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Hypoxia and inflammation often coincide in pathogenic conditions such as acute
respiratory distress syndrome (ARDS) and chronic lung diseases, which are significant
contributors to morbidity and mortality for the general population. For example, the recent
global outbreak of Coronavirus disease 2019 (COVID-19) has placed viral infection-
induced ARDS under the spotlight. Moreover, chronic lung disease ranks the third leading
cause of death in the United States. Hypoxia signaling plays a diverse role in both acute
and chronic lung inflammation, which could partially be explained by the divergent function
of downstream target pathways such as adenosine signaling. Particularly, hypoxia
signaling activates adenosine signaling to inhibit the inflammatory response in ARDS,
while in chronic lung diseases, it promotes inflammation and tissue injury. In this review,
we discuss the role of adenosine at the interphase of hypoxia and inflammation in ARDS
and chronic lung diseases, as well as the current strategy for therapeutic targeting of the
adenosine signaling pathway.
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INTRODUCTION

Acute respiratory distress syndrome (ARDS) is common in critically ill patients, characterized by
respiratory failure, pulmonary edema independent of left heart failure, as well as high morbidity and
mortality (1). The mortality rate was 30–40% in the most recent studies despite the latest
improvement in clinical management (2). Pathological characters of ARDS in the acute
“exudative” phase (~7 days) include alveolar epithelial and endothelial injury, resulting in
interstitial and alveolar edema, hyaline membrane formation, and alveolar hemorrhage, as well
as the accumulation of immune cells (1, 3). The main causes for ARDS include pneumonia,
aspiration of gastric contents, severe trauma as well as sepsis (1, 4, 5). The recent global outbreak of
Coronavirus disease 2019 (COVID-19) has placed viral infection-induced ARDS under the
spotlight. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) infection and has resulted in a worldwide pandemic rapidly because of its high transmissibility
and pathogenicity (6). ARDS is one of the most common organ dysfunctions for severe COVID-19,
which accounts for the cause of death in 70% of fatal cases (7, 8). There are several emerging viruses
in the past 20 years, which can induce ARDS-related mortality, such as influenza H1N1 2009,
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influenza H5N1 and H7N9 viruses, the severe acute respiratory
syndrome coronavirus (SARS), and Middle East respiratory
syndrome coronavirus (MERS) (9). It is reported that about
30–40% of the hospitalized patients infected with influenza virus
progress to pneumonia, and influenza A shows a higher
predisposition to ARDS in adults (10). Compared to SARS
(10%) and MERS (35%), COVID-19 shows lower mortality
rates of approximately 5.2%, but higher infectiousness (9, 11).
As of September 6th, 2020, the pandemic of COVID-19 had
affected over 26 million individuals around the world and caused
more than 800,000 deaths worldwide. Therefore, the search for
effective therapeutic approaches for the preventing and
treatment of COVID-19 associated ARDS has become an
urgency. Currently, although there are certain improvements in
the management of ARDS, the treatment for ARDS is in urgent
need. Therefore, the fundamental pathogenesis and effective
treatments for ARDS are still under intensive investigation.

Persistent pulmonary inflammation and tissue remodeling
result in the gradual decline in pulmonary function in patients
suffering from chronic lung diseases including chronic
obstructive pulmonary disease (COPD), asthma, and idiopathic
pulmonary fibrosis (IPF) (3, 12–16). Chronic lung disease ranks
the third leading cause of death in the United States. The risk
factors of chronic lung diseases included genes, environmental
factors, and aging (3, 12, 13, 17). However, one of the common
characteristics among these diseases is dysregulated recruitment
or activation of immune cells, such as neutrophils, macrophages,
dendritic cells, and other effector cells, such as fibroblasts,
myofibroblasts, and airway epithelial cells (AECs), which
accelerates pulmonary remodeling and inflammatory response
(3, 4). The therapeutic approaches for chronic lung diseases focus
on providing symptomatic relief, but pharmacologic compounds
are still lacking to reverse the profound tissue remodeling and
restore lung function in these patients.

Adenosine was first isolated from the heart muscle and
identified as an “adenine compound” that could change cardiac
rhythm when injected in guinea pigs in 1927 (18). Besides its
function in cardiac rhythm, adenosine also modulates
inflammatory responses during hypoxic conditions (19–21). In
this review, we will discuss the interaction between hypoxia and
adenosine signaling, including adenosine, adenosine receptors,
and adenosine metabolism, in acute lung inflammation and
chronic lung diseases. We will also focus on the currently
available approaches for therapeutic targeting of the hypoxia-
adenosine axis in these disease conditions.
BIOLOGY OF ADENOSINE

Extracellular Adenosine Generation
Adenosine, along with ATP and ADP, is considered the main
purinergic signaling molecules (Figure 1). The release of ATP
from intracellular to the extracellular environment contributes to
the formation of adenosine especially when the tissue is in
inflammatory, ischemic, and hypoxic conditions (23, 24). ATP/
ADP in the extracellular space can be converted to adenosine
Frontiers in Immunology | www.frontiersin.org 2
monophosphate (AMP) by ectonucleoside triphosphate
diphosphohydrolase-1 (CD39) (25, 26). Then AMP is further
converted by ecto-5’-nucleotidase (CD73) to extracellular
adenosine (25, 26). Mice with CD39 or CD73 deficiency are
viable, which indicates that nucleotide phosphohydrolysis
regulated by ectoenzymes is not vital in regular physiologic
conditions (27). However, ectonucleotidases still have a crucial
role in disease conditions. For example, the upregulation of
adenosine generation and CD39 and CD73 expression is one of
the protective mechanisms to reduce apoptosis, and alleviate
inflammation in kidney ischemia/reperfusion (I/R) injury models
(28). The deletion of CD39 in mice leads to increased level of ATP/
ADP, and reduced adenosine levels, along with elevated risk of
dysregulated inflammation and tissue injury (29, 30). Similarly,
genetic deletion of CD73 results in higher mortality and delayed
acute lung injury resolution when compared withWTmice because
of the dampened generation of adenosine in regulatory T cells
(Tregs) (31). Therefore, the conversion of ATP/ADP to adenosine is
considered beneficial inmany ischemic and inflammatory disorders.

