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A long-term goal of human evolutionary genetics has been
to infer and characterize natural selection across broad
timescales and geography. In any particular environment,
genetic variants that either increase or decrease fitness
are more likely to increase or decrease their frequency in
the next generation, compared to variants with no effect.
These changes in frequency leave distinctive patterns of
variation in the genomes of descendant populations and
can therefore be inferred indirectly from the genomes of
present-day individuals or directly from time series of
ancient genomes (1, 2). Typically, these studies are powered
to detect selection on timescales of thousands of, tens of
thousands of, or more years in the past. In the past few years,
however, very large datasets such as the UK Biobank have
enabled researchers to look for selection that is extremely
recent—on the timescale of decades—or even selection that
is ongoing. Despite the difficulties of interpreting these results
(3), such studies can potentially provide enormous insight
into human evolution, demography, and the relationship
between contemporary environment and genotype.

Environment Drives Genotype Frequencies

Along these lines, in PNAS, Wu et al. (4) describe an
approach to identify genetic variants associated with
increased fitness. The technique that they use is a geo-
graphically based “regional genome-wide association
study” (GWAS) (5) that tests for association between an
individual’s genotype and the infant mortality rate (IMR)
for the time and place of that individual’s birth. It is worth
thinking about why this approach, which inverts the stan-
dard GWAS interpretation, should work. In a standard
GWAS, generally conducted in a large sample of unrelated
individuals, inherited genetic variants are associated (i.e.,
correlated) with a particular phenotype (for example, a dis-
ease). Since genotype is assigned at conception and cannot
be modified by phenotype, in principle these associations
represent causal effects of genotype on phenotype and
they are typically interpreted as such. In contrast, since Wu
et al. are testing for the association between individual
genotype and environment, the interpretation of causality
is in the other direction; environment drives genotype fre-
quencies. Specifically, Wu et al. argue that genetic variants
that are more common than expected in “poor” environ-
ments (represented by high IMR in the year of birth) are
common because they provide some fitness advantage in
those environments; that is, they are under natural selec-
tion. Wu et al. identify two loci—LCT and TLR1/6/10—as
having experienced selection. These loci, which are associ-
ated with adult lactase persistence and immune function,
respectively, are known targets of selection in the past
8,000 y (6). Indeed, LCT exhibits the strongest known signal

of selection in the entire human genome. The authors also
find significant genetic correlations with polygenic traits
that may have also been associated with fitness.

A Challenging Study Design

The Achilles’ heel of the standard GWAS approach is popu-
lation stratification. All human populations, including the
UK Biobank cohort (5, 7), show some degree of structure.
The most obvious example is geographic structure—due
to nonrandom mating based on geography, some genetic
variants are more common in some parts of the country
than others. If the phenotype being tested also varies geo-
graphically, then some of those variants may be associated
with it, simply by chance. Other types of nonrandom mat-
ing, for example, based on social structure or phenotype,
have a similar effect. Similarly, the frequency of genetic
variants may change over time due to genetic drift, demo-
graphic processes, or sampling biases. Such variants would
then be associated with phenotypes that change over time
for any reason. Very large GWAS may exacerbate the prob-
lem by providing statistical power to pick up even very
modest stratification due to recent demographic history
(8). Of course, this problem is well known, and correction
for population structure is a standard part of any GWAS
pipeline. Common approaches include the use of genomic
control (GC) (9), inclusion of principal components (PCs) of
genome-wide data as covariates in the linear regression
model (10), or the use of a mixed model where one of the
error terms has a covariance structure equal to the kinship
matrix of the individuals in the study (11). However, none
of these methods is perfect. Analyses that combine infor-
mation across many variants, for example, polygenic
scores, genetic correlations, and tests for polygenic selec-
tion, are particularly sensitive to residual population strati-
fication in even relatively well-controlled GWAS (7, 12, 13).
It is important to realize that no correction can be guaran-
teed to remove the effects of stratification completely;
rather, we can only hope that it has been reduced to an
acceptable level.
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The study design of Wu et al. (4) is vulnerable to the
same issue. Since IMR varies dramatically across space
and time, genetic variants that are geographically or
temporally structured may be associated with it despite
there being no causal relationship. The authors are
aware of this and go to great lengths to correct for strati-
fication. They apply GC, PCs, and mixed model correc-
tions, as well as testing robustness of their results to
inclusion of linear effects of educational attainment and
household income. It is difficult to see what more could
be done in a GWAS context. Yet, at the same time, it is
impossible to be certain that all stratification has been
removed. The two genome-wide significant loci in the
study are two of the most significantly geographically
structured loci across regions of Britain in the entire
genome (14). Similarly, educational attainment, which is
the trait with the largest genetic correlation with IMR, is
highly stratified in the UK Biobank even after adjustment
for 40 principal components (7). These observations
immediately raise the prospect of uncontrolled stratifica-
tion, despite the authors’ best efforts. Of
course, one could make the counterargu-
ment that this is exactly what one would
expect. These loci are geographically struc-
tured precisely because of historical selec-
tion. We know, therefore, that they can
affect fitness under certain conditions and
so it should come as no surprise to find that
they affect fitness in more recent times.
Whether we think that geographic structure
is leading to spurious signals of selection or that recent
selection is creating geographic structure comes down to
whether we believe the controls for stratification in the
GWAS are good enough. But this is difficult or impossible to
know.

