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Abstract: The rapid deterioration of transplanted islets in culture is a well-established phenomenon.
We recently reported that pancreas preservation with AP39 reduces reactive oxygen species (ROS)
production and improves islet graft function. In this study, we investigated whether the addition
of AP39 to the culture medium could reduce isolated islet deterioration and improve islet function.
Isolated islets from porcine pancreata were cultured with 400 nM AP39 or without AP39 at 37 ◦C.
After culturing for 6–72 h, the islet equivalents of porcine islets in the AP39(+) group were significantly
higher than those in the AP39(−) group. The islets in the AP39(+) group exhibited significantly
decreased levels of ROS production compared to the islets in the AP39(−) group. The islets in the
AP39(+) group exhibited significantly increased mitochondrial membrane potential compared to
the islets in the AP39(−) group. A marginal number (1500 IEs) of cultured islets from each group
was then transplanted into streptozotocin-induced diabetic mice. Culturing isolated islets with
AP39 improved islet transplantation outcomes in streptozotocin-induced diabetic mice. The addition
of AP39 in culture medium reduces islet deterioration and furthers the advancements in β-cell
replacement therapy.

Keywords: AP39; hydrogen sulfide donor (H2S); reactive oxygen species (ROS); islet transplantation;
islet culture

1. Introduction

Pancreatic islet transplantation offers a minimally invasive option for treatment of
type 1 diabetes [1–5]. Culturing isolated islets before transplantation is beneficial as it
reduces exocrine contamination of transplanted tissue. Moreover, it allows time for ad-
ditional quality control testing and induction of immunosuppressive protocols, and is
advantageous for recipients living far away from transplant institutes [3,4,6,7]. The culture
of isolated islets may reduce their immunogenicity by depleting viable hematogenous
and lymphoid cells [8]. Therefore, many centers culture isolated islets before clinical
transplantation [3,4,6,7]. However, scientific evidence indicates that isolated islets de-
teriorate rapidly in culture [6,9–11] and islet reduction during culture results in lower
transplantation rates.

Hydrogen sulfide (H2S) has emerged as an important signaling molecule in vivo
and contributes to several physiological and pathological processes [12]. H2S has been
shown to exhibit anti-apoptotic, anti-inflammatory, and antioxidant effects that protect the
kidneys from warm ischemic injury [13–15] and the heart against ischemia-reperfusion
injury (IRI) [16–18]. AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl) phenoxy)decyl) triph-
enylphosphonium bromide] is a representative of a class of donors known as mitochondrial-
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targeted H2S, and is a synthetic H2S donor that consists of a mitochondria-targeting triph-
enylphosphonium motif [19]. AP39 delivers H2S into the mitochondria, where it attenuates
mitochondrial reactive oxygen species (ROS) generation and preserves mitochondrial
integrity. Moreover, AP39 can protect cells against IRI in the kidneys, brain, and my-
ocardia [20–22]. We recently reported that pancreas preservation with AP39 reduces ROS
production and improves islet graft function [23].

In this study, we investigated whether the addition of AP39 to the culture medium
could reduce the deterioration of isolated islets and improve islet function. Porcine pancre-
ata were used for experimentation. In Japan, it is illegal to divert organs harvested from
cadavers for human organ transplantation for research purposes. Therefore, it is difficult
to obtain organs for research even when the organs are for human tissue transplantation,
despite the lack of laws regulating the use of harvested tissues from cadaveric donors.
Moreover, porcine islets are expected to be used for islet xenotransplantation [24–29].