Adenosine Receptors and Signaling
Adenosine receptors, which include four distinct G-protein
coupled seven membrane-spanning cell surface receptors: the
adenosine A1 receptor (A1AR), the adenosine A2A receptor
(A2AAR), the adenosine A2B receptor (A2BAR), and the
adenosine A3 receptor (A3AR), are crucial for adenosine
mediated responses (3, 19, 21, 27). Both A2AAR and A2BAR
are linked to Gs protein involving activation of adenylate cyclase,
to stimulate cAMP production followed by PKA activation (32–
35). A1AR and A3AR, on the other hand, bear a distinct signal
transduction pathway. For example, A1AR activation inhibits
cAMP accumulations in Chinese hamster ovary cells (36). The
coupling of A1AR to the Gi/o protein pathway attenuates cAMP
signal transduction in hepatic stellate cells (33). Furthermore,
A3AR has been indicated to attenuate adenosine-induced
increase of cAMP in rat vascular smooth muscle cells in vitro
(37) and A3AR knockout mice show an increased level of cAMP
in the cardiovascular system (38). Functionally, Dr. Michail
Sitkovsky’s laboratory identified that A2AAR is crucial for
limiting inflammatory responses as mice with A2AAR
deficiency showed profound tissue damage in inflammation
and endotoxin-induced septic shock (21). The expression of
adenosine receptor subtypes is different in various cell types.
For example, neutrophils and lymphocytes have higher
expression levels of A2AAR, while vascular endothelial cells
have higher levels of A2BAR (39–41). It has been elucidated
that adenosine receptors have important functions in pathologic
conditions. For instance, adenosine has a selective role in
reducing the heart rate via A1AR, which would be a potential
therapeutic method for superventricular tachycardia in mice
(42). Adenosine signaling via A2AAR or A2BAR has a
beneficial effect via shifting proinflammatory immune response
to anti-inflammatory immune response as well as promoting
barrier protection in different animal models (43–48). A3AR is
related to the aqueous humor production in the eye in a
preclinical study (49), and its agonist showed efficacy in
treating dry eye syndrome in a clinical study (50).
January 2021 | Volume 11 | Article 604944
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Intracellular Adenosine Metabolism
The termination of adenosine signaling is mediated by the
transportation of adenosine from the extracellular to the
intracellular space (Figure 1) (27, 51). ENTs and concentrative
nucleoside transporters (CNTs) are nucleoside transporters
found on various cell types (52, 53). According to the
concentration gradient, adenosine moves freely across these
channels because of its diffusion-limited character (53).
Adenosine signaling can be diminished by the transportation
of adenosine into the cell and then metabolized to inosine via
adenosine deaminase (ADA) (54). Additionally, adenosine
kinase can convert adenosine to AMP (55). The activation of
mucosal A2B signaling combined with the repression or deletion
of epithelial ENT2 dampens mucosal inflammation (56).
Another study also showed that elevations of adenosine protect
from liver injury after the genetic deletion or inhibition of Ent1
via A2B signaling in liver ischemia and reperfusion models (57).
HYPOXIA AND INFLAMMATION IN LUNG
INJURY

Hypoxia and inflammation frequently occur in pathogenic
conditions such as cancer, inflammatory bowel diseases,
ischemia/reperfusion injury, and inflammatory lung diseases
Frontiers in Immunology | www.frontiersin.org 3
(58). Hypoxia-inducible factors (HIFs) are crucial in the
responses mediating the crosstalk between hypoxia and
inflammation. Hypoxia-inducible factors (HIFs) have a central
role in regulating tissue adaptation to low oxygen conditions.
HIFs belongs to ab-heterodimeric transcription factors that
include HIF-1a, HIF-2a, and HIF-1b/ARNT subunits. When
oxygen is abundant, HIF-1a or HIF-2a binds to the von Hippel-
Lindau (VHL) gene product, a part of the E3 ubiquitin ligase
complex, and result in proteasomal degradation (59–61). HIFa
and VHL binding are related to the hydroxylation of HIFa
proline residues, which rely on prolyl hydroxylases (PHDs) and
factor-inhibiting HIF (FIH) (60, 61). Under hypoxia, HIFa
subunits can not be hydroxylated as efficiently due to the lack
of oxygen as a substrate for PHDs, which results in the
stabilization of HIF-1a and HIF-2a. Once stabilized, HIFa
translocates to the nucleus and binds to HIF-1b to form a
complex, and in turn bind to hypoxia-responsive elements
(HRE) of the promoter region in the target genes for start
transcriptional regulation (46, 62, 63). Most of the HIFs target
genes are related to metabolism, proliferation, oxygen transport,
and other processes important for hypoxia adaptation (64). HIF
stabilization is demonstrated in inflammatory conditions and
diseases, such as lung injury, inflammatory bowel disease, and
ischemia-reperfusion injury through various mechanisms
(Figure 2) (3, 58, 65). Tissue metabolism in inflammatory
disease has higher local oxygen demand, which induces tissue
FIGURE 1 | Adenosine biogenesis and signaling. ATP and ADP are the main resources of extracellular adenosine. ATP and ADP are dephosphorylated to AMP on
the cell surface by Ecto-nucleotide triphosphate diphosphohydrolase 1 (CD39) and ecto-5’-nucleotidase (CD73) dephosphorylates AMP to adenosine. Adenosine
activates adenosine receptors (A1AR, A2AAR, A2BAR, A3AR) and plays a crucial role in different cells and organs. Adenosine can be transported into the cell by
equilibrative nucleoside transports (ENTs), or be transformed to inosine via CD26-bound adenosine deaminase (ADA) at the cell surface. Under normoxic conditions,
adenosine has a high affinity with adenosine receptors and ENTs. Under hypoxia conditions, the release of extracellular ATP/ADP increased. Finally, HIFs enhanced
the release of extracellular adenosine and adenosine receptors, which modulates tissue barriers and inflammatory response.
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hypoxia. Additionally, the supply of oxygen decreased due to the
shortage of tissue blood supply in trauma, ischemia, and vascular
occlusion disease, which aggravate tissue inflammation (46,
66). Moreover, cytokines (e.g., IL-1, IFN-b, TNF-a) released
during inflammation have an impact on HIF-1a expression (67,
68). The hypoxic environment in solid tumors and during
ischemia/reperfusion activates NF-kB, which is a crucial
transcription factor regulating inflammation and immune
response (69–71). Therefore, hypoxia and inflammation
usually occur simultaneously during pathogenic conditions,
and they are closely linked to each other.

