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Abstract
Recent research has demonstrated that characteristic gene selection based on gene

expression data remains faced with considerable challenges. This is primarily because

gene expression data are typically high dimensional, negative, non-sparse and noisy. How-

ever, existing methods for data analysis are able to cope with only some of these chal-

lenges. In this paper, we address all of these challenges with a unified method: nonnegative

matrix factorization via the L2,1-norm (NMF-L2,1). While L2,1-norm minimization is applied to

both the error function and the regularization term, our method is robust to outliers and

noise in the data and generates sparse results. The application of our method to plant and

tumor gene expression data demonstrates that NMF-L2,1 can extract more characteristic

genes than other existing state-of-the-art methods.

1 Introduction
The development of microarray technologies makes the study of complex biological gene
expression networks possible. Microarray datasets typically contain expression data for the
thousands of genes profiled on each chip, and the number of replicates is much smaller than
the number of genes, making the selection of genes difficult[1]. In addition, the inclusion of
irrelevant or noisy variables may decrease the accuracy of selection[2]. The problem of how to
select genes associated with the target terms has become a challenge for scientists[3]. For exam-
ple, plants are able to cope with environmental challenges such as cold, heat, and salt, which
are referred to as abiotic stresses; there must therefore exist specific interacting genes that
respond to each abiotic stress. Another typical example is that of cancer, an important cause of
human morbidity; the identification of genes that are frequently mutated in cancers and play
an essential role in cancer development is critical. Many methods have been proposed for pro-
cessing gene expression data collected by DNAmicroarray profiling[4–9]. For example, Liu
et al.[10]used a method based on penalized matrix decomposition (PMD) to extract character-
istic plant genes, and Zheng et al.[11] applied nonnegative matrix factorization (NMF) to
tumor gene selection. Principal component analysis (PCA) and singular value decomposition
(SVD) have also been used to analyze gene expression data[12]. Liu et al.[13] proposed a
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CIPMD algorithm (A Class-Information-Based Penalized Matrix Decomposition) for identify-
ing plants core genes responding to abiotic stresses. This method is PMDmethod with label
information. Liu et al.[14] proposed a PRFE algorithm (A P-Norm Robust Feature Extraction)
for identifying differentially expressed genes. Although those methods are all feature selection
methods and in widespread use, they present some disadvantages:

1. Although the elements of the initial data matrix are entirely nonnegative, the traditional
low-rank algorithm [15]cannot guarantee nonnegative values in the project matrix, thereby
complicating their biological interpretation.

2. The high dimensionality of data poses challenges, such as the so-called curse of dimension-
ality[16,17].

3. Faced with millions of individual data points, it is difficult to interpret gene expression data
without sparse constraints.

4. Gene expression data often contains numerous outliers and abundant noise, which tradi-
tional methods do not effectively address.

NMF has been widely used in various fields because it can generate low-rank and nonnega-
tive results. The ability to generate a low-rank nonnegative matrix to approximate a given non-
negative data matrix is a significant advantage[18], but the lack of sparsity in data processed
via NMF makes this method less than ideal for characteristic gene selection. In high through-
put datasets, gene expression data are high dimensional and always contain some redundant
information(i.e., not all features are relevant). To address these problems, we sought to incor-
porate sparsity, or the reduction of certain vector elements to zero. The regular inclusion of
sparsity has played a significant role in dimensionality reduction and feature selection[19]. For
example, Journée et al.[20] proposed a sparse principal component analysis (SPCA) method
using the generalized power method, and Wittenet al.[21]proposed a penalized matrix decom-
position (PMD) method, which has been proven useful in microarray analysis by imposing
penalization on factor matrices. Nonnegative matrix factorization with sparse constraints
(NMFSC), which was first introduced by Patrik O. Hoyer in 2004 [22], accurately controls
sparsity. NMFSC has been applied to the problems of imaging and gene selection, among oth-
ers. However, it does not guarantee that entire rows of a matrix are sparse, which can lead to
difficulties during feature selection. To address these issues, the L2,1 version of NMF favors the
inclusion of a small number of non-zero rows in the factor matrix, which are proposed to gen-
erate sparse results for rows.

