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Abstract

Data quality issues at advanced old age, such as incompleteness of registration of
vital events and age misreporting, compromise estimates of the death rates and
remaining life expectancy at those ages. Following up on Horiuchi and Coale
(Population Studies 36: 317-326, 1982), Mitra (Population Studies 38: 313-319, 1984,
Population Studies 39: 511–512, 1985), and Coale (Population Studies 39: 507–509,
1985), we examine the conventional approaches to constructing life tables from data
deficient at advanced ages and the two adjustment methods by the mentioned
authors. Contrary to earlier reports by Horiuchi, Coale, and Mitra, we show that the
two methods are consistent and useful in drastically reducing the estimation errors
in life expectancy as compared to the conventional approaches, i.e., the classical
open age interval model and extrapolation of the death rates. Our results suggest
complementing the classical estimates of life expectancy by adjustments using Horiuchi-
Coale, Mitra, or other appropriate methods and avoiding the extrapolation method as a
tool for estimating the life expectancy.

Keywords: Old-age mortality, Life expectancy, Life table, Motality estimation,
Age exaggeration

Introduction
The life table model, which describes the current mortality profile in terms of a hypo-

thetical survival of individuals in a synthetic cohort, is an important tool in studying

mortality and its many implications such as insurance policies, social policies, and

population projections (Chiang 1978; Preston et al. 2001). It builds upon age-specific

death rates and produces various indicators of mortality, survival, and longevity for the

age groups. A limitation of the model appears at the older ages where data scarcity or

deficiency forces statisticians to disregard age details and aggregate the available data

into a single “open age interval” (Missov et al. 2016).

Typical data problems that prevent the extension of the life table to an older age are

age exaggeration and other types of age misreporting, such as poorly documented

return migration following retirement and missing death records. A recent study by

Randall and Coast (2016) suggests that the data quality at ages 60+ in low-income

countries is yet “very rough” with only a limited improvement over time in African

countries. Even in developed countries with generally good mortality data, incomplete-

ness of migrant registration or misreported ages at death may bias the mortality esti-

mates for the elderly (Khlat and Courbage 1996; Kibele et al. 2008; Preston et al. 1996).
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In regional demography and demography of social groups, small population size may

be another source of data limitation that demands lowering the age at the start of the

open age interval (Scherbov & Ediev 2011).

Choosing a broader open age interval that begins at younger ages may help mitigate

some of the data quality problems, including the problems of age exaggeration and

small population size. Lowering the age at the beginning of the open age interval,

however, may itself have severe consequences for the quality of life table estimates be-

cause of departures from stationarity which is conventionally assumed for the age com-

position at the open age interval (Preston et al. 2001). In a stationary population, life

expectancy at the beginning of the open age interval is inverse to the death rate:

ea ¼ Maþ−1 ð1Þ

Hereinafter, a denotes the starting age of the open age interval, ea is the life expectancy

at age a, and Ma+ is the death rate in the open age interval. In this paper, we call (1)

the classical estimate (approach).

The classical approach is not the only one available for cases with age reporting prob-

lems. The most common alternative method to calculate the last “problematic” age

range of the life table is extrapolation of death rates based on their change at younger

ages in combination with a mortality model (Mathers and Ho 2014; Missov et al. 2016;

UN DESA/Population Division 1982, 2017; Wilmoth et al. 2007). The World Health

Organization (WHO) (Mathers and Ho 2014) used to extrapolate the death rates above

the age of 85 by assuming a logistic mortality model. The United Nations (UN DESA/

Population Division 1982) construct life tables for developing countries by fitting the

Gompertz-Makeham model at younger ages and closing at age 85+. The Human

Mortality Database (HMD) (Wilmoth et al. 2007) also corrects the original data at ages

80+. Extrapolation does not assume population stationarity or any other population

model. Such extrapolation, however, ignores the original empirical data pertaining to

the open age interval. Furthermore, as we demonstrate in this paper, the extrapolation

method tends to be less accurate in terms of life expectancy than the other methods

considered here.

Two other alternatives to the classical approach also work with the open age interval,

just like the classical method, but relax the stationarity assumption presumed in (1).