Acute Respiratory Distress Syndrome
Recently, increasing research effort has provided convincing
evidence of the link between hypoxia and inflammation in
ARDS (72–75). For example, HIF-1a is stabilized under
normoxic conditions by mechanical stretch of alveolar
epithelial cells in vitro and in ventilation-induced lung injury
(VILI) in mice in vivo (72). The normoxic stabilization of HIF-1a
by mechanical stretch could be explained by the inhibition of
succinate dehydrogenase (SDH). Functionally, HIF-1a
stabilization dampens lung inflammation through the
regulation of glucose metabolism in alveolar epithelial cells,
because only mice with alveolar epithelial cell-specific deletion
of HIF-1a show profoundly increased lung inflammation and
pulmonary edema (72). The protective effect of HIF-1a in
alveolar epithelial cells has also been demonstrated in acute
cobalt-induced lung injury models as more neutrophilic
Frontiers in Immunology | www.frontiersin.org 4
infiltration and Th1 cytokines were observed in alveolar
epithelial-specific HIF-1a-deficient mice (76). Additionally,
HIF-2a activation improved endothelial adherens junction
integrity in endotoxin-mediated injury through increasing its
target gene vascular endothelial protein tyrosine phosphatase
(VE-PTP) (77). Furthermore, the pharmacologic activator of
HIF, dimethyloxalylglycine (DMOG), protects the lung alveolar
epithelium during murine VILI and LPS induced acute lung
injury via enhancement of glycolysis (72, 78). Another study
showed that DMOG treatment attenuates Fas Ligand (FasL)-
induced apoptosis in MLE-12 cells in vitro and dampens lung
inflammation, and histopathological changes intratracheal FasL
induced lung injury in mice in vivo (79). These studies suggests
that pharmacological HIF activator could offer lung protection
during ARDS via maintaining alveolar epithelial and endothelial
functions during injury.

Viral infection-induced ARDS has been the center of
attention because of the recent pandemic of COVID-19.
Influenza virus infection is one of the most studied models for
viral pneumonia (80–83). Several studies have shown a close
relationship between hypoxia and inflammation in viral
infection-induced ARDS. For example, respiratory syncytial
virus infection in mice results in the stabilization of HIF-1a in
an oxygen-independent manner (84). Besides, earlier studies
indicated that influenza A (H1N1) virus infection could induce
HIF-1a nuclear translocation but did not change its expression
levels in A549 cells in vitro (85). A recent study indicated that
H1N1 infection stabilizes HIF-1a under normoxic conditions in
FIGURE 2 | Hypoxia and inflammation. Inflammation and hypoxia are co-incidental events in several pathological conditions. Inflammatory stimuli, such as cytokines,
bacterial products, and hypoxia, activate the nuclear factor-kB (NF-kB) pathway. The activation of NF-kB enhances the transcription of HIF-1a mRNA and promotes
HIF activity. Inflammatory mediators, such as nitric oxide (NO), hydrogen sulfide (H2S), reactive oxygen species (ROS), and immunometabolites also control HIF
activity in immune cells, which regulates immunity and inflammation. Activated HIF-1a translocates to the nucleus and promotes the transcription of pro-inflammatory
genes by associating with HIF-1b and the cofactor p300/CBP. This figure is adapted from Regulation of immunity and inflammation by hypoxia in immunological
niches; Cormac T. Taylor and Sean P. Colgan, Nature Reviews Immunology; 17, pages 774–785(2017) (22).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Adenosine in Lung Injury
A549 cells in vitro and in murine models of H1N1 mediated viral
pneumonia in vivo (86). The normoxic stabilization of HIF-1a is
dependent on the inhibition of proteasome function and
decreasing the expression of factor inhibiting HIF-1 (FIH-1)
(86). Moreover, influenza A virus (IAV) infection-induced acute
lung injury (ALI) also results in hypoxia, and further contribute
to the stabilization of HIF-1a in mouse lung tissue (87).
Functionally, alveolar epithelial type II cell-specific deficient
Hif1afl/fl SPCCre mice showed increased lung inflammation and
mortality during IAV infection in vivo (87). Mechanistically, HIF-
1a deficiency promotes influenza A virus replication in A549 cells
in vitro via reducing glycolysis and enhancing autophagy (87). The
functional role of HIF in SARS-CoV-2 infection associated ARDS
needs to be further investigated.

