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Status epilepticus (SE) is a life-threatening emergency that can cause neurodegeneration with debilitating neu-
rological disorders. However, the mechanism by which convulsive SE results in neurodegeneration is not fully
understood. It has been shown that epileptic seizures produce markedly increased levels of nitric oxide (NO)
in the brain, and that NO induces Ca2+ release from the endoplasmic reticulum via the type 1 ryanodine receptor
(RyR1), which occurs through S-nitrosylation of the intracellular Ca2+ release channel. Here, we show that
through genetic silencing of NO-induced activation of the RyR1 intracellular Ca2+ release channel, neurons
were rescued from seizure-dependent cell death. Furthermore, dantrolene, an inhibitor of RyR1, was protective
against neurodegeneration caused by SE. These results demonstrate that NO-induced Ca2+ release via RyR is in-
volved in SE-induced neurodegeneration, and provide a rationale for the use of RyR1 inhibitors for the prevention
of brain damage following SE.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Epilepsy is caused by a wide variety of insults to the brain as well as
by congenital abnormalities in ionic channels (Berkovic et al., 2006;
Jentsch et al., 2004; Meisler and Kearney, 2005). Status epilepticus
(SE) is a neurological emergency and results in brain damage that in-
creases the risk of recurrent seizures and debilitating neuronal abnor-
malities including death (Chang and Lowenstein, 2003; Goldberg and
Coulter, 2013). Its high morbidity and mortality makes SE one of the
most significant neurological disorders in terms of high social costs
(Betjemann and Lowenstein, 2015). Therefore, understanding of the
pathophysiology of SE-induced brain damage is required for the treat-
ment of the neurological emergency. During epileptic seizures, NO for-
mation has been observed to increase as a result of Ca2+-dependent
activation of NO synthase (NOS) in neurons (Mülsch et al., 1994). This
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increase in NO levels has been implicated in seizure-induced neuronal
cell loss based on the finding that neurodegeneration is attenuated in
neuronal NOS (nNOS)-deficient mice (Parathath et al., 2007). Thus NO
is strongly implicated as a neurodegenerative factor in epileptic states.
However, the molecular mechanisms by which NO exerts its role in
SE-induced neurodegeneration requires clarification. Thus, rational
treatment for the prevention of brain damage associated with SE has
yet to be explored.

In addition to the cyclic guanosinemonophosphate-dependent pro-
tein kinase pathway, NO is known to regulate the function of target pro-
teins through S-nitrosylation of cysteine residues (Hess et al., 2005;
Jaffrey et al., 2001). One such target is the type 1 ryanodine receptor
(RyR1), which is the Ca2+-induced Ca2+ release (CICR) channel in the
endoplasmic reticulum (ER). NO induces the opening of the RyR1 chan-
nel through S-nitrosylation (Aghdasi et al., 1997; Eu et al., 2000; Sun et
al., 2001). The activity of RyR1 due to this activation mechanism has
been implicated in Ca2+ leakage from skeletal muscle Ca2+ stores that
has been attributed to certain pathological conditions (Bellinger et al.,
2009; Durham et al., 2008). A single cysteine residue at 3635 (C3635)
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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in rabbit RyR1 is responsible for sensitizing the skeletal muscle Ca2+ re-
lease channel to NO (Sun et al., 2001). An alanine substitution for C3635
(C3635A) of RyR1 expressed in human embryonic kidney (HEK) 293
cells has been shown to reduce S-nitrosylation levels and abolish the
regulation of the skeletal muscle Ca2+-release channel by physiological
concentrations of NO (Sun et al., 2001). In the brain, NO induces Ca2+

release from the ER through S-nitrosylation of RyR1, which results in
an increased concentration of intracellular Ca2+ in neurons (Kakizawa
et al., 2012). Ca2+ release via RyR1 has also been implicated in NO-in-
duced neuronal cell death, as shown by studies in which cell death is
significantly milder in cultured neurons taken from RyR1-deficient
mice than in controls (Kakizawa et al., 2012). These studies raise the
possibility that NO-induced Ca2+ release (NICR) is involved in certain
pathological states in the brain; however, the pathophysiological role
of NICR remains to be established. Furthermore, pathophysiological sig-
nificance of NICR in vivo has not been examined.

In this study, we examined whether NICR via S-nitrosylated RyR1 is
involved in SE-induced neurodegeneration. In order to study the role of
NICR in vivo, we generated a knock-inmouse line, inwhich the essential
cysteine residue at 3636 of mouse RyR1 (corresponding to cysteine
3635 in humans and rabbits) was replaced by alanine (Ryr1C3636A) to
prevent its S-nitrosylation. We show that NICR was indeed silenced in
neurons from Ryr1C3636A knock-in mice, which allowed us to examine
the role of NICR in a kainic acid (KA)-model of temporal lobe epilepsy.
Here we provide evidence that NICR exacerbates neurodegeneration
in the hippocampus following KA-induced seizures, suggesting that
RyR1 is a promising therapeutic target candidate to ameliorate the neu-
rodegenerative effect of SE.