Indeed, populations are rarely stationary. Improving survival and changing fertility and

immigration modify the population age composition. Growing populations are typically

of younger age composition, with more weight on younger ages with lower mortality

(Preston et al. 2001); their death rate in the open age interval is lower than in a

stationary population with similar mortality. As a result, the classical method is prone

to overestimating life expectancies for such populations. To account for effects of

population growth, Horiuchi and Coale (1982) assumed the stable population model

(Preston et al. 2001) with the Gompertzian mortality (Gompertz 1825; Heligman and

Pollard 1980) to develop the following formula:

ea ¼ Maþ−1e−βarMaþ−αa ð2Þ

Here, r is the annual growth rate of the population in the open age interval and αa
and βa are the model parameters (for numerical values, see Horiuchi and Coale 1982

or Ediev 2017).
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Adjustment (2) was challenged by Mitra (1984, 1985) who also assumed population

stability and derived a closed form solution:

ea ¼ Maþ−1e−r Maþ−1− 1þrMaþ−1ð Þ x−að Þ½ �; ð3Þ

where x stands for the mean age of the population in the open age interval. Mitra’s ap-

proach was, however, criticized for being prone to biases due to age exaggeration

(Coale 1985). Indeed, having age exaggeration as a problem in the first place, one

would cautiously use the empirical mean population age x in an adjustment procedure.

Partly because the discussion between Horiuchi-Coale and Mitra was never resolved,

but also due to the strong assumptions used in both approaches, their methods have

not made it to a wider practical use by demographers and population statisticians.

Two developments since the time of discussion between Horiuchi-Coale and Mitra

call for revisiting their results. First, the empirical basis for mortality studies and com-

putational resources has advanced substantially, as it is reflected in the rich collection

of high-quality data in the HMD (2017). Second, life expectancy in many countries has

systematically advanced since 1980. On the one hand, better survival to old age boosts

the importance of the open age interval for life table estimates. On the other hand,

higher (and improving) life expectancies call for testing if the old methodology works

well on current data. Our paper is a response to these needs and introduces some use-

ful modifications to the original adjustment formulas. We also aim at reconciling the

dispute between Horiuchi-Coale and Mitra and combining alternative methods for a

better outcome.

Testing the models of expectation of life at old age on empirical data
To examine the biases in estimated life expectancy for selected estimation methods at

different open age intervals, we use all period life tables, single-year mortality data, and

population exposures contained in the HMD (2017).1 Altogether, the database contains

4436 country-calendar years for each gender (males, females, total), for 46 countries/

populations, spanning over the years 1751 to 2014 and life expectancies at birth from

16.7 to 86.4 years. For each of the 3 × 4436 database entries, we recalculate its life table

assuming alternative open age intervals (the threshold age a spanning from 55 to

95 years) and various estimation methods.

For each open age interval, we calculate the aggregated death rate for the open age

interval using the death rates and population exposures from the HMD:

Maþ ¼
Pω

x¼aMxPxPω
x¼aPx

ð4Þ

Here, Mx and Px are the HMD death rate and the population exposure at age x, re-

spectively, and ω is the maximum attainable age group (110+ in HMD). After obtaining

the death rate for the open age interval, we apply alternative life table methods and

compare the results to the life table that is based on the full age scale spanning up to

the age 110+.

First, we apply the classical life table method (1) and use estimates (4) and the death

rates at ages below age a to calculate a new “truncated” life table for each HMD entry.

Life expectancy from the truncated life table is compared to life expectancy from the

full life table, where the “full” life table stands for the life table with the maximum
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possible a = 110. The difference between the two gives the estimation error in the

classical life table method due to the truncation of the data at the selected open

age interval.

In a similar fashion, we examine the estimation errors in the methods of

Horiuchi-Coale (2) and Mitra (3) and in the extrapolation method where death

rates are extrapolated into the open age interval based on their rate of increase at

younger age. We improved the stability of the Horiuchi-Coale and Mitra formulas

by using the population growth rates averaged over 10-year periods prior to the es-

timation year. If we used the annual rates (results not presented here), the adjusted

life expectancies would contain more outliers, especially in the Mitra method. For

extrapolations, we use the Gompertz model (Doray 2008; Gompertz 1825) where

the force of mortality increases exponentially with age. After some experimentation,

we opt for the marginally better extrapolation without jump of the death rate at

age a, with parameters fit on 20-years-of-age-long age intervals below the open age

interval. This extrapolation is close to the common practices for low-quality data

cases. The Gompertz model is also useful as a bridge to the work by Horiuchi-

Coale who relied on the model in developing their own method.