Other effects also complicate the interpretation of these
results. One is assortative mating, which refers to the fact
that individuals do not choose partners at random but
rather often based on proximity along environmental
strata patterned by geography, education, income, religion,
ethnicity and family circumstances (15). This induces strati-
fication directly related to environment. Second is the
issue of nonrandom participation in the UK Biobank, with
a recent GWAS demonstrating that, beyond mortality
selection and survival, the inclination to participate in the
UK Biobank is associated with educational attainment,
body mass index (BMI), and participation in a dietary study
(16). Finally, GWAS results may also contain traces of indi-
rect genetic effects of the parents through untransmitted
alleles of genetic nurture, or, in other words, although the
parents do not transmit all of their alleles during meiosis,
the environment they produce still contains that genetic
nurture (17). Wu et al. (4) do acknowledge and address
some of these concerns, but, as with stratification, the
GWAS study design is fundamentally vulnerable to these
effects.

Alternative Approaches

How might we overcome these vulnerabilities? Replicat-
ing these results in other populations, even in other

northern European countries, would go a long way
toward demonstrating that they are not an artifact of
population structure in Britain. Another way forward is
to collect large-scale family-based data and conduct
family-based association tests that can properly control
for both genetic nurture and demography. In addition
to the technique the authors (4) use in this study to
parse out direct and indirect genetic effects using multi-
generational GWAS (18), sibling-based studies are
another way forward. These reveal differences in trait
outcomes by comparing biological full siblings,
regressed on differences in their genotype. A recent
large-scale study of up to ∼160,000 siblings showed that
GWAS associations overestimated direct effects across a
wide array of phenotypes, particularly nonclinical behavioral
ones (19). We know, from a growing number of studies, that,
when within-sibship effect size estimates are used, some
genetic correlations, such as between educational attain-
ment and height (19) or education and BMI (20, 21), largely
disappear.

More generally, confidence in these statistical associa-
tions would be increased if they could be placed in a
broader evolutionary context. For example, LCT exhibits
one of the strongest signals of historical natural selection
in the entire genome. Even so, the actual basis of this
selective pressure remains unclear (22, 23), although the
prevalent explanation is that it is ultimately driven by
selection for increased calcium levels. Direct data from
ancient DNA show that the frequency of the persistence
allele in Britain increased rapidly from about 4,000 y to 2,000
y before present, but has not changed substantially for the
last 2,000 y (24), indicating a lack of consistent selective pres-
sure for most of that time. Could such a pressure nonethe-
less have existed for a few years in the middle of the 20th
century? Perhaps, and, if so, understanding why might con-
tribute greatly to our understanding of historical selective
pressures. However, given the statistical limitations of the
approach, the lack of a convincing biological basis or evolu-
tionary explanation for the observations raises doubts.
Fortunately, studying the environmental drivers of near-
contemporary selection is much more achievable than for
ancient selection, so the question may not be completely
intractable.

The Limits of GWAS

So, does the Wu et al. (4) study provide evidence of
recent natural selection? Does it, as the authors claim,
“directly estimate the shift of allele frequencies in less
favorable environments”? The study design is innova-
tive and perhaps at the limits of what one could achieve

In PNAS, Wu et al. describe an approach to identify
genetic variants associated with increased fitness. The
technique that they use is a geographically based
“regional genome-wide association study” (GWAS)
that tests for association between an individual’s
genotype and the infant mortality rate (IMR) for the
time and place of that individual’s birth.

2 of 3 https://doi.org/10.1073/pnas.2203237119 pnas.org



in this area with GWAS-based design alone. However,
we find ourselves cautiously unconvinced. The results
from these types of designs alone might be positioned
more modestly as hypothesis generation rather than
definitive evidence. This approach is an exciting first
step, but it needs to be confirmed with independent
approaches that do not suffer from the same statistical
limitations, across other contexts and in cohorts out-
side of the United Kingdom. The results also need to be
situated in a broader biological and evolutionary con-
text. This study therefore illustrates the potential of

large genomic datasets to detect and quantify recent
natural selection but also highlights the fundamental
limitations and difficulty of interpretation of the GWAS
study design.
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