2. Materials and Methods

2.1. Chemicals

3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
(CHAPS), D(+)-glucose, ethanol, 2-[4-(2-Hydroxyethyl)-1-
piperazinyl]ethanesulfonic acid (HEPES), magnesium chloride,
N-ethylmaleimide (NEM), Nonidet P 40 (NP-40), potassium
permanganate, sodium chloride, sodium dodecylsulfate (SDS) and
tris(hydroxymethyl)aminomethane were purchased from Nacalai
Tesque (Kyoto, Japan). Calcium chloride dehydrates, dantrolene so-
dium salt, L-glutamic acid, β-mercaptoethanol, neocuproine and
TritonX-100 were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Acetic acid, acetone, caffeine, dithiothreitol (DTT) and potassi-
um chloride were purchased from Wako Pure Chemicals (Osaka,
Japan). Calcein-AM, 4′-6-diamidino-2-phenylindole (DAPI) solution,
ethylenediaminetetraacetic acid (EDTA), Hoechst33342, 1-hydroxy-
2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC7),
3-morpholinosydnonimine (SIN-1), were purchased from Dojindo
(Kumamoto, Japan). Kainic acid (KA), (5S,10R)-(+)-5-Methyl-
10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate
(MK-801) and N-methyl-D-aspartate (NMDA) were purchased from
Tocris Bioscience (Bristol, UK).

2.2. Animals

All animal-related procedures were in accordance with the guide-
lines of theUniversity of Tokyo.Micewere housed in a transparent plas-
tic cage, fed with food and water ad libitum, and kept under controlled
lighting conditions (12 h-light/12 h-dark) in specific pathogen-free con-
ditions in theUniversity of Tokyo animal facility. Themaximumnumber
of adultmice in a cagewas 7. The Ryr1+/C3636A knock-inmousewas gen-
erated at UNITECH (Kashiwa, Japan). Briefly, the targeting vector
contained genomic DNA encompassing exon 74 of the mouse Ryr1
gene with a nucleotide change encoding for the mutation at codon
3636 (TGT → GCT, C3636A). The targeting vector was transfected into
embryonic stem (ES) cells, and targeted ES clones were screened and
confirmed by Southern analysis. The correctly targeted ES cells were
injected into blastocysts to generate chimeric mice. Mice carrying the
targeted allele were crossed with Tg-Cre transgenic mice to remove
the floxed neomycin cassette and produce heterozygous Ryr1+/C3636A

mice. Crossing of heterozygous Ryr1+/C3636A mice yielded homozygous
Ryr1C3636A/C3636A mice, designated as Ryr1C3636A mice.

The primer sequences for genotyping were as follows: for-
ward, 5′-GCTTAAGGACTGGACATAGAGCTAA-3′; and reverse, 5′-
CTGAATATGTGGATATGGGTATAGG-3′. PCR was conducted using
Thermococcus kodakaraensis (KOD-FX) DNA polymerase (Toyobo,
Osaka, Japan) with the following amplification cycle: 94 °C for
1 min followed by 40 cycles of 94 °C for 10 s and 68 °C for 1 min.
The 471 and/or 361 bp bands were detected by 2.5% (w/v) agarose
gel electrophoresis stained with ethidium bromide.

2.3. Preparation of Cerebral Neuronal Culture

Neurons were prepared from the cerebral cortices of mice fetuses
(postnatal day 0) based on a modification of a previously described
procedure (Kakizawa et al., 2012; Kanemaru et al., 2007). Briefly,
minced cerebral cortices were treated with 1.0% (w/v) trypsin and
0.1% (w/v) Deoxyribonulease I (Sigma-Aldrich) in Ca2+/Mg2+-free
phosphate-buffered saline (PBS) (Takara, Shiga, Japan) for 5 min at
room temperature (RT). Cells were washed with Neurobasal-A me-
dium supplemented with 5% (v/v) fetal bovine serum (FBS), penicil-
lin (100 units mL−1), streptomycin (100 units mL−1), B-27
supplement, and 2 mM L-glutamine (Gibco, ThermoFisher Scientific,
Grand Island, NY, USA) and dissociated by triturating with a fire-
polished Pasteur pipette in Ca2+/Mg2+-free PBS containing 0.05%
(w/v) Deoxyribonulease I and 0.03% (w/v) trypsin inhibitor (Sigma-
Aldrich). Dispersed cells were plated at 1.0 × 105 cells cm−2 on
glass slide coated with poly-L-lysine and laminin (Sigma-Aldrich).
Cells were then cultured at 37 °C under a humidified atmosphere
containing 5% CO2. The medium was changed every 2 d by replacing
half of the old medium with fresh FBS-free medium. Cells cultured
for 7–10 d were used for experiments.

2.4. Preparation of Skeletal Muscle Primary Culture

Primary cultured myoblasts from newborn mice were prepared
based on a modification of a previously described procedure (Rando
and Blau, 1994). Briefly, the forelimbs and hindlimbs were removed
and bones dissected away. The muscle was cut into small fragments
and enzymatically dissociated with collagenase (from Clostridium
histolyticum, 2.5 mg mL−1, Wako Pure Chemicals) at 37 °C for 15 min.
The fragmentswere passed through 40-μmcell strainer and the suspen-
sion subjected to low-speed centrifugation. The pellet was resuspended
in Dulbecco's modified Eaglemedium (DMEM) supplementedwith 20%
(v/v) FBS, penicillin (100 units mL−1), streptomycin (100 units mL−1),
2 mM L-glutamine and 10 ng mL−1 recombinant human fibroblast
growth factor (FGF)-basic (Gibco). Myoblasts were differentiated into
myotubes with DMEM containing 2% horse serum.