Comparative results for estimation errors of life expectancy at birth and age a in all

methods are presented in Figs. 1 and 2 and Table 1. The table contains root-mean

squared error (RMSE) of the life expectancy at birth and percentage RMSEs of the life

expectancy at age a at open age intervals 55+, 65+, 75+, 85+, and 95+, for female, male,

and total populations. Figures 1 and 2 present comparative results for estimation errors

of the life expectancy at birth in female populations and open age intervals, 75+ and 85+,

respectively. Plots in the main diagonal of each figure present boxplots of estimation

errors of each of the methods as a function of the life expectancy at birth in the full life

table. Scatterplots above the main diagonal allow comparing the errors in pairs of the

methods. Boxplots below the main diagonal present distributions of the percentage

differences in absolute errors between the pairs of the methods as functions of life

expectancy at birth from the full life table, in percent of the higher absolute error:

Perc:Diff : ¼ abs err1ð Þ−abs err2ð Þ
MAX abs err1ð Þ; abs err2ð Þð Þ : ð5Þ

The percentage difference (5) tends to 100% when the first of the methods compared

shows much greater errors as compared to the second; it tends to − 100% in the oppos-

ite case when the second method performs much worse; it equals zero when the two

methods show similar absolute estimation errors.

The estimation errors in the classical method are predominantly positive because of

the worldwide growth of the elderly population in the course of demographic transi-

tion, which produced population age structures younger (of lower mortality) than the

structure of stationary populations assumed in the method. The biases were relatively

small (yet, quite substantial) for periods with shorter life expectancy at birth and soared

to high levels as life expectancy grew. This comes well in agreement with the formal

derivations by Horiuchi-Coale and Mitra. Currently, closing the life table at age 65,

both sexes combined, would produce an upward bias in life expectancy at birth as high

as 10 years in some countries and more than 2.5 years in many other cases. These
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Fig. 1 Estimation errors in life expectancy at birth obtained by methods: the classical method (“Clas.”),
extrapolation based on 20-years-long age base (“Extr.”), Horiuchi-Coale method (“H.-C.”), and Mitra method
(“M.”). The main diagonal (plots a–d): boxplots, as a function of life expectancy at birth, of estimation errors
in each of the methods; above the diagonal (plots e–j): scatterplots of errors in pairs of methods as indicated at
axes of the plots; below the diagonal (plots k–p): boxplots, as a function of life expectancy at birth, of percentage
differences of absolute errors (5) of pairs of methods as indicated at vertical axes. Female populations, open age
interval set at 75+

Fig. 2 Estimation errors in life expectancy at birth obtained by methods: the classical method (“Clas.”),
extrapolation based on 20-years-long age base (“Extr.”), Horiuchi-Coale method (“H.-C.”), and Mitra method
(“M.”). The main diagonal (panels a–d): boxplots, as a function of life expectancy at birth, of estimation errors
in each of the methods; above the diagonal (plots e–j): scatterplots of errors in pairs of methods as indicated at
axes of the plots; below the diagonal (plots k–p): boxplots, as a function of life expectancy at birth, of percentage
differences of absolute errors (5) of pairs of methods as indicated at vertical axes. Female populations, open age
interval 85+
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errors, with the secular trend of life expectancy increasing by about 2 years per decade

(Oeppen and Vaupel 2002; White 2002), correspond to gains of life expectancy over

12–50 years. If data permits closing the life table at age 75 or 85, the estimation errors

are down to under 4 or 0.75 years, respectively. Closing the life tables at age 95 yields

only minor errors in e0, while closing at age 55 drives the errors to unacceptably high

levels. The errors are generally higher when considering only the female populations or

both sexes together.