Chronic Lung Injury
IPF is one of themost common and severe forms of interstitial lung
disease (88). IPF patients suffer from an impaired pulmonary gas
exchange and chronic arterial hypoxemia (89). The important role
of hypoxia and HIFs on fibroblast proliferation and differentiation
has been studied extensively (90–92). Besides the direct impact on
fibroblasts, hypoxia is regarded as one of the potent stimuli for the
production of proinflammatory cytokines. For example, protein
kinase C (PKC) activation promotes the expression of TNF-a and
IL-1b in the pulmonary artery under hypoxic conditions (93).
Additionally, vascular endothelial growth factor (VEGF), a known
target gene ofHIF, is an angiogenesis factorwith proinflammatory,
permeability-inducing roles in murine bleomycin-induced
pulmonary fibrosis (94). Furthermore, HIF-1a stabilization has
been observed in alternatively activated macrophages in a murine
model of bleomycin-induced pulmonary fibrosis and HIF-1a
inhibition in macrophages inhibits the expression of profibrotic
mediators including IL-7 and CXCL1 (95). However, the
involvement of hypoxia signaling in other subtypes of immune
cells during IPF has yet to be elucidated.

Inflammation and hypoxia are also tightly linked in COPD,
including chronic bronchitis and emphysema. For example,
cigarette smoking significantly increases inflammation
mediators expression, such as IL-6, IL-8, and TNF-a (96).
These factors contribute to the activation of hypoxia response
genes (including HIFs, NF-kB) and promote the development of
COPD in rats (97). HIFs are overexpressed in the lung tissue of
COPD patients (98) and HIF-1a level is positively correlated
with the severity of COPD in patients (99). HIF-2a, on the other
hand, has been shown to be decreased in lung tissue from
emphysema patients compared to healthy control (100).
Furthermore, endothelial cell-specific deletion of HIF-2a in
mice results in emphysematous changes in the lung, which was
exaggerated by the treatment of SU5416, a vascular endothelial
growth factor receptor 2 (VEGFR2) inhibitor (100). On the other
hand, endothelial-specific overexpression of HIF-2a in mice was
protected from emphysema (100), suggesting therapeutic
activation of HIF-2 a as a treatment for emphysema.

Hypoxia is frequently encountered in patients suffering from
severe asthma or acute exacerbation (101). How hypoxia and
HIFs influence allergic airway inflammation has been studied
extensively. An earlier study suggested that HIF-1a is stabilized
Frontiers in Immunology | www.frontiersin.org 5
in lung tissues from asthmatic patients and in a murine model of
allergic airway inflammation induced by ovalbumin sensitization
(102). This study also demonstrated that deficiency in HIF-1b
significantly dampens allergic airway inflammation and reduced
ovalbumin-specific antibodies in mice (102). Consistently, HIF-
1a antagonist YC-1 reduced airway hyperresponsiveness and
lung inflammation in a murine model of asthma (103, 104).
Besides its global impact on allergic airway inflammation, the
functional role of HIF-1a in different subsets of immune cells has
also been investigated in asthma. For instance, myeloid-specific
deletion of HIF-1a in mice results in reduced airway
hyperresponsiveness (AHR), and HIF-1a deficient eosinophils
show reduced chemotaxis (104). Furthermore, a recent study
indicates that exposure to 3% oxygen leads to increased T helper
type 2 cells (Th2) cytokine expression inCD8+T cells and adoptive
transfer of these cells exaggerated AHR and lung inflammation in
the ovalbumin model of murine allergic airway disease (105).
Additionally, HIF-1a inhibition reduced Th2 cytokines
expression in CD8+ T cells upon hypoxia exposure, and the
adoptive transfer of HIF-1a deficient CD8+ T cells underwent
hypoxia attenuates AHR and airway inflammation in mice (105).
In summary,HIF-1a is important for thedevelopmentofAHRand
airway inflammation by modulating immune cell chemotaxis and
function. However, the detailed mechanism, such as the
identification of HIF target genes in specific immune cells during
asthma, needs to be further investigated.
ADENOSINE AT THE INTERPHASE OF
HYPOXIA AND INFLAMMATION IN LUNG
INJURY

In the past decades, studies have provided ample evidence that
hypoxia signaling is tightly linked with adenosine signaling (46,
58, 106–112). Previous studies showed that hypoxic condition or
inflammation contributes to the accumulation of extracellular
ATP/ADP due to the damage in the cell membrane (3, 23, 27,
113–115). The increased level of extracellular ATP and ADP is
essential for the generation of extracellular adenosine, which is a
key mediator of inflammatory responses (116, 117). It has been
demonstrated that HRE in the promoter of CD73 gene is crucial
for HIF-1amediated expression in epithelial cells under hypoxic
conditions, and the inhibition of HIF-1a decreases the hypoxia-
inducible CD73 expression (118). Besides HIF-1a, transcription
factor Sp1 is also involved in the transcription of CD39 under
hypoxia conditions, and its protective effect has been
demonstrated during cardiac and hepatic ischemia (29, 46,
119). Moreover, A2AAR has been identified as a target gene of
HIF-2a in human lung endothelial cells (120), while A2BAR has
been identified as a target gene of HIF-1a (121, 122). The links
between HIF and adenosine are not only through regulation of
ectonucleotidases and adenosine receptors but also via
equilibrative nucleoside transporters (ENTs) and its G-protein-
coupled receptors. For example, HIFs are implicated in the
repression of ENT1 and ENT2 (53, 123) and abolish the
conversion of adenosine to AMP by adenosine kinase in cells
January 2021 | Volume 11 | Article 604944
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(46, 55). The close relationship between hypoxia and adenosine
signaling in acute and chronic lung injury have been established
during the past decades (Figure 3).