2.5. Intracellular Ca2+ Imaging

Ca2+ imaging was carried out based on a modification of the previ-
ously described procedure (Kakizawa et al., 2012). Briefly, neurons
and myocytes were loaded with 5 μM Fura-2 acetoxymethyl ester
(Fura-2AM) (Molecular Probes, ThermoFisher Scientific, Eugene, OR,
USA) for 30 min in HEPES-buffered saline (150 mM NaCl, 4 mM KCl,
2 mM CaCl2, 1 mM MgCl2, 5 mM HEPES, 5.6 mM glucose, pH adjusted
to 7.4 with NaOH). Fluorescence images were acquired at 510 nm
using an inverted microscope (IX81, Olympus, Tokyo, Japan) with a
UApo/340 40× (numerical aperture (NA) 1.35; Olympus) and a cooled
CCD camera (EM-CCD C9100, Hamamatsu Photonics, Shizuoka, Japan)
at a rate of one frame every 3 s. Excitation wavelengths were 340 and
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380 nm. Ca2+ imaging experiments were conducted at RT. Image anal-
yses were carried out using ImageJ64 (National Institutes of Health,
Bethesda, MD, USA). Regions of interests (ROIs) corresponding to indi-
vidual cells were selected and the mean fluorescence intensity (F) of
each ROI minus the background intensity was calculated for each
frame to obtain F340/F380 as an indicator of [Ca2+]i. In Fig. 1c and S3e,
F340/F380 was converted to [Ca2+]i using the calibration equation
(Grynkiewicz et al., 1985) with the Kd value of 224 nM. Myocytes
were stimulated with an electrical pulse (10 V, 100 ms) using SEN-
3201 stimulator (Nihonkohden, Tokyo, Japan).

2.6. NO Donor and Caffeine Application

To prepare a stock solution of NOC7 (100 mM), NOC7was dissolved
in 0.3 N NaOH. NO generation was induced by adding an appropriate
amount of NOC7 stock solution to saline containing the same amount
of 0.3 N HCl. After a 2-min incubation, the saline-containing NOC7 was
applied to the primary culture.

Caffeine was dissolved in saline and applied to the primary culture
by pipet. To ensure steady-state ER Ca2+ loading, cells were subjected
to short application (10 s) of high potassium saline (114 mM NaCl,
40 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 5 mM HEPES, 5.6 mM glucose,
pH adjusted to 7.4 with NaOH) before caffeine was applied.

2.7. Analysis of Neuronal Cell Death

Neurons in primary culture (maintained at 37 °C) were exposed to
500 μMNOC7or vehicle. After 5 h, cultureswere stainedwith JC-1 (J-ag-
gregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-
tetraethylbenzimidazolcarbocyanine iodide) Mitochondrial Membrane
Potential Assay Kit (Cayman Chemical, Ann Arbor, MI USA) for 10 min
at RT. Fluorescence images were obtained at 515–550 nm (excitation
at 480 nm) and 600 nm (excitation at 540 nm) using an invertedmicro-
scope equipped with PlanApo 60× (NA, 1.42; Olympus) objective and
CCD camera. Cell viability was expressed as the intensity of red fluores-
cence divided by that of green fluorescence in the cell body of neurons.

To examine the morphology of neurons, cultured neurons were
fixed with 4% (w/v) paraformaldehyde in PBS and permeabilized with
Fig. 1. Generation of Ryr1C3636A mice and characterization of RyR1C3636A channels in brain
(500 μM)-induced intracellular Ca2+ increase in Ryr1WT and Ryr1C3636A neurons; n = 4
shows the levels of S-nitrosylated RyR1 (SNO-RyR1) in Ryr1WT slices (n = 4). Error b
(ANOVA) followed by a Tukey-Kramer post-hoc test. * p b 0.05. SNO-RyR1 was not detecte
0.3% (v/v) Triton X-100 in PBS. After rinsing in PBS, cells were incubated
with 10% (v/v) bovine serum albumin (Nakarai Tesque, Tokyo, Japan) in
PBS at RT for 1 h. For immunofluorescence staining, cells were
incubated overnight at 4 °C with antibody against mouse anti-
neuronal class III β-tubulin clone TUJ1 (1:1000; Covance, Berkeley,
CA; MMS-435P). The immunoreaction was visualized with secondary
subclass-specific AlexaFluor 488-conjugated antiserum (Invitrogen,
ThermoFisher Scientific, Eugene, OR, USA) at a dilution of 1:1000. Im-
ages were acquired with an Olympus IX81 inverted microscope
equipped with a 20× objective (NA = 0.45) and a CCD camera.

