carcinoma of the liver, with
FGFR2 gene fusion, sorafenib has a preferable clinical treatment effect
(Ying et al., 2019). Sorafenib is currently suitable for the first-line
treatment of inoperable or metastatic advanced HCC. Pemigatinib is
the first targeted therapeutic drug for intrahepatic
cholangiocarcinoma, and was approved by FDA in april 2020.
According to the latest 2020 National Comprehensive Cancer
Network (NCCN) guidelines (United States), if FGFR2 gene fusion
or rearrangement is clinically detected in cholangiocarcinoma, the
targeted drug pemigatinib can be used for treatment, and there is a
favorable response (Abou-Alfa et al., 2020; Romero, 2020).

In addition, according to the 2020 Consensus for clinical
application of molecular diagnosis on hepatobiliary carcinoma
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(China), FGF19 gene in HCC often exhibits copy number
amplification, which is closely related to the occurrence and
development of HCC (Lu, 2020). The highly selective FGFR4
inhibitors, such as H3B-6527, can significantly inhibit HCC cell
proliferation and benefit patients with mutations in the FGF19
signaling pathway. Moreover, FGF/FGFR gene mutation,
amplification or gene fusion will cause the continuous activation
of FGFR and promote the progression of many tumors. FGFR1-3
gene mutations can be detected in 11% of intrahepatic
cholangiocarcinoma (ICC) (Javle et al., 2016), FGFR2 gene fusion
was detected in 11–45% of cholangiocarcinoma (CCA), and the
common fusion forms mainly include FGFR2-ZMYM4, FGFR2-
BICC1 fusion, etc (Saha et al., 2016). Furthermore, it should also pay
attention to hyperprogressive disease (HPD) in tumor
immunotherapy of HCC. The data shows that the incidence of
HPD in tumor immunotherapy is about 10% (Champiat et al., 2017;
Ferrara et al., 2018), and the gene amplification of MDM2, MDM4,
EGFR and 11q13 (including CCND1, FGF3, FGF4, FGF19) may be
related to tumor immunotherapy HPD (Kato et al., 2017), the
molecular mechanisms of HPD and the relative predictive
biomarkers, etc., need further research.

As shown in Table 1, there are several clinical trials of FGF/
FGFR inhibitors are in progress, such as multikinase inhibitors
anlotinib, regorafenib and nintedanib, pan-FGFR inhibitors
erdafitinib, futibatinib, AZD4547, LY2874455. More importantly,
FGF19 signaling through the FGFR4/β-klotho receptor complex
has been shown to be a key driver of growth and survival in
hepatocellular carcinoma, which makes selective FGFR4 inhibition
an attractive therapeutic opportunity. FGFR4 specific targeted
drugs, including reversible and irreversible inhibitors, are being
developed and researched. FGFR4 selective reversible inhibitors,
such as H3B-6527, roblitinib (FGF401), ABSK-011 and ICP-105,
bind to the FGFR4 kinase domain in a reversible covalent manner
and inhibit the progression of HCC; Whereas, fisogatinib (BLU-
554) and BLU-9931 bind to FGFR4 in an irreversible manner.

However, most of these agents are still in early phase of clinical
trials, and still have a long way to go before they can be widely used
in clinical. The success of these therapies requires a comprehensive
research and specific selection of patients whose tumors appear
aberrant of the FGF/FGFR pathway.

CONCLUSION

The FGF/FGFR axis plays a vital role in the development and
treatment of HCC. Particularly, the FGF19-FGFR4-KLB
signaling system has been recognized as the main driver of
hepatocarcinogenesis, and several FGFR4-specific inhibitors
are being tested in clinical trials. These findings and clinical
trials will be utilized to unveil the importance of the FGF/FGFR
family on the HCC mechanism and speed up the development of
“precise medicine” strategies for HCC treatment.
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TABLE 1 | Classification and representatives of FGFR inhibitors for HCC.