Extracellular Adenosine Generation
Several studies suggest that adenosine level increases following
hypoxia exposure in animal studies (126) and in human studies
(127, 128). In vitro cell culture experiments and in vivo animal
studies indicated that endogenous adenosine generation inhibits
neutrophil accumulation during hypoxia (129). Particularly,
CD39 deficient mice show an increased level of MPO in colon,
lung, kidney, and liver after 4 h of exposure to hypoxia (8% O2)
compared to wild-type mice. Pharmacological inhibition or
genetic deletion of CD73 in mice leads to a similar phenotype as
CD39 deficient mice, suggesting the importance of extracellular
adenosine generation in hypoxia-induced inflammation.
Moreover, short term exposure to hypoxia increases plasma levels
of adenosine, attenuates pro-inflammatory cytokine release, and
results in an elevated level of IL-10 during experimental
endotoxemia models in humans (130). Extracellular adenosine
levels increase after the mechanical ventilation in mice or
stretched pulmonary epithelial cells (106, 112). Pharmacological
inhibition or genetic deletion of CD39 or CD73 in mice leads to
severe lung inflammation with mechanical ventilation, suggesting
the protective effect of adenosine (106). The relationship between
HIF and adenosine in ARDS during viral pneumonia has not been
clearly demonstrated yet. Nucleotide ATP and adenosine in BALF
have been shown to be increased after the infection of influenza A
virus in mice (131, 132). However, adenosine levels and
pathogenesis of ALI did not show any difference between WT
and CD73-knockout mice after the infection of influenza A virus.
Therefore, CD73 is not considered as one of the crucial factors for
the development of influenza-induced ALI (133).
Frontiers in Immunology | www.frontiersin.org 6
Cellular stress and damage induce the generation of
adenosine in lung tissue of patients with chronic lung disease.
For example, the hypoxic-adenosinergic pathway is activated in
IPF patients with pulmonary hypertension (PH), as marked by
increased expression of HIF-1a, adenosine, adenosine A2B
receptor, CD73, and ENT1 (124). Other studies showed that
adenosine levels are increased in the serum, lymphocytes, and
erythrocytes in healthy smokers compared to healthy non-
smokers and continue to increase with the severity in COPD
patients (134). The same study also demonstrated that patients
with higher levels of adenosine tend to have reduced forced
expiratory volume in one second (FEV1), suggesting a potential
functional link (134). Furthermore, adenosine signaling is
significantly enhanced in COPD as represented by increased
CD73 activity and adenosine receptor levels in lung tissue from
patients with COPD or in murine model of emphysema (135,
136). Adenosine signaling is also enhanced in asthma, and
consequently, a high level of adenosine induces airway
hyperresponsiveness and bronchoconstriction and promotes
human mast cells to release allergen-induced mediators (137).

Adenosine Receptors and Signaling
Adenosine A1 Receptor
A1AR has diverse roles in lung injury. For example, A1AR
deficient mice have increased susceptibility to LPS-induced
acute lung injury with increased PMN recruitment and
microvascular permeability (138). The same study indicated
that pretreatment of A1AR agonist, 2’Me-2-chloro-N6-
cyclopentyladenosine, attenuates PMN recruitment and
microvascular permeability. On the other hand, post-infection
treatment of a combination of A1AR antagonist L-97-1 and
ciprofloxacin improves the outcome of Y. pestis infection in rats,
indicating a protective effect of A1AR (139). Furthermore, A1AR
A B

FIGURE 3 | Links between HIF and adenosine signaling in acute/chronic lung injury. (A) Inflammation and infection results in the stabilization of HIFs in acute lung
injury (112). HIF-1a dependent inhibition of ENT1, ENT2, and adenosine kinase contributes to the accumulation of adenosine (55, 123). A2AAR and A2BAR are two
adenosine receptors that are regulated by HIF-2a and HIF-1a respectively in lung tissue (109, 120, 121). Therefore, the higher level of adenosine, and the activation
of its receptors reduced mortality, pulmonary edema, inflammation in acute lung injury. (B) The activation of the hypoxic-adenosinergic system has been investigated
in chronic lung injury. CD73 and A2BAR are two hypoxia-inducible genes in patients with idiopathic pulmonary fibrosis and pulmonary hypertension (124). The
upregulation of A2BAR enhances cell differentiation, produces profibrotic mediators, and promotes fibroblast to myofibroblast in chronic lung injury (95, 125).
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knockout mice show significantly increased macrophage and
neutrophil infiltration in the airway after influenza A/WSN/33
(H1N1) infection when compared to wild-type counterparts and
daily treatment of A1AR antagonist 8-cyclopentyl-1,3-
dipropylxanthine results in improved outcome (140). Besides
acute lung injury and infection, the activation of A1AR has also
been found on bronchial epithelial cells, and inflammatory cells,
which enhanced the asthma phenotype (141). Mice with ADA
deficiency experience lung injury and inflammation (142). A1AR
deletion in mice exaggerated the pulmonary inflammation
marked by increased expression of IL-4 and IL-13, as well as
matrix metalloproteinases, suggesting a protective role of A1AR
in chronic lung injury (142).

