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Abstract: Molecular dynamics simulations of cracked nanocrystals of aluminum were performed in
order to investigate the crack length and grain boundary effects. Atomistic models of single-crystals
and bi-crystals were built considering 11 different crack lengths. Novel approaches based on fracture
mechanics concepts were proposed to predict the crack length effect on single-crystals and bi-crystals.
The results showed that the effect of the grain boundary on the fracture resistance was beneficial
increasing the fracture toughness almost four times for bi-crystals.

Keywords: fracture toughness; crack length effect; grain boundary; bi-crystals; single-crystals;
molecular dynamics simulations

1. Introduction

Recently, the development of atomistic models based on molecular dynamics sim-
ulations made possible to investigate the mechanical behavior of nanocrystals for a few
materials, such as aluminum (Al) [1–7]. The first analyses were performed to investigate
tensile mechanical properties, viz., ultimate tensile strength (SU) and young’s module
(E) [8–13]. Later, in order to study the fracture behavior, atomistic simulations of nanocrys-
tals that considered small defects, such as cracks and voids, were developed [14–21]. Based
on cracked nanocrystal simulations, it was possible to estimate fracture mechanics prop-
erties for some nanocrystal materials. To obtain fracture mechanics properties, such as
fracture toughness different fracture mechanics parameter were used to analyze results
from molecular dynamics simulations of cracked nanocrystals [22–29]. In addition, some
researchers tested the suitability of the fracture mechanics parameters to predict the frac-
ture of nanocrystals [30]. Regarding the fracture behavior of materials at the macroscale,
one challenge in fracture mechanics was to obtain an accurate model to describe the effect
of the crack length on the fracture of the components. The experiments carried out by
different authors (at the macroscale) demonstrated that when a crack was long enough
fracture mechanics parameters, such as stress intensity factor (K), J-integral (J), and crack
tip opening displacement (CTOD) were suitable to predict the fracture of cracked com-
ponents, thus the stress at the fracture (σU) was defined by the fracture toughness [31]
(Figure 1). However, the experiments showed that σU increased rapidly as the initial crack
length was smaller, but when the crack was vanishing σU tended to a fixed value which
was SU [32] (Figure 1). In order to establish when the crack was long and when it was
too small, in other words, when σU was predicted by the fracture toughness and when
it was by the SU , the characteristic crack length (l0) was defined. Crack lengths much
larger than l0 were long cracks and σU was governed by the fracture toughness, but crack
lengths much smaller than l0 were small cracks and the σU was defined by SU . This crack
length effect was extensively investigated at the macroscale by Taylor [32]. A schematic
representation of the crack length effect was showed (Figure 1). However, the crack length
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effect was firstly studied for fatigue failure by Kitagawa et al. [33] and El Haddad et al. [34].
Kitagawa and Takahashi were the first researchers in defining the crack length effect by
means of a diagram (Figure 1), but it was applied for fatigue failure analysis of cracked
components [33]. In order to analyze the crack length effect in fatigue, El Haddad proposed
to modify the stress intensity factor range by adding (to the actual crack length) a constant
length that depended on the material properties [34]. Modifying slightly the crack length
to calculate the stress intensity factor range, El Haddad obtained an equation that tended
to a fixed value (fatigue limit) when the actual crack length was very small, and it led to the
usual stress intensity factor range when the crack length was long enough. The El Haddad
fatigue model reproduced the Kitagawa-Takahashi diagram [33]. The same concept was
adopted and extended to quasi-static monotonic loading failure analysis of components by
Taylor in the theory of critical distances [32]. The present investigation was an attempt to
extend the same concept into the nanoscale, therefore molecular dynamics simulations of
cracked nanocrystals of Al with a wide range of crack lengths were performed in order to
study the crack length effect in single-crystals and bi-crystals of Al. The results showed the
crack length effect similar to that described above in the cracked nanocrystals. In order
to predict the crack length effect on nanocrystals two models were proposed. First, linear
elastic fracture mechanics (LEFM) concepts were used to develop an approach to predict
σU based on K. Second, due to the lack of accuracy of the LEFM model, an elastic–plastic
fracture mechanics (EPFM) model was proposed. A novel equation to estimate l0 for
nanocrystals was formulated. Finally, the effect of the grain boundary on the fracture
behavior was also investigated.
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Figure 1. Schematic representation of the crack length effect.