2. Materials and Methods
2.1. Procurement, Preservation, and Islet Isolation of Porcine Pancreas

Procurement, preservation, and islet isolation of porcine pancreas were performed as
previously described [5,29,30]. Briefly, porcine pancreata (three years old; female animal)
were obtained from a local slaughterhouse. The local slaughterhouse removed the animal’s
blood and separated the porcine body and abdominal organs including the pancreas (ap-
proximately 10 min), and we started the procurement (approximately 7 min). A catheter
was inserted into the main pancreatic duct and 1 mL/g of pancreas weight of modified
extracellular-type trehalose-containing Kyoto (MK) solution (ETK solution (Otsuka Phar-
maceutical Factory, Naruto, Japan) with ulinastatin), was infused through the intraductal
cannula (approximately 11 min) [30]. The pancreata were stored in MK solution at 4 ◦C for
approximately 18 h. Operation time was defined as the time elapsed between the start of
the operation and the removal of the pancreas. Warm ischemic time (WIT) was defined as
the time elapsed between the removal of the animal’s blood and placement of the pancreas
into the preservation solution (approximately 10 + 7 + 11 = 28 min). Cold ischemic time
(CIT) was defined as the time elapsed between the placement of the pancreas into the
preservation solution and the start of islet isolation. Porcine islet isolation was performed
as previously described [1,2,23,31–34].

2.2. Culture of Isolated Porcine Islets

Isolated porcine islets were divided and incubated with Connaught Medical Research
Laboratories (CMRL) 1066 (Sigma-Aldrich Japan, Tokyo, Japan) medium supplemented
with insulin (10 mg/L), transferrin (5.5 mg/mL), selenium (0.0067 mg/mL) solution (ITS-
G solution; Thermo Fisher Scientific, Tokyo, Japan), and 0.5% human serum albumin
(Sigma-Aldrich, Tokyo, Japan) for 6, 24, 48, and 72 h with 400 nM AP39 or without AP39
in an incubator set at 37 ◦C under 5% CO2 and 95% air. The concentration of AP39 was
determined based on our previous data [23].

2.3. Islet Evaluation

Dithizone (DTZ; 3 mg/mL, final concentration: Sigma-Aldrich, Tokyo, Japan) staining
and double fluorescein diacetate/propidium iodide (FDA/PI; Sigma-Aldrich, Tokyo, Japan)
staining were performed as previously described [29,35–37]. The rudimentary number
of islets in each diameter class was determined by counting the islets after DTZ staining
using an optical graticule. This number was then converted to the standard number of islet
equivalents (IEs; diameter standardized to 150 µm) [35]. Both evaluations were performed
in a blinded manner by two evaluators.

Gross morphology (score) was qualitatively assessed by two independent investigators
scoring the islets for shape (flat vs. spherical), border (irregular vs. well-rounded), integrity
(fragmented vs. solid or compact), uniformity of staining (not uniform vs. perfectly
uniform), and diameter (least desirable: all cells < 100 µm; most desirable: more than
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10% of the cells >200 µm) [29]. Each parameter was graded from zero to two with zero
being the worst and two the best score, so that the worst islet preparations were given
a cumulative score of zero and the best a score of ten. Spherical, well-rounded, solid or
compact, uniformly stained, and large islets were characterized as the best [29].

2.4. Annexin V/PI Staining

Islet viability was assessed after separation of islet cells using FACSAria (n = 6 each,
from 6 islet isolations). A total of 1000 IEs per group were separated using Accutase
(Innovative Cell Technologies), and fluorescent annexin V/PI staining was performed
as previously described [29]. Briefly, single cells were incubated for 15 min at room
temperature in 100 µL of Annexin V Incubation Reagent (10 µL of 10× Binding Buffer,
10 µL of PI, 1 µL of TACSTM Annexin V-FITC, and 79 µL of distilled water; TACSTM Annexin
V-FITC kit; Trevigen, Gaithersburg, MD, USA). A total of 10,000 cells were analyzed using
FACSAria (Becton Dickinson, Franklin Lakes, NJ, USA). Cells were not gated for live cells
because we evaluated apoptotic and necrotic cells together with live cells in this experiment.

2.5. In Vitro Assessment

ROS production and mitochondrial membrane permeability were evaluated as pre-
viously described [23]. Briefly, cellular ROS production was assessed by staining the
dissociated islet cells with 10 µM dihydrorhodamine-123 (DHR-123; Thermo Fisher Scien-
tific K.K., Tokyo, Japan). We dispersed 1000 IEs of the cultured islets (24 h) in each group
into single cells following treatment with Accutase (Innovative Cell Technologies, La Jolla,
CA, USA) at 37 ◦C for 15 min. After two washes with phosphate-buffered saline (PBS)
supplemented with 3% fetal bovine serum (FBS), single cells were incubated in 10 µM
DHR-123 for 15 min at room temperature.