Adenosine A2A Receptor
Exposure to hypoxia (10% O2) attenuates lung inflammation
during LPS-induced lung injury in mice and A2AAR is
indispensable for hypoxia-mediated lung protection (143).
A2AAR expression in myeloid cells is crucial for the control of
neutrophil recruitment to the lung injury and an A2AAR specific
agonist ATL202 offers lung protection in mice during LPS-
induced lung injury (144). The lung protective effect of
A2AAR has also been implicated in cardiopulmonary bypass-
mediated lung injury. Pretreatment of A2AAR agonist
CGS21680 in juvenile rats dampens inflammatory cytokines
and myeloperioxidase levels in the serum as well as pulmonary
edema and lung injury score during cardiopulmonary bypass
−induced organ injury. Another study demonstrated that
A2AAR activation induces the expression of peroxisome
proliferator-activated receptors g (PPARg) via cAMP and PKA
pathways in murine macrophages (145). Combining PPARg
agonist ROSI and A2AAR agonist CGS21680 significantly
reduces lung pathology and the production of inflammatory
cytokines in the lung during murine model of LPS-induced ALI
(145). Moreover, treatment of CGS21680 after the onset of
trauma/hemorrhagic shock-induced lung injury attenuates
pulmonary edema and MPO levels in Sprague-Dawley rats
(146). Interestingly, A2AAR has been identified as a HIF-2a
target in pulmonary endothelial cells in vitro, implicating
the crosstalk between adenosine signaling and hypoxia
signaling (120). Furthermore, treatment of A2AAR agonist
CGS21680 reduces inflammatory cell infiltration to the airway
in murine models of asthma (147). A2AAR deficient mice
experience exaggerated lung inflammation and airway
hyperactivity, suggesting the protective role of A2AAR in
allergic airway diseases.

Adenosine A2B Receptor
A2BAR is an important link between hypoxia and adenosine
signaling in acute lung injury. HIF-1a has been shown to
transcriptionally induce the expression of A2BAR in murine
VILI model (109, 121). For instance, genetic silence or
pharmaceutical inhibition of HIF-1a dampens the expression
of A2BAR in mice during VILI or alveolar epithelial cells exposed
to cyclic stretch (109). A2BAR-dependent adenosine signaling
offers lung protection during endotoxin-induced ALI in mice by
potentiating the regulatory T cell population (148). Furthermore,
Frontiers in Immunology | www.frontiersin.org 7
hypoxia-induced vascular leakage also exaggerates in siRNA-
mediated knockdown of A2BAR or A2BAR deficient mice (149).
Furthermore, HIF-1a-dependent induction of netrin-1 attenuated
neutrophil transmigration and dampens inflammation through
A2BAR at pulmonary and colon mucosal surface (150),
suggesting another layer of complexity in the crosstalk between
HIF and adenosine signaling.

In chronic lung injury, hypoxia potentiates the function of
adenosine and promotes the production of IL-6, and induce the
differentiation of fibroblasts to myofibroblasts by increasing
adenosine A2B receptor expression in human fibroblasts (125).
Furthermore, adenosine deaminase-deficient mice have higher
expression of A2BAR and exhibit progressive pulmonary fibrosis
and respiratory distress (151). The crosstalk between hypoxia
and adenosine signaling has been established in the murine
model of IPF (95). For example, HIF-1a inhibition via the
treatment of 17-DMAG results in reduced pulmonary fibrosis
and A2BAR expression in the late stages of murine bleomycin-
induced lung fibrosis in vivo (95). Additionally, HIF-1a
inhibition along with A2BAR deletion or pharmacological
inhibition result in disruption of alternatively activated
macrophages differentiation and IL-6 production in vitro (95).

Of note, while A2AAR and A2BAR reduce mortality,
pulmonary edema, and inflammation in acute lung injury,
A2BAR enhances cell differentiation, produces profibrotic
mediators, and promotes fibroblast to myofibroblast
differentiation in chronic lung injury. The differential role of
A2BAR could possibly be stemming from the different impacts of
downstream signaling in acute or chronic lung injury. As
mentioned above, A2AAR and A2BAR activation lead to the
activation of cAMP and PKA pathway (32–35). The cAMP-
CREB axis is important for the maintenance of endothelial
integrity and the attenuation of lung inflammation during
endotoxin-induced lung injury in mice (152). The protective
effect of cAMP in LPS-induced endothelial permeability is
mediated through PKA (153). cAMP synthesis and PKA
activity are inhibited in oleic acid-induced lung injury, and the
treatment of hydroxysafflor yellow A enhances the cAMP/PKA
pathway and dampened lung inflammation in mice (154).
Furthermore, pretreatment of phosphodiesterase antagonist
PTX enhances cAMP signaling and results in the attenuation
of lung injury during cecal ligation and puncture in mice (155).
These studies suggest a protective role of cAMP and PKA during
acute lung injury. In chronic lung injury, cAMP and PKA
regulate hypercontractility in human airway smooth muscle
cells (156) and phosphodiesterase inhibitors, which prevents
the breakdown of cAMP, are currently being studied as a
treatment for asthma (157). In addition, dibutyryl-cAMP
treatment increases endogenous cAMP levels, enhances PKA
signaling in vitro, and blocked myofibroblast differentiation in
vivo (158). Other cAMP elevating agents also inhibits the
proliferation and collagen production in pulmonary fibroblasts
(159). Thus, the divergent function of A2BAR in acute and
chronic lung injury might not be based on the downstream
activation of the cAMP and PKA signaling pathway. Other
factors could contribute to the response to cAMP activation as
lung fibroblasts from pulmonary fibrosis patients has a deficiency
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in the phosphorylation of cAMP response element-binding
protein (160). Future studies are needed to elucidate the
signaling mechanism of A2BAR mediated responses in
pulmonary injuries.

