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feature of SVM setting it apart from other machine learn-
ing (ML) methods is that it operates in features spaces of 
increasing dimensionality to search for hyperplanes that lin-
early separate positive and negative training data. Accord-
ingly, if linear separation is not possible in a given feature 
space, the data are mapped into a higher-dimensional space 
where linear separation might become feasible.

The soft margin classifier variant of SVM that is widely 
used at present and SVR received increasing attention dur-
ing the 1990s [3–5] and were beginning to be applied in 
chemoinformatics in the early 2000s [6–8]. Subsequently, 
SVM/SVR became one of the most popular ML approaches 
in chemoinformatics and drug discovery together with deci-
sion tree-based methods such as random forests (RF) [9] 
and probabilistic approaches such as Bayesian modeling 
[10]. These methods essentially replaced (shallow) neural 
networks (NNs) for applications such as compound activ-
ity/property predictions [11]. This was the case because 
NNs were prone to overfitting using available training sets 
of limited size and had less generalization potential than 
SVM or RF. These algorithms continue to be mainstays in 

Introduction

The support vector machine (SVM) concept was introduced 
by Vapnik in 1979 [1, 2]. The approach was originally 
designed for binary object classification and then adapted for 
the prediction of numerical values (termed support vector 
regression, SVR). The algorithm projects training data into 
a pre-defined feature space to derive a model for qualitative 
or quantitative predictions by searching for a hyperplane 
that best separates positive and negative training instances 
(SVM) or by fitting a regression function (SVR). A unique 
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Abstract
The support vector machine (SVM) algorithm is one of the most widely used machine learning (ML) methods for predict-
ing active compounds and molecular properties. In chemoinformatics and drug discovery, SVM has been a state-of-the-art 
ML approach for more than a decade. A unique attribute of SVM is that it operates in feature spaces of increasing dimen-
sionality. Hence, SVM conceptually departs from the paradigm of low dimensionality that applies to many other methods 
for chemical space navigation. The SVM approach is applicable to compound classification, and ranking, multi-class 
predictions, and –in algorithmically modified form– regression modeling. In the emerging era of deep learning (DL), SVM 
retains its relevance as one of the premier ML methods in chemoinformatics, for reasons discussed herein. We describe the 
SVM methodology including strengths and weaknesses and discuss selected applications that have contributed to the evo-
lution of SVM as a premier approach for compound classification, property predictions, and virtual compound screening.
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SVM is a supervised ML algorithm that can be used for 
compound classification and ranking and SVR is an exten-
sion of SVM that is used for predicting numerical values. 
SVM and SVR learning is schematically compared in Fig. 1. 
In SVM, model building relies on the derivation of the SVs 
that are differently defined for classification and regression, 
as illustrated in Fig. 1. Both strategies balance the risk of 
model overfitting to training data, which generally hinders 
generalization of ML models.

SVM uses labeled training data to define a hyperplane as 
a classification border between two object classes. As any 
supervised learning model, an SVM model is derived from 
a data matrix containing the molecular features (descrip-
tors) for training compounds and a vector with their activ-
ity class labels. Molecular features are organized in a data 
matrix X ∈ RD , in which rows correspond to different 
compounds and columns to different molecular descrip-
tors. In addition, the class label of each compound x ∈ X  
is represented by a binary categorical vector which indi-
cates the class label y ∈ {−1, +1} , i.e. inactivity (-1) or 
activity (+1). SVM projects these training data into a fea-
ture space X  (defined by the molecular representation) and 
constructs a hyperplane H  that optimally separates the two 
classes under study, shown on the left in Fig. 1. A weight 
vector w and a bias b are used to define this hyperplane as 
H = {x| < w,x > +b = 0}  where <∙,∙> is a scalar prod-
uct [4]. Once H  is derived, test data can be projected into 
the input space and classified or ranked according to their 
position with respect to H . Hence, test compounds are pre-
dicted to be positive (active) or negative (inactive), depend-
ing on the side of the hyperplane onto which they fall. 
Alternatively, test instances can be ranked according to the 
signed (positive or negative) distance from the hyperplane 

chemoinformatics and drug discovery while deep learn-
ing (DL) using deep NN (DNN) architectures has been 
increasingly applied in recent years [12, 13]. To us, SVM is 
of particular interest, given its conceptual elegance, meth-
odological uniqueness, versatility, and consistently high 
performance in many chemoinformatics applications, as 
discussed in the following.