2. Methodology
2.1. Modeling

The molecular dynamics simulations were performed in the code LAMMPS [35]. The
atomistic system was first equilibrated using the conjugate gradient method at a pressure
of 1.01 bar and at temperature of 300 K using the isobaric–isothermal ensemble (NPT)
for 20,000 timesteps of 0.001 ps. The Nose-Hoover barostat and thermostat were imple-
mented to sustain the pressure and temperature. Once the system was equilibrated, loops
of deformation-equilibrium were performed until the global stress was close to zero in-
dicating the crystal fracture. Each deformation increment was 0.01% in z-direction with
a strain rate of 1× 10−4/ps. The length of the atomistic system in the z-direction kept
constant during the equilibrium process. The deformation-equilibrium loops were per-
formed using the NPT ensemble applying 10,000 and 20,000 timesteps for deformation and
equilibrium, respectively. The embedded atom method potential from Mendelev et al. [36]
was implemented, which have been used by other researchers in molecular dynamics
simulations of cracked nanocrystals of Al [37,38]. The simulation boxes of the cracked
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single-crystals and bi-crystals were represented in Figure 2a,b. The dimensions of the
simulation boxes were 60a× 20a× 40a (24.3× 8.1× 16.2 nm3) for both single-crystal and
bi-crystal, where the lattice parameter for Al was a = 0.405 nm. To analyze the effect of
the grain boundary, a misorientation grain boundary with tilted angle of 30◦ was consid-
ered in bi-crystal simulations. The crack height was 2.5a for all specimens, and the initial
crack lengths were li = 1a, 2a, 3a, 5a, 10a, 15a, 20a, 30a, 40a, 50a, 55a. The atomistic systems
contained approximately 195,000 particles each one. The virial stress tensor was used to
compute the global stress [39]. The stress-strain curves obtained from the simulations were
presented in Figures 3 and 4 with the corresponding initial crack length li for single-crystals
and bi-crystals, respectively. The volume of the atoms were computed using the Voronoi
tessellation in voro++ [40]. DXA [41] was used for dislocation analysis in OVITO [42].
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Figure 2. Atomistic system for (a) bi-crystal and (b) single-crystal Al.
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Figure 3. Simulation results of tensile tests for single-crystals Al with different li.
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Figure 4. Simulation results of tensile tests for bi-crystals Al with different li.

2.2. Characteristic Crack Length

The same effective crack length (l0 + li) proposed by El Haddad [34] to evaluate the
crack length effect on the fatigue limit of cracked components was used to estimate the
stress intensity factor in mode I (KI) for cracked nanocrystals of Al:

KI = f · σzz ·
√

π · (l0 + li) (1)

where σzz was assumed to be the global stress (calculated based on the virial stress tensor)
in the z-direction and f was the geometric factor for edge cracks given by [43]:

f = 0.265(1− α)4 +
0.857 + 0.265α

(1− α)3/2 (2)

where α = (l0 + li)/60a. As established in a previous investigation [44], the fracture
mechanics parameter J was found to be accurate to predict the effect of cracks on single-
crystals and bi-crystals. In the same research work different approaches were successfully
used for estimating J from molecular dynamics simulations. Therefore, in order to use J, in
this investigation, Equation (1) was rewritten as a function of J. To obtain an equivalent
expression for Equation (1) in terms of J, KI was replaced by KI =

√
(J · E′) [43], and the

following equation was obtained:

J =
f 2 · σ2

zz · π · (l0 + li)
E′

(3)

where l0 was possible to determine assuming the limiting conditions for a cracked nanocrys-
tal with a vanishing crack length undergoing σU , viz., when li → 0 and σzz = σU , thus
σU = SU and J = JC (where JC was the fracture toughness), thus:

l0 =
JC · E′

f 2 · S2
U · π

(4)

where E′ = E/(1− ν2) for plane strain and E′ = E for plane stress [43], and ν was the
Poisson’s ratio. Equation (4) showed more explicitly the dependency of l0 on the stress
state at the crack tip (plane strain or plane stress), which was not evident in the classical
formulation proposed by El Haddad [34] for fatigue failure and extended to quasi-static
monotonic loading failure by Taylor [32].
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2.3. Fracture Prediction

An expression for predicting the crack length effect on σU was obtained by replacing J
by JC and σzz by σ̄U in Equation (3), and solving the equation for σ̄U , hence:

σ̄U =

√
JC · E′

f 2 · π · (l0 + li)
(5)

where σ̄U was the predicted fracture stress. The predictions of Equation (5) were compared
with σU in Section 3 for single-crystals and bi-crystals, where σU was obtained from
molecular dynamics simulations by computing the virial stress tensor as mentioned in
Section 2.1. However, in order to generate an alternative and more accurate methodology
to predict the crack length effect, the EPFM was used by means of the parameter CTOD.
Therefore, the CTOD was estimated at the fracture (CTODU) from the simulations and
used to calculate an equivalent fracture stress (σUeq). In order to obtain σUeq, J was obtained
from CTODU(JCTOD) as [31]:

JCTOD =
σU · CTODU · π

4
(6)

where CTODU was assumed to be the distance between two selected atoms at the crack
tip just before the fracture as proposed in [44–47]. Figure 5 showed how the CTOD was
estimated from the simulations. Finally, σUeq was obtained assuming l0 = 0, and replacing
J by JCTOD and σzz by σUeq in Equation (3), thus:

σUeq =

√
JCTOD · E′
f 2 · π · li

(7)

CTOD

Figure 5. CTOD estimation.

3. Results and Discussion

JCTOD and σUeq were estimated by means of Equations (6) and (7), respectively, for
plane strain, and the results summarized in Table 1. σU and CTODU were obtained from
the simulations and also reported in Table 1. Due to the fact that the fracture toughness
was the material property suitable to predict σU for long cracks (li > l0), therefore JC
was obtained by fitting Equation (5) to the results obtained from the molecular dynamics
simulations for Al crystals with li > l0 (Figure 6a,b). To fit Equation (5) the least squares
method was implemented, and the respective JC that minimized the error was reported
in Table 2 for single-crystals and bi-crystals. On one hand, Figure 6a,b evidenced that the
obtained accuracy was poor, indicating that using only the virial stress tensor to analyze the
crack length effect was not suitable. However, Equation (5) was appropriated to reproduce
the trend of the results to reach a fixed value (SU) when the crack length was vanishing. On
the other hand, Figure 7a,b showed that using the EPFM’s parameter CTOD for estimating
σUeq by means of Equations (6) and (7) led to an accurate methodology obtaining consistent
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estimations for JC, where JC was obtained by fitting Equation (5) to the results from long
cracks (Figure 7a,b). The JC that minimized the error in Figure 7a,b were presented in
Table 3 for single-crystals and bi-crystals. Using this EPFM methodology, the obtained JC
coincided with the value reported in [44] for single-crystals. Regarding JC for bi-crystals,
the results in Figure 7b indicated two different fracture behaviors. One for crack lengths
larger than the selected grain size (li ≥ 30a) and other for crack lengths smaller than the
grain size (li < 30a). Such a behavior was not unexpected, because the grain boundary
showed significant effect on the fracture behavior of bi-crystals, while the crack tip was
behind the grain boundary (li < 30a). However, when the crack tip was beyond the
grain boundary (li ≥ 30a) the effect on the fracture behavior was irrelevant. In order to
investigate the effect of the grain boundary on the fracture behavior, Equation (5) was fitted
twice for analyzing bi-crystals. First for bi-crystals with li ≥ 30a and second for li < 30a,
as shown in Figure 7b, and the results were reported in Table 3. The obtained SU and
JC for bi-crystals with li ≥ 30a were almost the same values obtained for single-crystals,
therefore the adjusted curves coincided for single-crystals and bi-crystals with li ≥ 30a
(Figure 7a,b). The results for bi-crystals showed a substantial drop of 52% and 73% in SU
and JC, respectively, when the crack length exceeded the grain size indicating that the grain
boundary effect was beneficial for the fracture resistance, while the boundary was behind
the crack tip. The SU obtained for bi-crystals with li < 30a matched the value reported
in [48].