Classification Drug name
(alternative name)

Organization Drug target Phase Clinical trial Id

Multikinase inhibitors Anlotinib Chia tai-tianqing VEGFR1/2/3, FGFR, PDGFR, KIT Phase 3 NCT04344158
Regorafenib Bayer VEGFR, FGFR, tie-1/2, PDGFR, KIT, RAF-1, BRAF,

600V, RET
Phase 2 NCT04696055

Nintedanib (BIBF1120) Boehringer-
ingelheim

FGFR, VEGFR, PDGFR Phase 1 NCT01594125
Phase 2 NCT00987935
Phase 1/2 NCT01004003

Pan-FGFR inhibitors Erdafitinib
(JNJ42756493)

Janssen FGFR1-4 Phase1/2 NCT02421185
Phase 1/2 NCT02052778

Futibatinib (TAS-120) Taiho FGFR1-4 Phase 3 NCT04093362
AZD4547 AstraZeneca FGFR1-4 Phase 2 NCT02465060
LY2874455 Eli lilly FGFR1-4 Phase 1 NCT01212107

FGFR4 selective reversible
inhibitors

H3B-6527 H3 biomedicine FGFR4-specific Phase 1 NCT02834780
Roblitinib (FGF401) Novartis FGFR4-specific Phase 1/2 NCT02325739
ABSK-011 Abbisko FGFR4-specific Preclinical —

ICP-105 InnoCare FGFR4-specific Phase 1 NCT03642834
FGFR4 selective irreversible
inhibitors

Fisogatinib (BLU-554) CStone, blueprint FGFR4, FGF19 Phase 1/2 NCT04194801
Phase 1 NCT02508467

BLU-9931 Blueprint FGFR4-specific Preclinical —

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 6503888

Wang et al. FGF/FGFR Signaling in Hepatocellular Carcinoma

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


REFERENCES

Abou-Alfa, G. K., Sahai, V., Hollebecque, A., Vaccaro, G., Melisi, D., Al-Rajabi, R.,
et al. (2020). Pemigatinib for previously treated, locally advanced or metastatic
cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 21
(5), 671–684. doi:10.1016/S1470-2045(20)30109-1

Agrawal, A., Parlee, S., Perez-Tilve, D., Li, P., Pan, J., Mroz, P. A., et al. (2018).
Molecular elements in FGF19 and FGF21 defining KLB/FGFR activity and
specificity. Mol. Metab. 13, 45–55. doi:10.1016/j.molmet.2018.05.003

Alessandri, G., Chirivi, R. G., Castellani, P., Nicoló, G., Giavazzi, R., and Zardi, L.
(1998). Isolation and characterization of human tumor-derived capillary
endothelial cells: role of oncofetal fibronectin. Lab. Invest. 78 (1), 127–128.

Alvarez-Sola, G., Uriarte, I., Latasa, M. U., Urtasun, R., Bárcena-Varela, M.,
Elizalde, M., et al. (2017). Fibroblast growth factor 15/19 in
hepatocarcinogenesis. Dig. Dis. 35 (3), 158–165. doi:10.1159/000450905

Amann, T., Bataille, F., Spruss, T., Dettmer, K., Wild, P., Liedtke, C., et al. (2010).
Reduced expression of fibroblast growth factor receptor 2IIIb in hepatocellular
carcinoma induces a more aggressive growth.Am. J. Pathol. 176 (3), 1433–1442.
doi:10.2353/ajpath.2010.090356

Antunes, B. P., Vainieri, M. L., Alini, M., Monsonego-Ornan, E., Grad, S., and
Yayon, A. (2020). Enhanced chondrogenic phenotype of primary bovine
articular chondrocytes in Fibrin-Hyaluronan hydrogel by multi-axial
mechanical loading and FGF18. Acta Biomater. 105, 170. doi:10.1016/j.
actbio.2020.01.032

Asada, N., Tanaka, Y., Hayashido, Y., Toratani, S., Kan, M., Kitamoto, M., et al.
(2003). Expression of fibroblast growth factor receptor genes in human
hepatoma-derived cell lines. In Vitro Cel Dev Biol Anim 39 (7), 321–328.
doi:10.1290/1543-706X(2003)039<0321:EOFGFR>2.0.CO;2

Baird, A., and Klagsbrun, M. (1991). The fibroblast growth factor family. Cancer
Cells 3 (6), 239–243.

Beenken, A., and Mohammadi, M. (2009). The FGF family: biology,
pathophysiology and therapy. Nat. Rev. Drug Discov. 8 (3), 235–253. doi:10.
1038/nrd2792

Beenken, A., and Mohammadi, M. (2012). The structural biology of the FGF19
subfamily. Adv. Exp. Med. Biol. 728, 1–24. doi:10.1007/978-1-4614-0887-1_1

Best, J., Schotten, C., Lohmann, G., Gerken, G., and Dechêne, A. (2017). Tivantinib
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