Methodological foundations

We begin with a few general definitions that should be help-
ful to follow the theory discussion.

A hyperplane is defined as a subspace with one dimen-
sion less than the N-dimensional feature space in which it 
is formed. In SVM modeling, the hyperplane represents a 
classification boundary. The margin of the hyperplane is the 
distance between two object classes in feature space sepa-
rated by the hyperplane for SVM classification. Support 
vectors (SVs) represent data samples of one class that are 
closest to the other class and thus used to define the mar-
gin of the hyperplane. Kernel function is a similarity func-
tion that takes as input vectors in original feature space and 
calculates a modified inner product in a higher-dimensional 
space. The kernel trick refers to a strategy for generating a 
non-linear SVM using a kernel function instead of comput-
ing an explicit mapping of data into a higher-dimensional 
space. The ε-insensitive tube in SVR is equivalent to the 
margin in SVM classification and indicates the deviations 
that are tolerated in the prediction of numerical values. 
Deviations larger than ε are penalized. Support vectors in 
SVR correspond to data points falling outside the ε-tube.

Fig. 1 SVM and SVR modeling. In SVM (left), a hyperplane with maximal margin is constructed to separate two compound classes (colored 
green and red, respectively). In SVR (right), the difference between an observed and predicted numerical value is minimized. The gradient from 
dark to light blue indicates decreasing numerical values. Support vectors for SVM/SVR are indicated by black circles. In SVM, SVs are located 
on the margin, while they may be located outside of the ε-tube in SVR
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applied to map the training data into a higher dimensional 
space H  in which linear separation might be feasible [15]. 
Thus, a linear model is built in the new space H , which 
corresponds to a non-linear model in X , as shown in Fig. 2. 
The scalar product is transferred into a higher dimensional 
space by a nonlinear transformation ϕ , but the explicit 
mapping is not computed. Instead, the scalar product is 
replaced by a kernel function K(∙,∙). Among the most com-
mon kernel functions are the linear kernel (equivalent to the 
original scalar product), the Gaussian or Radial Basis Func-
tion (RBF) kernel (Eq. 1), or the polynomial kernel (Eq. 2). 
Here, γ  and d are hyper-parameters of the algorithm and u, 
v two vectors.

 KRBF (u, v) = exp(−γ‖u −v‖2) (1)

 Kpolynomial(u, v) = (< u, v > +1)d  (2)

Moreover, the Tanimoto kernel (Eq. 3), which is based on 
the Tanimoto coefficient for quantifying the similarity of 
vector representations, has become especially popular for 
applications in chemoinformatics [16].

 
KTanimoto(u, v) =

< u, v >

< u, u > + < v, v > − < u, v >  (3)

Importantly, the use of kernel functions enables mapping 
into higher dimensional feature spaces without the need to 
compute the explicit space transformation, which is a hall-
mark of SVM and SVR modeling.

by assigning a distance-based probability of activity to com-
pounds. SVs are samples of one class that are closest to the 
other (indicated by black circles in Fig. 1) and represent 
the subset of training instances from which the hyperplane 
is derived. The distance between SVs from each class is 
known as margin (H+ − H−) and the SVM objective func-
tion aims to maximize the margin. However, a hyperplane 
that preferentially maximizes the margin is prone to overfit-
ting, one of the major pitfalls in ML. Such models would 
only be suitable for predicting training data, but lack pre-
dictive potential for test data. To avoid overfitting in SVM 
modeling, non-negative slack variables are added to the 
optimization function to permit limited training errors (i.e., 
some training data points may fall onto the incorrect side of 
the hyperplane or within the margin). Relaxation of margin 
maximization is controlled by the hyper-parameter C (regu-
larization term or cost factor), which introduces a trade-off 
between margin size and classification error. Smaller C val-
ues cause a larger margin, which results in a simpler model 
with worse training set predictions, whereas larger C values 
lead to a smaller margin and better predictive performance 
on training data. Note again that perfect training set predic-
tions do not guarantee generalization ability of the model 
and likely cause model overfitting. Generally, the cost factor 
C accepts values ranging from 0.001 to 1000 and is opti-
mized using cross-validation on the training data.