2.8. Western Blotting

Anesthetized mice were decapitated and the cortical gray matter,
hippocampus or skeletal muscle were dissected in ice-cold potassium
phosphate buffer containing 0.32 M sucrose, 1 mM DTT, 1 mM EDTA,
the protease inhibitor cocktail Complete (Roche Diagnostics, Mann-
heim, Germany) and calpain inhibitor I (Roche Diagnostics) using a Pot-
ter type glass homogenizer with a Teflon pestle and centrifuged for
10 min at 4 °C and 1000 ×g, with a centrifuge to remove nuclei and in-
tact cells. The supernatant was centrifuged for 10 min at 4 °C and
1300 ×g to obtain post-nuclear supernatant. The supernatant were cen-
trifuged for 10min at 4 °C and 17,000×g, with a high-speed refrigerated
micro centrifuge to obtain cytosol and microsomal fraction. Protein
quantification was performed on the supernatant using a Pierce BCA
Protein Assay Kit (Thermo Fisher Scientific, Rockford, IL, USA). SDS-
loading buffer, containingβ-mercaptoethanolwas added to the samples
before heat incubation at 95 °C for 5 min. Five micrograms of protein
samples were separated by SDS–PAGE on a 5–20% (w/v) gradient poly-
acrylamide gel (Wako Pure Chemicals) and electroblotted onto a
polyvinylidene fluoride (PVDF) membrane (Bio-Rad) at 200 mA for
4 h in electrophoretic transfer cell (Bio-Rad). Membranes were blocked
in TBSN (0.1% (v/v) NP-40 in tris-buffered saline) containing 5% (w/v)
skim milk for 1 h at RT. The blots were incubated with either rabbit
anti-RyR1 polyclonal antibody (Kakizawa et al., 2007) (1:1000),
mouse anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
monoclonal antibody (1:3000, Merck Millipore, Darmstadt, Germany;
MAB374) ormouse anti-nNOSmonoclonal antibody (1:250; Invitrogen,
(a) Schema of the RyR1 channel. (b) Creation of Ryr1C3636A mutant allele. (c) NOC7
5–67 neurons. (d) S-nitrosylation of RyR1 in the hippocampal slices. Bottom panel
ars indicate s.e.m. Statistical significance was determined by analysis of variance
d in Ryr1C3636A slices (n = 4). See also Fig. S1, S2 and S3.
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ThermoFisher Scientific; 61-7000) in the blocking solution overnight at
4 °C. The membrane was washed in TBSN 3 times for 10 min and incu-
bated with a horseradish peroxidase-conjugated anti-rabbit IgG
(1:10,000; Medical & Biological Laboratories, Aichi, Japan) or anti-
mouse IgG (1:20,000; Medical & Biological Laboratories) in TBSN for
1 h at RT. The horseradish peroxidase was visualized using Western
Lightning Plus-ECL (PerkinElmer, Waltham, MA, USA) and chemilumi-
nescence was detected using an Amersham Hyperfilm ECL film (GE
Healthcare Life Sciences, Piscataway, NJ, USA).
2.9. DAR-4M Imaging

For NO imaging, NO indicator Diaminorhodamine-4M (DAR-4M)
(Kojima et al., 2001) was used. Primary cultured cells were loaded
with 5 μM DAR-4M AM (Sekisui Medical, Tokyo, Japan) in saline at RT
for 5 min. Then time-lapse fluorescence images were captured every
3 s using the IX81 microscope.
2.10. Organotypic Cultures of Hippocampal Slices

Hippocampal organotypic slice culture was carried out based on a
modification of the previously described procedure (Koyama et al.,
2007; Koyama et al., 2012). Hippocampal slice cultures were prepared
from P6–9 mice. Hippocampal slices were incubated at 37 °C in a hu-
midified incubator with 5% CO2 and 95% air and slices for 7–10 d in
vitro were used for experiments.
2.11. Biotin Switch Assay

For detect the S-nitrosylation of RyR1, biotin switch assay was car-
ried out based on a modification of the previously described procedure
(Kakizawa et al., 2012). Hippocampal slice cultures were rinsed with
HEN buffer (25 mM HEPES, pH 7.7, 0.1 mM EDTA, and 0.01 mM
neocuproine). Slices were homogenized in HEN buffer containing 0.5%
(w/v) CHAPS, 0.1% (w/v) SDS, 20 mM NEM, protease inhibitor cocktails
Complete and calpain inhibitor I by a Potter type glass homogenizer
with a Teflon pestle and lysed by rocking for 30min at 4 °C to block sulf-
hydryl groups. Lysates were centrifuged at 10,000 ×g for 10 min at 4 °C.
The supernatant was recovered, supplemented with SDS at a final con-
centration of 1% (w/v), and further incubated for 30min at RT to achieve
complete blockade of sulfhydryl groups. Excess NEM was removed by
protein precipitation with acetone, and the pellet resuspended and in-
cubated in HEN buffer containing 1% (w/v) SDS, 10 mM ascorbic acid
and S-Nitrosylation Labeling reagents in the kit as per manufacturer's
instructions (Cayman Chemical) for reduction of S-nitrosothiols and la-
belingwith biotin. Extra label was removed by a second acetone precip-
itation. Proteins were resuspended in lysis buffer containing 25 mM
Tris-HCl, pH 7.5, 100 mM NaCl, 2 μM EDTA, 0.05% (v/v) TritonX-100,
protease inhibitor cocktails Complete and calpain inhibitor I. For
coimmunoprecipitations, 2 μL of anti-RyR1 polyclonal antibody
(Merck Millipore; AB9078) was added to lysate and allowed to bind to
the antibody for 1 h shaking at 4 °C before addition of 40 μL
preequilibrated Protein G sepharose 4 FastFlow (GE Healthcare Life
Science). After shaking at 4 °C for another 1 h, beads were washed 5
times in lysis buffer and bound protein was eluted at 95 °C for 5 min
in 50 μL of SDS-loading buffer. Protein was separated by SDS-PAGE
and electroblotted onto a PVDF membrane. Membranes were blocked
in TBSN containing 3% bovine serum albumin (NakaraiTesque) for 1 h
at RT. Protein was detected by immunoblotting using a polyclonal anti-
body against RyR1 (Kakizawa et al., 2007). The blot was then stripped
and re-probed with streptavidin-HRP (horse radish peroxidase;
Sigma-Aldrich) by chemiluminescence to identify S-nitrosylation of
RyR1. S-nitrosylated RyR1 was normalized by the intensity of the
RyR1 band.
2.12. KA-induced Seizures Model Mice