Mitochondrial membrane permeability and proton pumping was assessed by staining
the dissociated islet cells with 5 µM JC-1 dye (Thermo Fisher Scientific K.K., Tokyo, Japan).
We dispersed 1000 IEs of cultured islets (24 h) in each group into single cells following
treatment with Accutase at 37 ◦C for 15 min. After two washes with PBS supplemented with
3% FBS, the single cells were incubated with 5 µM JC-1 dye for 15 min at room temperature.

To measure the production of adenosine triphosphate (ATP), the cultured islets (24 h;
10 IEs) in each group were washed twice with PBS at 4 ◦C and solubilized. The amount
of ATP was measured using an ATP assay system (Toyo Ink, Tokyo, Japan), according
to the manufacturer’s instructions. Briefly, after incubating at room temperature, 100 µL
reagent was added to 10 µL of the cell extract. The samples were then measured using
a luminometer.

Islet function was assessed by monitoring insulin secretion from the purified islets
following glucose stimulation, according to the procedure described by Shapiro et al. [1].
Briefly, 1200 IEs of the cultured islets (24 h) in each group were preincubated with Roswell
Park Memorial Institute 1640 (RPMI 1640; Sigma-Aldrich, Tokyo, Japan) medium, contain-
ing 2.8 mM glucose for 1 h in an incubator set at 37 ◦C and 5% CO2. The islets were then
incubated with either 2.8 mM or 25 mM of glucose in RPMI 1640 for 2 h. The supernatant
was collected, and insulin levels were determined using a commercially available enzyme-
linked immunosorbent assay (ELISA) kit (ALPCO Insulin ELISA kit; ALPO Diagnostics,
Windham, NH, USA). The stimulation index was calculated as the ratio of insulin released
from the islets during stimulation with a high glucose concentration to insulin released
during stimulation with a low glucose concentration. The islets were then sonicated in
distilled water to determine intracellular insulin and intracellular total protein content, as
previously described [38].

2.6. In Vivo Assessment

Isolated islets were incubated with 400 nM AP39 or without AP39 for 6 h. A to-
tal of 1500 IEs of cultured islets were processed for transplantation. In a preliminary
study, approximately 70% of mice were normoglycemic after transplantation of 2000 IEs of
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6 h cultured islets (without AP39). Approximately 40% were normoglycemic after trans-
plantation of 1750 IEs, and less than 5% were normoglycemic after transplantation of
1500 IEs. Therefore, 1500 IEs of 6 h cultured islets were processed for transplantation into
each group. Diabetes induction by streptozotocin, and transplantation into diabetic or se-
vere combined immunodeficient (SCID) mice (six weeks old; male mice: Charles River Lab-
oratories Japan, Inc., Kanagawa, Japan) were performed as previously described [25,28,35].
Hyperglycemia was defined as a glucose level of >350 mg/dL detected twice consecutively
after STZ injection. Normoglycemia was defined when two consecutive blood glucose
level measurements showed less than 200 mg/dL. The kidney implanted porcine islets
were removed 30 days post-transplantation. All animal studies were approved by the
Institutional Animal Care and Use Committee of the University of the Ryukyus.

2.7. Statistical Analysis

All data are expressed as mean ± standard error (SE). Microsoft Excel was used to
perform Student’s t-test to compare two samples from independent groups. The differences
in the duration of graft survival between the groups were evaluated using the Kaplan–Meier
log-rank test and StatView software. Statistical significance was set at p < 0.05.