In Table 1, we also show the estimation errors in life expectancy ea at the beginning

of the open age interval as a percent of the life expectancy from the corresponding full

life table. Our interest in this kind of estimation errors is driven by the usual practice

in population projections, where the population of the open age interval is projected

on the basis of the life table death rate for that age group (Preston et al. 2001). The life

table death rate in the open age interval is related to the life expectancy through exactly

the same equation (1) as in the classical method. Therefore, the relative error in

remaining life expectancy ea obtained from the classical method shows the relative dif-

ference between the actual population death rate for the open age interval and the cor-

responding life table rate. Hence, the relative errors shown in Table 1 indicate that

substituting the actual population change in the open age interval by its estimate, based

on the life table death rate, may lead to annual downward biases of dozens of percent

in the numbers of deaths in the open age interval.

The extrapolation method, surprisingly, does not improve over the classical method

in terms of bias and is rather unstable at open age intervals starting at younger age.

Only in cases with high life expectancy and later onset of the open age interval does it

systematically outperform the classical method (Fig. 2, plot k). Note that we used the

Gompertz model that assumes exponential growth of the death rates as a function of

age. If we used a more optimistic logistic-type model (e.g., the Kannisto model

(Thatcher et al. 1998) fits better the pattern of mortality deceleration at oldest old age

and is used by the WHO and the HMD), the upward biases in life expectancy estimates

would be even higher.

The Horiuchi-Coale formula provides a remarkable improvement in terms of estima-

tion errors over both the classical and the extrapolation methods at all levels of life ex-

pectancy (Table 1, Figs. 1 and 2, plots f, h, l, m), although the parameters for the

formula were estimated back in the 1980s. The vast reduction of estimation errors,

after applying the adjustment, indicates that the method is rather robust to violations

of its underlying assumptions (the Gompertzian death rates and stable population age

structure). Table 1 also includes results for the Horiuchi-Coale formula where we kept

the original values for the parameter αa but re-estimated the other parameter βa based

on our database (“H.-C. (hmd)” columns of Table 1; see Ediev 2017 for the parameter’s

values). Updating the model parameters to the more complete HMD provides only a

marginal improvement in terms of root-mean squared error (RMSE). Yet, the method’s

RMSEs may perhaps be further reduced by fitting the model to more homogeneous

data (to groups of populations with similar mortality dynamics and growth histories).

The Mitra formula is generally more accurate than the Horiuchi-Coale method

(Table 1, Figs. 1 and 2, plot p), except for female life tables with low values of the life

expectancy at birth. However, the method appears to be prone to producing outliers,

especially overestimates of life expectancy (Figs. 1 and 2, plots d, g, i, j). The Mitra
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formula involves the population mean age in the open age interval, x, an indicator easy

to calculate for populations with good-quality data, such as the HMD populations, but

problematic for populations with age exaggeration. Hence, we checked if the formula

remains accurate after substituting x by its prediction based on the regression involving

the growth rate and the observed death rate:

x ¼ C þ k1Maþ−1 þ k2rMaþ−1 ð6Þ

(Ediev 2017). Results for the Mitra formula with the approximate mean age (6) are

shown in Table 1, in the “Mitra (regr.)” columns. Substituting the true mean age by its

indirect estimate only marginally increases RMSEs. Even based on indirect mean age

estimates, the method remains more accurate (but also more prone to producing out-

liers) than the Horiuchi-Coale method. The differences between the two methods, how-

ever, are minor as compared to the errors in the classical method. A closer inspection

of cases where the Mitra method produces outlier estimates shows that it is the sensi-

tivity of the method to the population growth rate that makes it unstable. Apparently,

the quadratic (with respect to r) term in (3) causes the method to produce strong over-

estimates of the life expectancy in cases with strong population growth or decline and

when the population stability assumption is violated.