SVR enables the prediction of numerical property values. 
Regression models are built from training data X ∈ RD  and 
a numerical vector containing the property value y ∈ R  of 
each training compound. SVR defines a regression func-
tion of the form f (x) =< w,x > +b  and attempts to 
map training data as closely as possible to the numerical 
label, illustrated in Fig. 1 (right). Limited derivations from 
precise values are tolerated by the ε-insensitive tube [5], 
whereas errors larger than ε are penalized. Hence, ε defines 
the tolerance limits for differences between predicted and 
real values of training instances. Analogously to SVM, 
non-negative slack variables are introduced to permit few 
training instances to fall outside the ε-tube, which represent 
SVs for deriving the model. Furthermore, the regularization 
term C is also introduced in SVR to balance complexity and 
accuracy of the model. For a large value of C, a complex 
model is obtained that avoids training errors with the risk of 
overfitting, whereas a small value of C leads to a model of 
low complexity with a tendency to insufficiently fit training 
data [14]. Hence, arriving at a well-balanced setting of C 
is critical for achieving a meaningful compromise between 
model accuracy and generalizability. The C value is typi-
cally selected on the basis of cross-validation results.

The “kernel trick” plays a central role in SVM/SVR mod-
eling. If data is non-linearly separable or a linear regression 
is not possible in a given input space X , the kernel trick is 

Fig. 2 Kernel trick. If two classes of objects cannot be linearly sepa-
rated in a given feature space X, a non-linear mapping ɸ is performed 
to project data points into a higher-dimensional space H  in which a 
linear hyperplane separating positive and negative instances might be 
found. The kernel trick circumvents the explicit mapping through the 
use of kernel functions
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selection of the target with strongest predictive support), or 
classifier chain strategy [24]. In a classifier chain, sequences 
of single-target classifiers are built by iteratively including 
results of previous predictions as features for the subse-
quent classifier. For the identification of dual-kinase inhibi-
tors, predictions of two single-target SVM classifiers were 
combined, representing a combinatorial SVM (C-SVM) 
strategy [25]. Predictions were then carried out for 11 com-
binations of dual inhibitors for nine kinase cancer targets. 
Here, the C-SVM approach yielded lower false positive and 
comparable true positive rates for dual inhibitors compared 
to other ML methods [25]. C-SVM models generated on 
the basis of single-target inhibitors were also successfully 
applied to detect dual-target serotonin reuptake inhibitors 
[26]. Furthermore, the potential of combining single-target 
SVM models for multi-class predictions has also been dem-
onstrated [27, 28]. For instance, combinations of single-
target SVM models were used to predict profiling matrices 
of 429 compounds on 24 kinases. Here, SVM calculations 
were prone to false negatives but overall more predictive 
than other ML approaches [28]. In addition to using combi-
nations of single-target classifiers, SVM modeling can also 
be adapted for predicting multi-target interactions directly. 
This requires the application of descriptors accounting for 
ligand-target pairs including, for example, representations 
combining compound properties with protein sequence data 
or structural descriptors [29]. SVM models are then trained 
to distinguish true ligand-target pairs from random com-
binations. Ligand-target interactions can also be modeled 
by applying different kernel functions to separately evalu-
ate compound and target similarity and then combine these 
components, as illustrated in Fig. 3. For interaction predic-
tions using such product kernels, a variety of ligand- and 
target-based kernel functions were developed [29, 30].

Selected applications

SVM became an ML method of choice in chemoinformatics 
because it typically achieved high accuracy in compound 
classification (class label prediction), which was of partic-
ular relevance for virtual compound screening (VS) [17]. 
Subsequently, SVR was established as a primary approach 
for non-linear QSAR and also applied for VS [17, 18]. In 
ML-based VS, classification or regression models are built 
to distinguish between known active and inactive (or ran-
domly selected) compounds and used to screen databases 
[17–19]. For SVM, compound rankings can then be gener-
ated in the order of decreasing likelihood of activity based 
upon the signed distance of test compounds from the hyper-
plane (see above). In SVR, test compounds can be ranked by 
predicted potency values. Different studies have highlighted 
the potential of SVM and SVR to detect structurally novel 
active compounds distinct from those used for training [e.g. 
7, 20–24]. For example, SVM was combined with an active 
learning strategy to identify thrombin inhibitors [7] and new 
inhibitors of histone deacetylase 1 (HDACI1) were pre-
dicted by SVR screening of ~ 9.5 million compounds and 
experimentally confirmed [24]. In chemoinformatics, VS 
represents a standard application and many retrospective 
or prospective VS applications using SVM/SVR (and other 
state-of-the-art ML approaches) have been reported over 
the years. Furthermore, SVM modeling was adapted for a 
variety of special applications, some of which are discussed 
below.