3. Results
3.1. Culture of Isolated Islets with AP39

We evaluated the effects of AP39 on pancreatic islets in culture. Porcine islets were
isolated (n = 6) and pancreas tissues and isolated islets were characterized to make sure that
adequate quality islets were used in this study, as shown in Tables 1 and 2. Porcine islets
were then cultured with 400 nM AP39 or without AP39 at 37 ◦C for 24 h. AP39(−) porcine
islets displayed greater reduction in size (islet equivalents) compared to the AP39(+) group
(Figure 1). To investigate whether AP39 could prevent islet reduction during culturing, the
IE after culturing for 6, 24, 48, and 72 h was compared between the two groups. The IE of
islets cultured with 400 nM AP39 (n = 6) was significantly higher than that without AP39
(n = 6) (Figure 2a), suggesting that AP39 prevented the decline in the number of porcine
islets during culture.

Table 1. The characteristics of the tissue and procedures.

Characteristic n = 6

Pancreas size (g) 105.8 ± 7.0
Operation time (min) 7.2 ± 1.1

Warm ischemic time (min) 28.2 ± 1.1
Cold ischemic time (min) 1114.2 ± 13.9

Phase I period (min) 11.0 ± 0.4
Phase II period (min) 38.8 ± 4.0
Undigested tissue (g) 8.8 ± 1.7

The data are expressed as the mean ± SE.

Table 2. The islet characteristics.

Characteristic n = 6

IE before purification 544,440 ± 89,511
IE after purification 458,933 ± 96,123
Embedded islets (%) 11.5 ± 3.3

Viability (%) 96.6 ± 0.4
Purity (%) 57.3 ± 4.4

Post-purification recovery (%) 1 82.2 ± 5.5
Score 9.4 ± 0.1

The data are expressed as the mean ± SE. 1 Post-purification recovery (%) = IE after purification/IE before
purification × 100.
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Figure 1. Culture of isolated islets with AP39. (a) Culture of isolated islets without AP39. Porcine
islets were incubated without AP39 at 37 ◦C for 24 h. (b) Culture of isolated islets with AP39. Porcine
islets were incubated with 400 nM AP39 at 37 ◦C for 24 h. Scale bars = 200 µm.

Figure 2. Effect of AP39 on cultured porcine islets. (a) Number of porcine islets after culture.
2000 IEs of porcine islets were cultured with 400 nM AP39 or without AP39 for 72 h. After 6, 24, 48,
and 72 h of culturing with or without AP39, the islets were counted to calculate the IE (n = 6 each).
(b,c) Annexin V/propidium iodide (FDA/PI) staining of 24 h cultured islets. We dispersed 1000 total
IEs of cultured islets with or without AP39 into single cells using Accutase and then incubated the
single cells with FITC-annexin-V (b) and PI (c). AP39(−) group: n = 6; AP39(+) group: n = 6. Data are
expressed as the mean ± SE. ** p < 0.01.

3.2. Annexin V/PI Staining

To examine whether AP39 prevents islet apoptosis and/or necrosis, Annexin V and PI
assays were performed. Annexin V staining detects early apoptosis whereas PI staining can
be used to identify late apoptotic or necrotic cells. Approximately 1000 IEs of 24 h cultured
islets, with 400 nM AP39 or without AP39, were dispersed using Accutase. Cells were then
treated with annexin V and PI. The percentages of annexin V-positive cells in the AP39(−)
and AP39(+) groups (n = 6 each, from 6 islet isolations) were 10.4 ± 0.7% and 2.1 ± 0.2%,
respectively (Figure 2b). The percentages of PI-positive cells in the AP39(−) and AP39(+)
groups were 15.8 ± 2.4% and 3.4 ± 0.4%, respectively (Figure 2c). The apoptosis and
necrosis rates were significantly lower in the AP39(+) group than in the AP39(−) group.

3.3. Production of ROS in Porcine Islets

To evaluate the production of ROS in porcine islets, 1000 IEs of 24 h cultured islets
treated with 400 nM AP39 (n = 3, from 3 isolations) or without AP39 (n = 3 from the same
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three isolations) were dispersed into single cells and stained with 10 µM DHR-123. The
porcine islets cultured with AP39 exhibited significantly decreased production levels of
ROS compared to those cultured without AP39 (Figure 3a,b).