In all methods, errors tend to increase as life expectancy grows. Interestingly, all

methods tend to err more often to the positive side, i.e., they overestimate life expect-

ancy, although the non-classical methods are free from the classical method’s sources

of error that is nested in the stationarity assumption. The reasons for the positive errors

are different among the methods. The extrapolation method produces positive or

negative errors depending on whether the death rates increase steeply above or below

the minimal age of the open age interval. Mortality acceleration at younger old ages

(Horiuchi and Wilmoth 1997;Horiuchi 1997), which is more typical in female popula-

tions, explains positive biases in the extrapolation method. At the same time, mortality

deceleration at older ages (Horiuchi and Wilmoth 1997, 1998; Horiuchi et al. 2003)

may explain somewhat more prevalent negative biases of the extrapolation method at

the open age interval 85+ and the tendency of the method to produce negative errors

for the open age interval 95+ (results not shown here). The Horiuchi-Coale and Mitra

methods tend to produce positive errors, because protracted periods of mortality de-

cline at old age, as observed in many countries, and produce population age structures

even younger than the stable populations assumed in the two methods (Ediev 2014;

Guillot 2003; Horiuchi and Preston 1988). The Mitra method, additionally, tends to

overestimate the true life expectancy because of the aforementioned instability of the

method in cases of strong population change.

The tendency of both the classical and the Mitra estimates to exaggerate the life ex-

pectancy suggests a novel combined approach when the life expectancy estimate is ob-

tained as the minimum of the two estimates:

ea ¼ MIN ea
Clas:; ea

M:
� � ð7Þ

Here, upperscripts “Clas.” and “M.” refer to the classical and Mitra estimates. Estima-

tion errors of life expectancy at birth in the combined method (7), also in comparison

to single estimation methods, are presented in Fig. 3. Taking the minimum of the two

estimates helps avoid the outlier estimates of the Mitra method (compare the boxplots
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in the first column in Fig. 3 at a = 75 and a = 85 to the boxplots “d” in Figs. 1 and 2 for

the Mitra method). At the same time, the combined method performs, in most of the

cases, as good as the Mitra method (column 5 in Fig. 3) and outperforms all other

single-method alternatives (columns 2–4 in Fig. 3).

Our above results show that both the Horiuchi-Coale and Mitra formulas perform

well in reducing life expectancy estimation errors caused by aggregating data for the

open age interval. The Mitra method is marginally more accurate but less stable. Its re-

liance on the possibly exaggerated mean population age may be overcome by using the

indirect estimates of the mean age (6). Both methods are by far superior to the classical

and the extrapolation methods. It is rather surprising that the authors of these two

methods came up with contradicting results in their papers.

A closer examination of the original papers, however, shows that a large part of the

numerical differences between Horiuchi-Coale and Mitra were, in fact, due to different

inputs used in their calculations rather than methodological differences. In particular,

the largest discrepancy in the original papers was for e65 for El Salvador in 1961:

Mitra’s estimates were larger 3.12 years for women and 3.02 years for men. When

we recalculated the life expectancies using similar inputs in both approaches

(Mitra 1984, pp. 11–12), we found that the two approaches are more consistent:

Mitra’s formula gives estimates by 1.69 and 1.27 years larger, respectively. After

our recalculation, the estimates become closer also for Canada, Japan, Switzerland, UK,

Mexico, and Malaysia. Altogether, the two methods differ by more than 1 year in only two

cases, El Salvador and Puerto Rico, out of 13. If one takes into account that the Mitra

method was relying on potentially biased official estimates of the mean popula-

tion age in the open age interval, it becomes clear that the authors were more

consistent than they concluded.

Fig. 3 Boxplots of estimation errors in life expectancy at birth obtained by the combination (7) of the
classical and Mitra methods (the combined method, “Comb.”) at selected starting ages a of the open age
interval (plots in the first column). Plots in the last four columns: boxplots, as a function of life expectancy
at birth, of percentage differences of absolute errors (5) of the combined method and single methods as
indicated at the vertical axes. Female populations. Methods covered: the classical method (“Clas.”), extrapolation
method based on 20-years-long age base (“Extr.”), Horiuchi-Coale method (“H.-C.”), and Mitra method (“M”)
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Discussion
Our results show that the violation of the stationary population assumption of the

classical life table method has strong consequences for the accuracy of life expectancy

estimates. The errors in the classical method increase as mortality declines. For a cur-

rently low-mortality population, closing the life table at age 65 would produce an

HMD-average upward bias of more than 3 years and even larger RMSEs in the life

expectancy at birth calculated by the classical method. Continuing increases in life ex-

pectancy will drive the biases of the classical method to even higher levels.