Multi-target activities

In addition to predicting target-specific compound activity, 
multi-target activities can also be predicted. There are sev-
eral ways in which multi-class SVM modeling can be facili-
tated including the one-vs-all (i.e., one classifier per target), 
one-vs-one (one classifier per pair of targets, followed by 

Fig. 3 Target-ligand kernel. 
Ligand (orange) and target 
(blue) descriptors are concat-
enated to represent an interac-
tion. Two kernel functions are 
used to separately calculate 
target and compound similar-
ity. Then, the product kernel 
is calculated for target-ligand 
pairings yielding a combined 
similarity score
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as ACs, termed MMP-cliffs [36]. For ML, prediction of ACs 
is principally challenging because training and test instances 
are compound pairs instead of individual compounds. ACs 
were first correctly predicted using SVM modeling, given 
the opportunity to design specialized kernel functions for 
MMPs [36], in analogy to combined compound-target 
kernels. The design of MMP kernels accounting for core 
and transformation similarity is illustrated in Fig. 4. SVM 
models derived using these kernel functions were applied 
to accurately predict MMP-cliffs for different compound 
activity classes by distinguishing them from corresponding 
MMPs capturing no significant potency differences [36]. 
Using such MMP kernels, potency differences between 
compounds forming MMP-cliffs were also successfully pre-
dicted using SVR [37]. Furthermore, as an alternative, SVM 
and SVR were also used to predict MMP-cliffs on the basis 
of condensed graphs of reaction representations [38].

Pros and cons

In addition to standard applications of ML in chemoinfor-
matics and drug discovery such as compound classification 
or property prediction, SVM has been adapted for a number 
of specialized applications, as discussed above, reflecting 
the versatility of the approach. SVM and RF have become 
preferred ML approaches in chemoinformatics in the pre-
DL era, both for class label predictions and regression mod-
eling, given their reliable performance in many standard 
applications. Compared to other ML methods, SVM has 
some advantages, but there are also potential caveats that 
must be carefully considered.

One of the strengths of SVM is the availability of a 
regularization hyper-parameter C that avoids overfitting, if 
appropriately optimized. Internal cross-validation with inde-
pendent performance tests can be carried out to optimize 
C hyper-parameter settings. While (D)NNs contain many 

New targets

Interaction predictions can also be attempted to identify 
active compounds for targets for which no ligands are 
known. For example, similarity searching has been applied 
to detect compounds active against such “orphan” targets 
using reference molecules from homologous targets [30]. 
The underlying idea is that new targets can be inferred on 
the basis of ligand similarity. This principle is also appli-
cable to SVM modeling. For example, linear combinations 
of SVM models (LC-SVM) using compound-target kernels 
have been used to predict novel ligands for orphan targets 
[31]. Here, the performance of alternative compound-target 
kernels with different protein representations was often 
comparable and it was shown that ligand similarity and 
nearest neighbor relationships between known active and 
test compounds often determined correct SVM predictions 
[32].

Activity cliffs

SVM has also been applied for the prediction of activity 
cliffs (ACs) consisting of pairs of structurally similar com-
pounds with large potency differences against a given tar-
get [33, 34]. For ACs, similarity of compounds in pairs can 
be accounted for in different ways including, for example, 
the calculation of fingerprint (Tanimoto) similarity or sub-
structure-based similarity [34]. For systematic assessment 
of substructure-based similarity, matched molecular pairs 
(MMPs) can be determined. An MMP is defined as a pair of 
compounds that are only distinguished by a chemical modi-
fication at a single site [35]. A modification corresponds to 
the exchange of a pair of substructures, termed a chemical 
transformation [35]. Accordingly, compounds forming an 
MMP share a common core and are distinguished by a given 
transformation. MMPs formed by compounds with large 
potency differences of at least 100-fold have been classified 

Fig. 4 MMP kernel. Core 
(orange) and transformation 
(blue) descriptors are concat-
enated to represent an MMP and 
separately calculate core and 
transformation similarity. The 
common core of an MMP is 
represented using a fingerprint 
while the transformation is 
encoded using the concatena-
tion of exchanged substructures 
or the difference between them. 
Then, the product of the core 
and transformation kernels is 
calculated
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developments complement general approaches to rational-
ize ML predictions [47, 48].