Figure 3. Production level of ROS in cultured islet cells and JC-1 staining of cultured islet cells.
(a,b) ROS production in 24 h cultured islets with or without AP39 was measured via flow cytometry
using staining of dihydrorhodamine-123 (DHR-123). Control cells were not stained with DHR-123.
(a) Representative plots of DHR-123 fluorescence in dispersed cells. (b) Percentage of DHR-123
positive cells. (c,d) Mitochondrial membrane potential of 24 h cultured islets with or without AP39
was measured via flow cytometry using JC-1 staining. (c) Representative plots of JC-1 staining of
dispersed cells. (d) Ratio of red (+) to green (+) cells in AP39(+) and AP39(−) groups. Higher values
indicate more cells with polarized (healthy) mitochondria. AP39(+) and AP39(−) groups: n = 3 each.
Data are expressed as the mean ± SE. * p < 0.05. ** p < 0.01.

3.4. Mitochondrial Membrane Permeability and Proton Pumping in Porcine Islets

To evaluate mitochondrial membrane permeability and proton pumping in porcine
islets, 1000 IEs of islets cultured for 24 h with 400 nM AP39 (n = 3, from 3 isolations) or
without AP39 (n = 3 from the same three isolations) were dispersed into single cells and
stained with 5 µM JC-1 dye. The cultured AP39(+) islets exhibited significantly increased
mitochondrial membrane and proton pumping potential compared to those cultured
without AP39 (Figure 3c,d).

3.5. Stimulation Index of Cultured Islets Treated with or without AP39

The stimulation index of the 24 h cultured islets was measured to assess islet function
in vitro. The stimulation index values for the AP39(+) group (n = 6 from six isolations) were
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significantly higher than those in the AP39(−) group (n = 6 from the same six isolations)
with 2.05 ± 0.22 and 1.32 ± 0.19, respectively (p < 0.05; Figure 4a).

Figure 4. Stimulation index and ATP content of cultured islets with or without AP39. (a) The
stimulation index was measured after 24 h islet culture in each group. AP39(+) and AP39(−) groups:
n = 6 each, * p < 0.05. (b) ATP content of cell lysates after 24 h islet culture was assessed using an ATP
assay system. ATP content was normalized to DNA content. AP39(+) and AP39(−) groups: n = 6
each, ** p < 0.01. Data are expressed as the mean ± SE.

3.6. ATP Content of Cultured Islets Treated with or without AP39

The ATP content of the cell lysate after 24 h of culture with 400 nM AP39 or without
AP39 was measured using an ATP assay system. The ATP content was significantly higher
in porcine islets cultured with 400 nM AP39 (n = 6; 1.02 ± 0.04 pmol/IE) compared to
cultured islets without AP39 (n = 6; 0.58 ± 0.07 pmol/IE) (p < 0.01; Figure 4b).

3.7. In Vivo Assessment of Cultured Islets Treated with or without AP39

To evaluate the graft function of porcine islets in vivo, marginal numbered islets
(1500 IEs) cultured with 400 nM AP39 or without AP39 (n = 12 from 6 islet isolations, n = 2
per isolation) were implanted below the kidney capsule of diabetic SCID mice. We used 6 h
cultured islets because the results shown in Figure 2a confirmed a significant difference
at 6 h. None of the 12 mice implanted with porcine islets cultured without AP39 became
normoglycemic (Table 3). In contrast, the blood glucose levels of 7 out of 12 mice (58.3%)
implanted with porcine islets cultured with 400 nM AP39 gradually decreased and reached
the normoglycemic range (Table 3). The number of mice that became normoglycemic
post-transplantation between the AP39(+) group and AP39(−) group were significantly
different (p < 0.01). These results reveal that the addition of AP39 to the culture medium
improved islet graft function.

Table 3. In vivo functional assay.