Adenosine A3 Receptor
A3AR is also expressed in the lung and several previous studies
have indicated the functional role of A3AR in lung injury. The
protective role of A3AR in lung ischemia/reperfusion injury has
been demonstrated by an early study in which the pretreatment of
A3AR agonist IB-MECA attenuated alveolar injury and apoptosis
during lung ischemia and reperfusion injury of isolated cat lung ex
vivo (161). The protective role of A3AR is further supported as
pretreatment of IB-MECA offers lung protection during lung
ischemia/reperfusion injury in cat in vivo (162). In addition,
A3AR agonist CI-IB-MECA pretreatment alleviates lung
ischemia/reperfusion injury in mice, and the protective effect is
abolished in mice with genetic deletion of A3AR (163). Besides
lung ischemia/reperfusion injury, the protective role of A3AR has
also been indicated in LPS-induced lung injury. Indeed, A3AR
deficient mice showed exaggerated PMN infiltration after LPS
inhalation and pretreatment of CI-IB-MECA attenuates the
inflammatory responses and injury (164). Furthermore, A3AR
activation is associated with mast cell degranulation and airway
hyperreactivity. For example, selective activation of A3AR via IB-
MECA results in the release of histamine in mast cells in vitro and
nebulizer treatment of IB-MECA in mice results in mast cell
degranulation in the lung in wild type mice but not in A3AR
deficient mice (165). Adenosine administration results in airway
responsiveness in mice and mice with A3AR deficiency show
attenuated responses marked by reduced mast cell degranulation
and neutrophil infiltration (166). Other studies also demonstrate
the contribution of A3AR in chronic airway inflammation
(167, 168).

Adenosine Metabolism
Besides the impact on adenosine receptors, HIF-1a dependent
repression of ENT1 and ENT2 decreases adenosine uptake and
increases extracellular adenosine, which dampens neutrophil
accumulation and protects vascular barrier during hypoxia in
endothelia and epithelia (123). HIF-1a-dependent repression of
adenosine kinase leading to increased extracellular adenosine
attenuates hypoxia-induced vascular leak in murine models of
sepsis or ALI (169). In addition, adenosine deaminase activity,
ADA2 in particular, is significantly reduced in serum from
COPD patients and smokers when compared to non-smokers
(134), which could further explain the increased level of
adenosine in COPD patients.
THERAPEUTIC TARGETING OF
ADENOSINE

Targeting Hypoxia Signaling
Direct therapeutic targeting of the hypoxia signaling pathway
could profoundly modulate the adenosine signaling pathway.
Frontiers in Immunology | www.frontiersin.org 8
Pharmacologic compounds have been developed for normoxic
stabilization of HIFs by functioning as inhibitors of PHDs.
Several preclinical studies show that these compounds can be
given to animals that are kept under normoxic conditions, and
result in robust stabilization of HIFs (170, 171). In line with this
concept, preclinical studies have shown that pretreatment with
the HIF activator dimethyloxalylglycine (DMOG) is associated
with attenuated organ injury in the heart, lungs, or kidneys (72,
172, 173). Moreover, recently, several pharmaceutical companies
have developed HIF activators as orally available compounds and
several ongoing clinical trials have used them in patients for the
treatment of anemia associated with chronic kidney disease.
These compounds include roxadustat (FG-4592, sponsored by
FibroGen, Astellas, & AstraZeneca), vadadustat (AKB-6548,
sponsored by Akebia), and daprodustat (GSK-1278863,
sponsored by GlaxoSmithKline). Based on phase 3 clinical
trials showing efficiency in increasing hemoglobin levels in
patients with anemia associated with renal insufficiency (174,
175), roxadustat has been approved for treating chronic kidney
disease-related anemia in China and is currently in phase 3
clinical trials in the United States. In the meantime, several phase
2 clinical trials indicated that oral vadadustat is safe and effective
as a treatment for anemia in patients with non-dialysis-
dependent chronic kidney diseases (176, 177), and in patients
receiving hemodialysis previously received erythropoiesis-
stimulating agents (178). Currently, vadadustat is evaluated by
a randomized, double-blinded and placebo-controlled phase 2
clinical trial as a treatment of COVID-19 associated ARDS
(Table 1) (180). These oral available HIF activators could
potentially be efficient for enhancing adenosine signaling
pathways in patients for the prevention of acute lung injury.
On the other hand, HIF inhibitors could potentially inhibit
adenosine signaling as a therapeutic approach for chronic lung
diseases. Currently, HIF-2a inhibitors such as PT2385 and
PT2977 have been investigated by clinical trials mainly as
novel therapeutic approaches for renal cell carcinoma (181).
However, HIF-1a specific inhibitor has yet to be developed for
clinical use, which will be crucial for the inhibition of adenosine
signaling in chronic lung diseases.

Targeting Adenosine Receptors
Adenosine signaling could potentially be targeted for lung
protection during acute lung inflammation via direct
administration of adenosine or utilizing specific adenosine
receptor agonists in both preclinical and clinical settings (182,
183). Several preclinical studies have indicated that direct
administration of adenosine attenuates lung injury (184, 185).
The safety of adenosine administration has also been supported
by previous clinical studies (186, 187). However, due to the short
half-life of adenosine in vivo, adenosine analogs might be a more
feasible option. Adenosine receptor agonists have been
developed for preclinical and clinical use (188). For example,
pretreatment of A2AAR agonist ATL202 inhibits LPS-induced
PMN recruitment, reduced the release of inflammatory cytokines
in the lung, and reduced vascular leakage in mice (144). A2AAR
agonist GW328267C improves lung function in three models of
ALI (HCl instillation 1 h, LPS instillation 16 h, and live
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Escherichia coli instillation) in rats (189). The delivery of
A2BAR-specific agonist BAY 60-6583 attenuate pulmonary
edema, inhibits lung inflammation, and improves histologic
lung injury in murine ALI (73, 107). Furthermore, mice treated
with BAY60-6583 show attenuated oleic acid (OA)-induced
ALI by inhibiting alveolar epithelial cell apoptosis (190).
However, only A1AR, A2AAR, and A3AR agonists have been
evaluated in the clinical setting while the safety and efficacy
ofA2BAR agonists have yet to be established by clinical studies
(188). The usage of adenosine receptor agonists in clinical trials
related to lung injury is summarized in Table 1.