Perspective

Since the early 2000s, SVM has evolved to be one of the 
premier ML approaches in chemoinformatics and drug dis-
covery, together with decision tree methods and probabilis-
tic modeling. These approaches largely replaced (shallow) 
NNs, which were popular early on in chemoinformatics, and 
have dominated ML predictions of compounds and molecu-
lar properties over the past decade. With the rise of DL in 
many areas of science, much attention in chemoinformatics 
and drug discovery is currently focused on DNNs. This also 
raises the question if ML approaches such as SVM or RF 
might be replaced by DNNs going forward. This will most 
likely not be the case, for several reasons. DNNs have made 
the strongest impact in fields were large volumes of low-
resolution or unstructured data are available for modeling 
and where representation learning plays an important role. 
Often cited examples include image analysis or natural lan-
guage processing. By contrast, early-phase drug discovery 
–dominated by chemistry and biological assays or screens– 
is not a data-rich field. For many standard applications such 
as compound classification or property prediction, confined 
data sets and well-defined molecular representations are 
available. These conditions do not play into the strengths 
of DL and, consequently, there is little, if any advantage 
of DNNs over SVM or decision tree methods in such 
cases. Thus, while DL using DNNs has opened the door to 
addressing a number of prediction tasks that were difficult 
to tackle using other ML approaches (such as, for example, 
large-scale synthesis prediction or generative molecular 

more hyper-parameters than SVM and RF, proper optimiza-
tion of C is essential in order to generalize SVM models. 
RF is methodologically less complex than SVM modeling 
but restricted to consensus predictions. For SVM/SVR, a 
variety of kernel functions can be selected and modified, 
depending on the specific requirements of prediction tasks. 
For predictions relying on compound similarity, the Tani-
moto kernel has become a function of choice [16], as men-
tioned above. Other strengths of SVM include that it solves 
a convex quadratic optimization problem yielding solutions 
approaching a global optimum [39]. In addition, the use of 
high-dimensional data is feasible, even in combination with 
small sample sizes. Furthermore, given the dependence of 
SVM/SVR models on SVs, not all the training data points 
are required for predictions. This characteristic makes SVM 
more memory-efficient compared to other methods that 
require computation of similarities or distances between all 
training instances.

SVM also has intrinsic limitations. Although predic-
tions relying on SVs are generally fast, SVM learning also 
becomes computationally demanding when very large data 
sets are investigated. This is, however, rarely the case in 
standard chemoinformatics applications, as further dis-
cussed below. Regardless, SVM model quality is gener-
ally sensitive to the composition and size of training sets 
[40], which needs to be considered on a case-by-case basis. 
Notably, SVM is not a probabilistic approach [39], setting 
it apart from Bayesian modeling. For binary SVM classi-
fication, output probabilities –if desired– can be derived 
through logistic regression on SVM scores, which requires 
additional cross-validation on the training data.

Limitations also apply to SVR. Importantly, SVR models 
often under-predict the potency of most potent data set com-
pounds [14]. This tendency can be illustrated using three-
dimensional activity landscapes of compound data sets, 
which are constructed on the basis of pair-wise compound 
distances in feature spaces mapped to an x,y-plane com-
bined with an extrapolated potency surface added as a third 
dimension [41]. Figure 5 shows a representative example. 
SVR potency predictions “flatten” the activity landscape 
that is based upon experimental values by reducing the 
magnitude of ACs. This is a direct consequence of classify-
ing most potent compounds as “outliers” in SVR and under-
predicting their potency values. Last but not least, different 
from decision tree methods but similar to (D)NNs, SVM/
SVR predictions have “black-box” character and are dif-
ficult to understand [42]. Accordingly, various approaches 
have been developed to aid in the interpretation of SVM/
SVR decisions. These include the extraction of rules from 
models [43], identification of SVs dominating predic-
tions [44], visualization of individual feature contributions 
[45], and determination of feature weights [46]. These 