Homozygous Ryr1C3636A male mice and age-matched wild-type
male littermates were used. Intraperitoneal injection of KA
(40 mg kg−1) in sterilized PBS was used to induce an SE at postnatal
8–12 weeks. Dantrolene (10 mg kg−1 body weight) in sterilized water
was intraperitoneally injected 30min after KA injection,when required.
KA injection was carried out between 1 p.m. and 5 p.m. Animals were
observed in the home cage and classified according to the seizure
scale: (0) no response; (1) staring, rigid posture with straight and
rigid tail; (2) head nodding, rearing and repetitive movement; (3)
jumping, wobbling and/or falling; (4) non-intermittent seizure
activity persisting for 30 min; (5) death. Only animals reaching at
least stage 3–4 were considered for this study (38/72).

For light microscopic analysis, mice were anesthetized and perfused
with 4% (w/v) paraformaldehyde in PBS 24 h after KA administration.
Brains were removed and post-fixed with 4% paraformaldehyde in
PBS overnight at 4 °C. Brains were cryoprotected by sequential immer-
sion in 15 and then 30% (w/v) sucrose/PBS, and then embedded in
Tissue Freezing Medium (Leica Microsystems). Sections were cut to
25-μmthickness using a cryostat (CM1900, Leica Instruments, Nussloch,
Germany) at−20 °C. Tissue slices were mounted on PlatinumPro-coat-
ed slides (Matsunami, Osaka, Japan) and dried.

Slides were incubated in 0.1% (w/v) cresyl violet acetate (MP Bio-
medicals, Solon, OH, USA) and 0.1% (v/v) acetic acid for 5 min, followed
by dehydration in ascending ratios of ethanol and xylene, and cover-
slipped with Malinol mounting medium (Muto Pure Chemicals, Tokyo,
Japan).
2.13. Fluoro-Jade C Staining

Hippocampal cryo-sectionswere immersed in a solution of 5% (w/v)
NaOH in 80% (v/v) ethanol for 5 min, then sequentially transferred to
70% (v/v) ethanol for 2min, distilledwater for 2min, 0.06% (w/v) potas-
siumpermanganate for 10min, anddistilledwater for 2min at RT. Slices
were then incubated for 20 min with 0.0002% (w/v) Fluoro-Jade
C (Merck Millipore) (Schmued et al., 2005) and 2 μM DAPI in a 0.1%
(v/v) acetic acid, and rinsed by three washes with distilled water. Sec-
tions were dried at 50 °C, dehydrated in xylene, and mounted with
DPX Mountant (Sigma-Aldrich). Images of the hippocampal region
were captured with a Leica TCS SP8 laser-scanning microscope
equipped with a 10× objective. To quantify Fluoro-Jade C-positive
cells, fourmice per conditionwere used. For each hippocampus, six sec-
tions were analyzed. Neuronal degeneration was expressed as the in-
tensity of CA3 fluorescence divided by that of CA1 fluorescence in the
pyramidal cell layer.
2.14. [3H]Ryanodine Binding Assay

Microsomes were prepared from forelimb and hindlimb muscles of
adultmice. [3H]Ryanodinebinding assaywas carried out based on a pre-
viously described procedurewith somemodifications (Murayama et al.,
2015). Briefly, microsomes were incubated with 5 nM [3H]ryanodine in
a buffer containing 0.17 M NaCl, 20 mM 2-Hydroxy-3-
morpholinopropanesulfonic acid (MOPSO), pH 7.0, 2 mM DTT, 1 mM
β,γ-methylene adenosine triphosphate (AMPPCP) and various concen-
trations of free Ca2+. The protein-bound [3H]ryanodine was separated
by filtering through polyethyleneimine-treated glass filters (Whatman
GF/B; GE Helthcare) using Micro 96 Cell Harvester (Molecular Device,
Sunnyvale, CA, USA). Nonspecific binding was determined in the pres-
ence of 20 μM unlabeled ryanodine. The [3H]ryanodine binding data
(B) were normalized to the maximal binding sites for [3H]ryanodine
(Bmax) that was separately determined by Scatchard plot analysis
using varied concentrations of [3H]ryanodine (3–40 nM).
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2.15. Vector Construction and Lentivirus Production