Table 1. Data used for estimating σ̄U and JC.

Specimen li (m) σU (GPa) CTODU (m) JCTOD (J/m2) σUeq (GPa)

Single-crystal

4.050 × 10−10 4.2700 1.349 × 10−9 0.3637 3.9434
8.100 × 10−10 3.9098 1.247 × 10−9 0.6161 3.5934
1.215 × 10−9 3.4300 1.256 × 10−9 3.3830 6.7960
2.025 × 10−9 2.9600 1.370 × 10−9 3.1852 4.9659
4.050 × 10−9 2.5600 1.407 × 10−9 2.8297 2.9978
6.075 × 10−9 2.3800 1.396 × 10−9 2.6093 2.0493
8.100 × 10−9 2.1300 1.428 × 10−9 2.3889 1.4288
1.215 × 10−8 1.7436 1.333 × 10−9 1.8252 0.6480
1.620 × 10−8 1.1619 1.222 × 10−9 1.1147 0.2297
2.025 × 10−8 0.6291 1.720 × 10−9 0.8497 0.0609
2.228 × 10−8 0.3432 1.222 × 10−9 0.3293 0.0125

Bi-crystal

4.050 × 10−10 3.5200 - - -
8.100 × 10−10 3.1800 - - -
1.215 × 10−9 3.1000 - - -
2.025 × 10−9 3.0400 5.869 × 10−9 14.0130 10.4158
4.050 × 10−9 2.8400 5.623 × 10−9 12.5421 6.3113
6.075 × 10−9 2.5500 6.222 × 10−9 12.4602 4.4782
8.100 × 10−9 2.2800 6.063 × 10−9 10.8568 3.0459
1.215 × 10−8 2.2318 2.237 × 10−9 3.9204 0.9497
1.620 × 10−8 1.3525 2.395 × 10−9 2.5440 0.3471
2.025 × 10−8 0.6654 2.174 × 10−9 1.1362 0.0704
2.228 × 10−8 0.4012 1.723 × 10−9 0.5429 0.0161

Table 2. Fracture toughness estimation based on virial stress tensor.

l0 (m) JC (J/m2) SU (GPa) Error

Single-crystal 5.97 × 10−10 1.33 6.18 5.6337
Bi-crystal 3.45 × 10−9 9.61 6.18 1.6812
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Table 3. Fracture toughness estimation based on CTOD.

l0 (m) JC (J/m2) SU (GPa) Error

Single-crystal 1.35 × 10−9 3.15 6.18 0.2400
Bi-crystal li < 30a 1.31 × 10−9 13.25 12.92 0.2348
Bi-crystal li ≥ 30a 1.53 × 10−9 3.60 6.18 0.0095
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Figure 6. Model based on the LEFM parameter KI and virial stress tensor (a) for single-crystals Al
and (b) for bi-crystals Al.
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Figure 7. Model based on the EPFM parameter CTOD (a) for single-crystals Al and (b) for bi-crystals Al.

4. Conclusions

Based on molecular dynamics simulations, the effect of the crack length was evidenced
and investigated on single-crystals and bi-crystals of Al. In addition, the effect of the grain
boundary on the fracture behavior was analyzed. The following conclusions were drawn:

• The proposed approach based on the LEFM parameter KI and the virial stress tensor
was not appropriate to describe the crack length effect, as shown in Figure 6a,b;

• The proposed approach based on the EPFM parameter CTOD demonstrated to be ac-
curate to predict the crack length effect in single-crystals and bi-crystals, as evidenced
in Figure 7a,b;
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• The effect of the grain boundary was beneficial increasing the fracture resistance, viz.,
SU and JC, as demonstrated Figure 7b.
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