Fig. 5 Activity landscapes. For a set of specifically active com-
pounds, three-dimensional activity landscapes are generated using 
experimentally determined potency values (top) or potency values 
predicted by SVR (bottom). A color gradient accounts for the range of 
potency (pKi) values. Peaks in the “real” activity landscape represent 
ACs including most potent data set compounds
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Model 52:1413–1437
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11:785–795

13. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T (2018) 
The Rise of Deep Learning in Drug Discovery. Drug Discov 
Today 23:1241–1250

14. Balfer J, Bajorath J (2015) Systematic artifacts in support vector 
regression-based compound potency prediction revealed by sta-
tistical and activity landscape analysis. PLoS ONE 10:0119301
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for optimal margin classifiers. In: Proceedings of the 5th annual 
workshop on computational learning theory: Pittsburgh, Pennsyl-
vania, pp 144–152
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nels for chemical informatics. Neural Netw 18:1093–1110

17. Heikamp K, Bajorath J (2014) Support vector machines for drug 
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18. Hasegawa K, Funatsu K (2010) Non-linear modeling and chemi-
cal interpretation with aid of support vector machine and regres-
sion. Curr Comput-Aided Drug Des 6:24–36

19. Kar S, Roy K (2013) How far can virtual screening take us in drug 
discovery? Expert Opin Drug Discov 8:245–261

20. Saeh J, Lyne PD, Takasaki BK, Cosgrove DA (2005) Lead hop-
ping using SVM and 3D pharmacophore fingerprints. J Chem Inf 
Model 45:1122–1133

21. Ma XH, Wang R, Yang SY, Xue Y, Wei YC, Low BC, Chen YZ 
(2008) Evaluation of virtual screening performance using sup-
port vector machines trained by sparsely distributed active com-
pounds. J Chem Inf Model 48:1227–1237

22. Ma XH, Wang R, Tan CY, Jiang YY, Lu T, Rao HB, Li XY, Go 
ML, Low BC, Chen YZ (2010) Virtual screening of selective 
multitarget kinase inhibitors by combinatorial support vector 
machines. Mol Pharm 7:1545–1560

23. Tang H, Wang XS, Huang X, Roth BL, Butler KV, Kozikowski 
AP, Jung M, Tropsha A (2009) Novel inhibitors of human histone 
deacetylase (HDAC) identified by QSAR modeling of known 
inhibitors, virtual screening, and experimental validation. J Chem 
Inf Model 49:461–476

24. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, 
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Van-
derplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duch-
esnay E (2011) Scikit-learn: Machine Learning in Python. J Mach 
Learn Res 12:2825–2830

25. Ma XH, Wang R, Tan CY, Jiang YY, Lu T, Rao HB, Li XY, Go 
ML, Low BC, Chen YZ (2010) Virtual screening of selective 
multitarget kinase inhibitors by combinatorial support vector 
machines. Mol Pharm 7:1545–1560

26. Shi Z, Ma XH, Qin C, Jia J, Jiang YY, Tan CY, Chen YZ (2012) 
Combinatorial support vector machines approach for virtual 
screening of selective multi-target serotonin reuptake inhibitors 
from large compounds libraries. J Mol Graph Model 32:49–66

27. Kawai K, Fujishima S, Takahashi Y (2008) Predictive activity 
profiling of drugs by topological-fragment-spectra-based support 
vector machines. J Chem Inf Model 48:1152–1160

28. Balfer J, Heikamp K, Laufer S, Bajorath J (2014) Modeling of 
compound profiling experiments using support vector machines. 
Chem Biol Drug Des 84:75–85

29. Jacob L, Vert JP (2008) Protein-ligand interaction predic-
tion: an improved chemogenomics approach. Bioinformatics 
24:2149–2156

design), there are all reasons to anticipate that SVM will 
continue to be an approach of choice for many chemoin-
formatics applications, given its typically high performance 
in compound classification and property predictions on the 
basis of limited training data. This also applies to virtual 
compound screening for drug discovery. In addition, SVR 
will continue to be a method of choice for non-linear QSAR 
modeling (despite its limitations, as discussed above), espe-
cially during compound optimization where available data 
are usually sparse. Furthermore, as a kernel-based method-
ology, the adaptability and versatility of SVM for special-
ized applications will continue to be important for the field 
going forward.
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