However, these methods for generating sparsity apply the least square error function, which
does not reliably address noise and outliers [23]. When faced with these complications, the
error for both features and samples will be squared[24], increasing the effect of large noises or
outliers [25]. As a result, the L2,1 version of the error function has been proposed to address
noisy data [26].

In light of these problems, we propose a novel method called Nonnegative Matrix Factoriza-
tion with L2,1-norm (NMF-L2,1), which imposes an L2,1-norm constraint on both the error
function and a regularization term to solve the aforementioned problems simultaneously. A
sparse regularization term avoids the potential problem of over-fitting and selects a sparse sub-
set of features. Rather than use an L2-norm-based error function, the L2,1-norm-based error
function diminishes the impact of the outliers and noise in a dataset[25,27].

The main contributions of this paper are the following:

First, L2,1-norm is employed for regularization in our method to generate sparse results,
making the results easier to interpret.
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Second, nonnegative matrix factorization is utilized to generate low-rank results with non-
negative values.

Third, the L2,1-norm-based error function is used to diminish the outliers and noise inher-
ent in gene expression data.

This paper is organized as follows. The methodology section introduces the NMF-L2,1
method and provides an efficient algorithm for estimation. The results and discussion section
compares our method with other three methods: PMD, NMFSC and SPCA. Our conclusions
are presented in the third section.

2 Methodology

2.1 Mathematical Definition of L2,1-norm
This subsection briefly introduces the L2,1-norm proposed in [28]. It is defined as

kMk2;1 ¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs

j¼1
m2

ij

r
¼

Xn

i¼1
mik k2; ð1Þ

wheremi is the i-th row ofM,mij is the (i, j)-th entry inM,M is an n × smatrix. An explana-
tion of L2,1-norm is as follows. First, we compute the L2-norm of rowsmi, then compute the
L1-norm of vector b(M) = (km1k2,km2k2,. . .,kmsk2). The amplitude of the components of vec-
tor b(M) dictate how important each dimension is L2,1-norm favors a small number of non-
zero rows inM,ensuring that an appropriate dimensional reduction is achieved[29].

2.2 Extracting Characteristic Genes by NMF-L2,1
In this paper, the matrix X denotes the initial gene expression dataset, whose size is n × c. Each
column of X represents the transcriptional response of the n genes in one sample. Each row of
X represents the expression level of a gene across all samples. Thus, the X can be approximated
as:

X � AY; ð2Þ
where A is an n × dmatrix, Y is a d × cmatrix, and d<min(n, c).

The matrices Y and A are called the coefficient and basis matrices, respectively. Given suit-
able parameters for NMF-L2,1, the sparse matrix A can be obtained. Characteristic genes can
then be extracted according to the non-zero entries in A [30].

2.3 NMF based on L2,1-norm (NMF-L2,1)
Let X = (x1, x2,. . .,xc) ∊ Rn×c, Y = (y1, y2,. . .,yc)

T ∊ Rd×c. The error function of standard NMF
[31] is

kX�AYk2F ¼
Xc

i¼1
kxi �Ayik2; st: Y > 0;A > 0: ð3Þ

Here, the error for each data point is calculated as a squared residual error in terms of
kxi−Ayik2. As a result, a few outliers with large errors can easily dominate the objection func-
tion due to the squared errors. Thus, it is reasonable to propose an NMF-L2,1 formulation to
reduce the influence of outliers and errors.
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The error function of the NMF-L2,1 formulation is:

kX�AYk2;1 ¼
Xc

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
ðX�AYÞ2ij

r
¼

Xc

i¼1
kxi �Ayik: ð4Þ

In this formulation, the error for each data point is kxi−Ayik, which is not squared; thus, the
impact of large errors caused by outliers does not fully dominate the objective function[32].