The methods developed by Horiuchi-Coale and Mitra drastically reduce estimation

errors in the expectation of life as compared to both the classical and the extrapolation

methods. Wider usage of these methods should be encouraged for populations where

data on old-age mortality are missing (for example, due to small population size) or

corrupted by age exaggeration or age misreporting in general. Although estimation

errors of all methods increased as life expectancy grew for HMD populations, the com-

parative advantage of the Horiuchi-Coale and Mitra methods has only strengthened

over time. Among the methods considered, the Horiuchi-Coale method may be pre-

ferred as being close to the best (on average) estimates provided by the Mitra formula

but being more stable. Even better results, however, may be obtained by considering

several alternative methods and selecting the most reasonable estimate (see the

combined method (7) for an example).

A wider usage of the Horiuchi-Coale and Mitra methods in demographic analysis

may be facilitated by their perfect fit to a number of popular indirect demographic

methods. The Brass Growth Balance method, the Preston and Coale method, the

Hill Generalized Growth Balance method, and the Bennett and Horiuchi Synthetic

Extinct Generations method all involve estimates of the population growth rate

(Moultrie et al. 2013; United Nations 1983). These methods provide ready inputs

for the Horiuchi-Coale and Mitra formulas.

The method of extrapolating the death rates into the open age interval does not ap-

pear to be a good alternative to the classical method. The WHO and the HMD use an

S-shaped model for extrapolating the death rates as alternative to the J-shaped

Gompertz model used here. Indeed, logistic-type models were shown to better fit the

deceleration of mortality at oldest old ages (Missov et al. 2016; Thatcher et al. 1998).

However, our results for the younger open age intervals, where all mortality models fit

closely to each other, suggest that the conclusion about the inferiority of extrapolation

to the Horiuchi-Coale and Mitra methods is, in general, applicable to any mortality

models other than the Gompertz model. In fact, a logistic-type model might even ac-

centuate the upward biases in life expectancy estimates. In many applications, however,

it is important to extend the age profile of the death rates into the open age interval.

Although our results discourage from using the popular extrapolations, one may com-

bine the more accurate adjusted estimate of life expectancy ea with the extrapolation

model by constraining the parameters of the latter to fit the life expectancy estimate

(Ediev 2017). Another area for further work is the study of estimation errors in non-

parametric methods for the open age interval not considered here (Camarda 2012;

Currie et al. 2004; de Beer 2012; Kostaki and Panousis,2001; Rizzi et al. 2015).

As an important consequence of the discrepancy between the actual death rate and

life expectancy for the open age interval, the traditional approach of projecting the
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population in the open age interval (Preston et al. 2001) may lead to overestimates by

dozens of percent of deaths in the open age interval. The adjustment formulas consid-

ered here as well as related conditioned extrapolations of the death rates may be used

to compensate for this projection bias.

One may further improve life expectancy estimates by fitting the models on popula-

tions with closer history of growth and mortality reduction (e.g., of regions of a given

country). Another direction of improvement might be considering population models

more advanced than the stable population. For example, one may consider effects

of the changing growth rate and mortality on the population age composition

(Brouard 1986; Ediev 2014; Guillot 2003; Horiuchi and Preston, 1988). Results for

the method combining the classical estimates with the Mitra method also suggest

that pooling together several methods and making use of expert judgment about

the likely direction of estimation biases may help reducing the estimation errors

and stabilizing the estimation results in particular country cases.

Endnote
1HMD modifies (smooths and extrapolates) the original data at some ages above

age 80 using the logistic model. This might have distorted our findings for the

highest open age intervals, especially for the extrapolation method. Yet, after re-

running our calculations on the raw, not modified, death rates also provided in the

HMD, we came to results similar to those presented in this paper. Root-mean

squared error (RMSE) obtained on raw data differ only in the second digit after

comma from the RMSEs presented in Table 1 for all methods, except for the ex-

trapolation. Even for the extrapolation method, there was only one case when

RMSE based on the raw data differed in the first digit after comma from the re-

sults presented in Table 1 and was substantial in relative terms: females, life ex-

pectancy at birth range 40–50 years, a = 85 (RMSE on the smoothed death rates,

0.04; RMSE on the raw data, 0.16). Data were downloaded on 12.02.2016 and are

consistent with inputs in (Ediev 2017).
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