The coding sequence of TagRFP (Evrogen JSC, Moscow, Russia)
(Merzlyak et al., 2007) with the mitochondrial targeting sequence was
expressed by the mouse excitatory neuron-specific Camk2a promoter
(pLenti-Camk2a-mito-TagRFP). Human embryonic kidney 293T
(HEK293T) cells were cultured in DMEM supplemented with 5% (v/v)
FBS, penicillin (100 units mL−1), streptomycin (100 units mL−1) and
8mML-glutamine.WhenHEK293T cells were grown to 90% confluence,
culture medium was replaced with DMEM without antibiotics. Lentivi-
ruses were produced by reverse transfection of HEK293T cells using
15 μg lentiviral vectors, 4 μg plasmids expressing the vesicular stomati-
tis virus glycoprotein (VSV-G), 8 μg packing plasmids Δ8.9 and Lipofec-
tamine 2000 (Thermo Fisher Scientific) in 10 cm collagen type I-coated
dishes (Asahi glass, Tokyo, Japan). Cells were incubated at 37 °C under
5% CO2. After 15 h, the medium was replaced with fresh media and
cellswere incubated for 36 h at 32 °C. The lentivirus-containingmedium
was collected and cleared by centrifugation at 1500 rpm for 5min (Cen-
trifuge 5702, Eppendorf, Hamburg, Germany). For concentration of len-
tivirus, centrifugation was performed at 10,000 rpm overnight at 4 °C
using microcentrifuge (Tomy, MRX-150). Supernatant was completely
removed and virus pellets resuspended in 50 μL PBS and stored at
−80 °C until use.

2.16. Analysis of Mitochondrial Circularity in Neurons

Primary cultured neurons at 4 d in vitrowere infected with lentiviral
mito-TagRFP. Four days after lentiviral infection, neurons were exam-
ined for morphological change of mitochondria. For the assessment of
mitochondrial fragmentation, mitochondrial circularity (4π [area]/
[perimeter]2) was analyzed using ImageJ64 software (National Institute
of Health, Bethesda, MD, U.S.A.).

2.17. Statistics

All statistical analyses of the data were performed using Microsoft
Excel 2004 for Mac (Microsoft, Redmond, WA, USA) with the add-in
software Statcel2 (OMS, Saitama, Japan). Differences between two
groups were analyzed with Student's t-test. Differences between three
or more groups were analyzed by ANOVA. Post hoc multiple compari-
sons were made using the Tukey-Kramer test.

3. Results

3.1. Generation and Characterization of NICR-deficient Mice

To examine the potential pathophysiological significance of NICR in
vivo, we generated a mouse line Ryr1C3636A in which the cysteine resi-
due (Cys3636) critical for NICR (Kakizawa et al., 2012; Sun et al.,
2001) is replaced by alanine residue (Fig. 1a and b). The Ryr1C3636A

mice exhibited no significant change in the bodyweight, gross anatomy
of the brain or the protein levels of RyR1 or nNOS in the hippocampus
and cerebral cortex (Fig. S1a–S1d). Moreover, there was no significant
difference in the protein levels of RyR1 or nNOS, the ryanodine binding
of sarcoplasmic reticulum fractions, which reflects CICR activity of RyRs
(Meissner, 1994; Ogawa, 1994), or in depolarization-induced Ca2+ re-
lease via RyR1 in skeletal myocytes (Fig. S2a–S2e). When we compared
the effect of caffeine, which is an agonist of CICR, on CICR in Ryr1C3636A

and Ryr1WT neurons, we observed no significant difference (Fig. S3a
and S3b). However, when we compared the effect of NOC7, an NO
donor, on [Ca2+]i in Ryr1C3636A and Ryr1WT neurons, we observed a
marked increase in [Ca2+]i only in Ryr1WT neurons (Fig. 1c). Moreover,
when we applied 50 μM N-methyl-D-aspartic acid (NMDA) to hippo-
campal slice cultures for 2 h to induce seizure-like activity, we found
significant increases in S-nitrosylation of RyR1 in Ryr1WT mice but not
in Ryr1C3636A mice (Fig. 1d), although NMDA-induced NO production
was similarly observed in both Ryr1WT and Ryr1C3636A neurons (Fig.
S3c and S3d). Collectively, these results indicate that in Ryr1C3636A

mice, Ca2+ release induced by NO is silenced, but other Ca2+ release
modes via RyR1 are not.

3.2. Kainic Acid-induced Neuronal Cell Death in the Hippocampus was Re-
duced in the Ryr1C3636A Mice

Prompted by our observation that NICR is genetically silenced in
Ryr1C3636A mice, we next studied the pathophysiological significance
of NICR in the KA-induced temporal lobe epilepsy model (Nadler et al.,
1978). KA induced severe seizure phenotype in both Ryr1WT and
Ryr1C3636A mice (Fig. 2a). In Ryr1WT mice, 24 h after KA administration,
the CA3 region showed darkly stained shrunken pyramidal cells, indic-
ative of neurodegeneration. In contrast, in KA-treated Ryr1C3636A mice,
the CA3 region was packed with large pyramidal cells similar to those
found in sham-treated mice (Fig. 2b). These observations indicate that
genetic inhibition of NICR ameliorates seizure-induced neurodegenera-
tion, suggesting that pharmacological inhibition of NICRmay also have a
neuroprotective effect. Dantrolene is a well-known inhibitor of RyR1 at
body temperature (Ohta and Endo, 1986). Indeed, we found that NICR
was blocked by dantrolene in Ryr1WT neurons at 37 °C (Fig. S3e). To ex-
amine whether dantrolene is protective against neurodegeneration
caused by epileptic seizures in vivo, we administered dantrolene to
Ryr1WT and Ryr1C3636A mice after KA-induced seizures. Although
dantrolene had no significant effect on the maximum level of seizures
(Fig. 2a), it circumvented morphological changes in the CA3 region in
Ryr1WTmice (Fig. 2b). In contrast, dantrolene administration had no ap-
parent effect in Ryr1C3636A mice.