AP39(−) AP39(+)

No. Transplanted Mice 12 12
No. Cured Mice 0 7

% 0 58.3
p-Value vs. AP39(−) <0.01

Marginal numbered porcine islets (1500 IEs) cultured with or without AP39 were transplanted into immunod-
eficient diabetic mice. The normoglycemia was defined as <200 mg/dL in non-fasting condition in more than
2 consecutive days.
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4. Discussion

In this study, we showed that the addition of AP39 to the culture medium reduced the
deterioration of isolated islets and improved function of porcine islets. Multiple H2S donors
are available and have been extensively investigated in diverse pathological processes
including IRI in different models of solid organ transplantation (heart, lung, kidney, liver,
intestine, and pancreas) [12,39,40]. GYY4137 is widely used as a research tool to study the
effects of H2S. Lobb et al. compared H2S donors AP39 and GYY4137 in vitro using rat
kidney epithelial cells (NRK-52) during cold hypoxic injury [41]. Treatment with AP39
improved the protective capacity of H2S > 1000-fold compared to similar levels of the
GYY4137. Other H2S donors, ATB-346 and SG1002, have completed Phase I clinical trials
in healthy volunteers, and GIC-1001 has been shown to be safe in a Phase I clinical trial as
well as now in Phase II clinical trials as a pre-colonoscopy analgesic [12].

We previously reported that pancreas preservation with AP39 reduces ROS production
and improves islet graft function [23]. The apparent effects of AP39 when added to pancreas
preservation solutions, or when added to media used for islet culture are similar. H2S has
protective effects against IRI in several organs [22,41,42], and the mitochondria in these
cells are the primary site of H2S activity [17,43,44]. It has been reported that the cytosolic
H2S producing enzyme cystathionine-gammalyase can translocate to the mitochondria
during cell damage, presumably to produce H2S, where it mediates responses against
cell damage [45]. AP39 is a synthetic donor that supplies H2S in a controlled manner
similar to physiological production in the latter. AP39 contains a cationic triphenylphos-
phonium group that allows the compound to home into the mitochondria before supplying
H2S [19,46]. The effect of AP39 has been reported in the brain [20], kidneys [21,39,42], and
heart [22]. In a renal IRI model, AP39 protects renal injury, oxidative stress, and inflam-
mation when reperfused in vivo [21]. AP39 significantly limits infarct size and recovers
post-ischemic function [22]. Our study suggested that AP39 reduced ROS production and
preserved mitochondrial membrane integrity in isolated islets in culture, as compared to
isolated islets cultured without AP39. This suggests that treatment with AP39 in culture
improves cellular viability by reducing ROS production and preserving mitochondrial
membrane integrity.

We measured ATP content in cultured islets. Low levels of H2S have been shown
to stimulate ATP production through the donation of electrons to the electron transport
chain [47,48] and the improvement of mitochondrial integrity (Figure 3). ATP content was
significantly higher in the AP39(+) group than in the AP39(−) group. Thus, AP39 can
induce ATP production in isolated islets during culture.

One mechanism reducing islet mass during culture is cell death by apoptosis and
activation of intracellular death signaling pathways [49–52]. Our results showed that
culturing isolated islets with AP39 before transplantation can prevent islet apoptosis during
culture and improve outcomes in pancreatic islet transplantation. It has also been reported
that oxygen depletion in islet cores results in central necrosis during culture [52,53]. Central
necrosis is another reason for deterioration during islet culture. Our data in Figure 2c
show that the rate of PI staining, which can be used to identify late apoptotic or necrotic
cells, was significantly lower in the AP39(+) group than in the AP39(−) group, suggesting
that islet culture with AP39 may also prevent islet necrosis. To date, no report describes a
relationship between islet isolation or culture and pyroptosis. We evaluated caspase 1, a
key initiator of the canonical pyroptosis pathway, in cultured islets and found that it was
not activated.

5. Conclusions

Treatment of porcine islets with AP39 in culture improved islet graft function. Al-
though many institutes have introduced the culturing of human islets prior to transplanta-
tion [3,4,6,7], it is well-documented that isolated islets deteriorate rapidly in culture [6,9–11].
Our results further the advances in β-cell replacement therapy by proposing to culture
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isolated islets with AP39 before transplantation as a potentially viable treatment option for
individuals afflicted with type 1 diabetes.
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