Adenosine receptor antagonists have been developed as
treatment of chronic lung diseases in both preclinical and
clinical settings. For instance, LASSBio-897 (3-thienylidene-3,
4-methylenedioxybenzoylhydrazide) can block the activity of
A2AAR agonist and has anti-inflammatory and anti-fibrotic
role in a mouse model of silicosis (191). Additionally, the
treatment of A2BAR antagonist CVT-6883 dampens lung
inflammation, reduces fibrosis, and attenuates alveolar airspace
enlargement in ADA-deficient mice (192). Similarly, CVT-6883
treatment reduced inflammation and lung fibrosis in murine
bleomycin-induced lung injury (192). Finally, A1AR antagonist
PBF-680 has been and is currently being evaluated by several
phase 1 and phase 2 clinical trials as a treatment of asthma
(Table 1). Although adenosine receptor antagonists have been
investigated for inflammatory conditions, neurodegenerative
diseases, and mood disorders (193), their potential impact on
chronic lung diseases needs to be further evaluated.

Targeting Adenosine Metabolism
Adenosine signaling could also be targeted via modification of
adenosine metabolism. For instance, inhibition or deletion of
ENT1/2 elevates extracellular adenosine levels in lung tissue and
improves pulmonary function by activating A2AAR and A2BAR
receptor and preventing NLRP3 inflammasome activation in
Frontiers in Immunology | www.frontiersin.org 9
Pseudomonas aeruginosa infection-induced acute lung injury in
mice (194). Moreover, ENT inhibitor dipyridamole treatment
decreases adenosine uptake, and in turn improves vascular
barrier and reduces neutrophil accumulation in acute
pulmonary inflammation in preclinical studies (108, 123, 195).
Along the same line, dipyridamole is currently investigated
by several clinical trials as a treatment for COVID-19
and associated vascular manifestation (NCT04391179,
NCT04424901, Table 1). Besides targeting ENTs, ADA
administration reduced lung pathology in IL-13 transgenic
mice, which spontaneously develop lung inflammation,
alveolar destruction, and fibrosis (196). Furthermore,
PEGylated adenosine deaminase is currently employed as an
enzyme replacement therapy for patients suffering adenosine
deaminase severe combined immunodeficiency (197) and has
lately been shown to alleviate fibrosis and inflammation in a
murine model of systemic sclerosis (198). PEGylated adenosine
deaminase should be further investigated as a therapeutic
approach for chronic lung diseases.
CONCLUSION

Adenosine signaling is one of the most crucial mediators in the
cross-talk between hypoxia and inflammation. In this review,
many studies suggest that targeting hypoxia and adenosine
signaling could be a promising therapeutic approach for ARDS
and chronic lung diseases. However, further investigation is
needed to address the knowledge gaps in the mechanism of
how HIF-adenosine contributes to different disease conditions
and how to target this pathway in patients. For instance, the
functional link between HIF and adenosine pathway in viral
pneumonia induced ARDS needs to be established, especially for
COVID-19 associated ARDS. Furthermore, the functional role of
TABLE 1 | Clinical trials targeting adenosine signaling in lung diseases.

Drug
(Company)

Target Status Target disease Clinical trial gov
identifier

References

GW328267X A2A adenosine receptor agonist Completed
Phase 1

Acute lung injury NCT01640990

PBF-680 A1 adenosine receptor antagonist Completed
Phase 2

Asthma NCT01939587

PBF-680 A1 adenosine receptor antagonist Recruiting
Phase 2

Asthma NCT02635945

PBF-680 A1 adenosine receptor antagonist Completed
Phase 1

Asthma NCT01845181

PBF-680 A1 adenosine receptor antagonist Completed
Phase 1

Asthma NCT02208973

PBF-680 A1 adenosine receptor antagonist Recruiting
Phase 2

Persistent, mild-to-moderate atopic asthma NCT03774290

Regadenoson A2A adenosine receptor agonist Completed
Phase4

As stress agents for myocardial perfusion imaging in
asthma or COPD patients

NCT00862641 (179)

Dipyridamole Equilibrative nucleoside transporter
inhibitor

Recruiting
Phase 2

COVID-19; SARS-CoV-2 infection NCT04391179

Dipyridamole Equilibrative nucleoside transporter
inhibitor

Recruiting
Phase 2

COVID-19 pneumonia; Vascular complications NCT04424901

Vadadustat Hypoxia-inducible factor prolyl
hydroxylase (HIF-PH) inhibitor

Recruiting
Phase 2

Acute respiratory distress syndrome; coronavirus
infection

NCT04478071
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the HIF-adenosine pathway needs to be demonstrated in COPD
and asthma for the development of novel therapies targeting this
pathway. Pharmacological agents to modulate adenosine
signalings, such as adenosine receptor antagonists and
PEGylated adenosine deaminase, have been investigated in
several disease conditions. However, its potential use for
chronic lung diseases needs to be further evaluated. Taken
together, a detailed understanding of the functional role of the
HIF-adenosine axis is needed for the development of efficient
and safe therapy in pulmonary diseases.
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