We next examined the extent of seizure-induced neuronal damage
using the neurodegeneration marker Fluoro-Jade C (FJC) (Schmued et
al., 2005). FJC positve neurons were clearly visualized in CA3 region of
KA-treated Ryr1WT mice but scarcely observed in KA-treated
Ryr1C3636A mice, which showed similar staining as sham-treated ani-
mals (Fig. 2c). Moreover, 4′,6-Diamidino-2-phenylindole (DAPI) stain-
ing revealed cells with condensed, pyknotic nuclei, representative of
apoptotic cells, in the CA3 region of KA-treated Ryr1WT mice but not in
Ryr1C3636A mice (Fig. 2d). Thus, the hippocampus of Ryr1C3636Amice de-
ficient in NICR was protected from seizure-induced neurodegeneration.
Furthermore, in vivo dantrolene administration reduced the amount of
neurodegeneration analyzed using FJC staining in Ryr1WT mice (Fig. 2c
and d). In contrast, dantrolene treatment had no effect on Ryr1C3636A

mice. These results indicate that the NICR inhibitors such as dantrolene
may have therapeutic potential for treating neurodegeneration after ep-
ileptic seizures.

3.3. NO-induced Neuronal Cell Death wasMilder in the Ryr1C3636A Neurons
In Vitro

These in vivo results led us to study the role of NICR in NO-induced
neuronal cell death. Five hours after the application of NOC7, Ryr1WT

cultured neurons showed a distinctive pattern of morphological chang-
es characterized by short and curly neurites, whereas such shortening of
neurites was absent in Ryr1C3636A neurons (Fig. 3a). In Ryr1WT neurons,
dantrolene exerted a protective effect against NOC7-induced morpho-
logical changes. In contrast, no significant effect of dantrolene was de-
tected in Ryr1C3636A neurons (Fig. 3a).

We next examined the mitochondrial membrane potential (ΔΨm),
which is dissipated in apoptotic cells, by using the JC-1 assay
(Kroemer and Reed, 2000). In Ryr1WT neurons exposed to NOC7, the
red/green ratio of JC-1 decreased, indicative of reduced ΔΨm, whereas
in Ryr1C3636A neurons, the red/green ratio was sustained after NOC7 ap-
plication (Fig. 3b). Thus, NO induced mitochondrial dysfunction in
Ryr1WT but not in Ryr1C3636A neurons. Again, dantrolene reversed the
NO-induced reduction ofΔΨm in Ryr1WTneurons, but had no significant
effect in Ryr1C3636A neurons (Fig. 3b).



Fig. 2.Kainic acid-inducedneurodegeneration inCA3 regionwas reduced inRyr1C3636Amice (a)KA (40mg kg−1, i.p.) triggered limbic seizures. n=5–7. Dan, dantrolene. (b)Nissl-staining
of hippocampus 24 h after KA injection. Scale bar: 500 μm. (c) Fluoro-Jade C staining of hippocampus. Dotted lines show the position of stratumpyramidale. Yellow (CA3) andwhite (CA1)
boxed areas in upper panels are shown enlarged in bottom panels. n = 28–40 slices from 5 to 7mice. Scale bar: 200 μm. Error bars indicate s.e.m. Data are analyzed for significance using
ANOVA followed by a Tukey-Kramer post-hoc test. ** p b 0.01. (d) DAPI staining of hippocampus. n = 30–43 slices from 5 to 7 mice. Scale bar: 100 μm. Error bars indicate s.e.m. Data are
analyzed for significance using ANOVA followed by a Tukey-Kramer post-hoc test. ** p b 0.01.
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Mitochondrial fragmentation occurs early in apoptosis and plays a
key role in cell death progression (Knott et al., 2008).We, therefore, car-
ried out time-lapse imaging of the mitochondrial morphology in cul-
tured neurons, in which mitochondria-targeted TagRFP was
expressed. Upon application of 100 μM glutamate, which is known as
a strong inducer of neuronal apoptosis (Choi, 1988), a significant in-
crease in mitochondrial fragmentation was observed (Fig. 4 top left).
Similarly, after NOC7 application, we observed a significant increase in
mitochondrial fragmentation in Ryr1WT neurons (Fig. 4 middle left).
However, NOC7-inducedmitochondrial fragmentationwas scarcely ob-
served in Ryr1C3636A neurons (Fig. 4 bottom left). We quantified themi-
tochondrial fragmentation analyzing the circularity of the
mitochondrial morphology (see Materials andmethods). Although glu-
tamate induced mitochondrial fragmentation in both Ryr1WT and
Ryr1C3636A neurons to the same extent, NOC7 induced mitochondrial
fragmentation only in Ryr1WT neurons, and NOC7-induced mitochon-
drial fragmentation was absent in Ryr1C3636A neurons (Fig. 4 right
panels). We also examined the effect of dantrolene on NOC7-induced
mitochondrial fragmentation, but did not find a significant effect of
the drug (data not shown). These results suggest that neuronal cell
death induced by NICR is accompanied by mitochondrial dysfunction,
but the causal relationship requires further clarification.

NO may also exert its cytotoxic effect through the formation
of peroxynitrite (Szabó et al., 2007). However, the peroxynitrite donor
3-morpholino-sydnonimine (SIN-1) induced neuronal cell death in
both Ryr1WT and Ryr1C3636A neurons to the same extent (Fig. S4a and
S4b). Thus, Cys3636 in RyR1 is unlikely to be the key residue affected
by peroxynitrite.

4. Discussion

These results indicate the involvement of NICR in neurodegenera-
tion following SE. Moreover, this data set is consistent with the finding
that epileptic seizure-induced neurotoxicity is reduced in nNOS-



Fig. 3. Involvement of NICR in NO-induced neuronal cell death (a) Effect of NO on neuron morphology (stained with anti-β-III tubulin antibody). Arrowheads indicate short and curly
neurites. Scale bar: 100 μm. Graphs show the length of the longest neurite of each neuron; n = 52–116; error bars indicate s.e.m. Concentrations of NOC7 and dantrolene (Dan) were
500 μM and 10 μM, respectively. Data were analyzed for significance using ANOVA followed by a Tukey-Kramer post-hoc test. ** p b 0.01. (b) Cell viability examined by JC-1 assay.
Scale bar: 10 μm. n = 49–65. Error bars indicate s.e.m. Data were analyzed for significance using ANOVA followed by a Tukey-Kramer post-hoc test. ** p b 0.01. See also Fig. S4.

Fig. 4. Involvement of NICR in NO-inducedmitochondrial fragmentation. Left panels showmitochondrial morphology before and 50 min after drug application. Glutamate (Glu; 100 μM)
was used in positive control experiments. NOC7 concentration was 500 μM. Right upper panels show the representative time courses of fragmentation assessed by circularity of
mitochondria. Right bottom panel show the average circularity of mitochondria between 55 and 60 min after drug application. Scale bar: 5 μm. n = 10–16. Data are analyzed for
significance using t-test. *** p b 0.001.
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deficient mice (Parathath et al., 2007). Although the targets of NO
have been elusive, the present results highlight the importance of the
S-nitrosylation of RyR1 at Cys3636 (corresponding to Cys3635 in rabbits
and humans). This cysteine residue has been shown to undergo various
redox modifications such as oxidation by H2O2 and S-glutathionylation
in addition to S-nitrosylation (Aracena-Parks et al., 2006). However,
H2O2 has been shown to activate both rabbit RyR1WT and RyR1C3635A

(Aracena-Parks et al., 2006). Furthermore, while it was reported that
S-nitrosoglutathione (GSNO) preferentially S-glutathionylated
Cys3635 (Aracena-Parks et al., 2006), another study found that GSNO
activated RyR1C3635A similarly to RyR1WT (Sun et al., 2003). Thus, nei-
ther oxidation nor S-glutathionylation of Cys3636 is likely to be in-
volved in the activation of RyR1.

The RyR1 antagonist dantrolene is an approved drug for the treat-
ment of malignant hyperthermia, which is a pharmacogenetic disorder
in patients characterized by an increased susceptibility of muscular
RyR1 to general anesthetics (Hirshey Dirksen et al., 2011). Several stud-
ies have raised the possibility of dantrolene as a treatment for neurode-
generation (Mody and MacDonald, 1995; Muehlschlegel and Sims,
2009). However, the precise mechanism for its therapeutic effect has
remained elusive. The present results shed light on this important ques-
tion, and pave the way for exploring RyR1 antagonists as therapeutics
for brain damage associated with epileptic seizures.

NO is implicated in various other pathological conditions in the
brain, including excitotoxicity during ischemic brain injury (Nakamura
et al., 2013; Pacher et al., 2007). For instance, in the middle cerebral ar-
tery occlusion model, the brain injury is milder in mice treated with an
nNOS-specific inhibitor and in nNOS-deficient mice (Huang et al.,
1994). Thus, it seems possible that NICRmay also play a role in ischemic
brain injury (Kakizawa et al., 2012), and that RyR1 antagonistmay have
a potential therapeutic value in other neurodegenerative diseases asso-
ciated with excitotoxicity.
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Abbreviations

AM acetoxymethyl ester
CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-

propanesulfonate
CICR Ca2+-induced Ca2+ release
Dan dantrolene
DAPI 4′,6-Diamidino-2-phenylindole
DAR-4M Diaminorhodamine-4M
DMEM Dulbecco's modified Eagle medium
DTT dithiothreitol
EDTA ethylenediaminetetraacetic acid
ER endoplasmic reticulum
ES embryonic stem
FBS fetal bovine serum
FGF fibroblast growth factor
FJC Fluoro-Jade C
GAPDH glyceraldehyde 3-phosphate dehydrogenase
GSNO S-nitrosoglutathione
HEK human embryonic kidney
HEPES 2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid
HRP horseradish peroxidase
KA kainic acid
JC-1 J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-

1,1′,3,3′-tetraethyl-benzimidazolcarbocyanine iodide
MK-801 (5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-
dibenzo[a,d]cyclohepten-5,10-imine maleate

NA numerical aperture
NICR nitric oxide-induced Ca2+ release
NMDA N-methyl-D-aspartic acid
NEM N-ethylmaleimide
nNOS neuronal nitric oxide synthase
NO nitric oxide
NOC7 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-

triazene
NOS nitric oxide synthase
NP-40 Nonidet P 40
PBS phosphate-buffered saline
PVDF polyvinylidene fluoride
ROI regions of interest
RT room temperature
RyR1 type 1 ryanodine receptor
SDS sodium dodecyl sulfate
SE status epilepticus
SIN-1 3-morpholino-sydnonimine
TBS tris-buffered saline
ΔΨm mitochondrial membrane potential
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