The NMF-L2,1 optimization problem is formulated as

min
Y

kX�AYk2;1 þ lkYk2;1; st: Y > 0;A > 0: ð5Þ

The problem in Eq (4) is equivalent to

min
Y;E

kEk2;1 þ kYk2;1; st: AYþ lE ¼ X;Y > 0;A > 0: ð6Þ

Thus, the above problem can be rewritten as

min
Y;E

Y

E

" #�����
�����
2;1

; st: ½A lI �
Y

E

2
64

3
75 ¼ X;Y > 0 ;A > 0; ð7Þ

where I ∊ Rn×n is an identity matrix, n = c. Let B = [A λI] ∊ Rn×b andU ¼ ½YT ET �T 2 Rb�c,
where b = d + n.

Then, the problem can be reformulate das

min
U>0

kUk2;1; st:BU ¼ X : ð8Þ

How can this optimization problem handle high dimensional, nonnegative, noisy and
sparse data simultaneously? The reasons are as follows:

1. The L2,1-norm error function term is designed to diminish the impact of noise or outliers
contained in the original data. As a result, we can expect to obtain cleaner data for subse-
quent analyses.

2. This clean data may be not sparse–some features may be irrelevant to the learning proce-
dure—so the L2,1-norm regularization term[33]can be used to generate a sparse solution.

3. In the next section, we will demonstrate that the above conditions produce more effective
models, especially for datasets that are sparse, nonnegative, high dimensional and noisy.

2.4 An Efficient Algorithm for NMF-L2,1
To solve the constrained optimization problem in Eq (7), Nie et al.[34]have provided an effi-
cient algorithm. Here, we briefly introduce the efficient algorithm.

By introducing Lagrangian multiplier Λ, we first give the Lagrangian function as follows:

LðUÞ ¼
Xb

i¼1
kuik2 � TrðLTðBU�XÞÞ; ð9Þ

where Tr() is the trace function of a matrix. Here we introduce the augmented cost-function

JðU;qÞ ¼ TrðUTQUÞ � TrðLTðBU�XÞÞ; ð10Þ
where q ∊ Rb is an auxiliary vector and Q = diag(q) is a diagonal matrix with the diagonal
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element

Q ¼ diagðqÞ ¼ diag
1

2kuiþεk2

� �
; ð11Þ

in which ε is a positive number and infinitely close to, but not equal to, zero.
Taking the derivative of J(U, q) with respect to U to zero, we obtain:

@JðU;qÞ
@U

¼ 2QU�BTL ¼ 0: ð12Þ

By multiplying the two sides of Eq (11) by BQ−1 and using the constraint BU = X, we obtain

2BU�BQ�1BTL ¼ 0

! 2X�BQ�1BTL ¼ 0

! L ¼ 2ðBQ�1BTÞ�1
X:

ð13Þ

Then, we obtain:

U ¼ Q�1BTðBQ�1BTÞ�1
X: ð14Þ

More details of the algorithm can be found in[34]. Here, we summarize our method in
Box 1. In each iteration, U is calculated with the currentQ. Then, Q is updated based on the
current U. The iteration procedure is repeated until the algorithm converges.

In this paper, the characteristic genes are extracted by the coefficient matrix A. We summa-
rize the NMF-L2,1 method to extract core genes as follows:

1. Create the data matrix X based on gene expression data.

2. Obtain the basis matrix A by using the NMF-L2,1 method.

3. Extract characteristic genes from non-zero entries in matrix A.

4. Exploit the Gene Ontology (GO) tool to investigate the extracted genes.

3 Results and Discussion
In this section, several experiments are carried out. In the first subsection, the NMF-L2,1
method is compared with the following methods for a gene expression dataset obtained from
plants responding to abiotic stresses: (a) the PMDmethod (proposed by Witten et al. [15]); (b)
the SPCA method (proposed by Journée et al. [35]); and (c) the NMFSC method (proposed by
Patrik O. Hoyer[36]);(d) the CIPMDmethod (proposed by Liu et al.[13]); (e) PRFE method
(proposed by Liu et al. [14]). In the second subsection, the six methods are compared for
Medulloblastoma and leukemia tumor datasets.

3.1 Results for Plant Gene Expression Data
Plants are continually challenged by environmental parameters such as drought, salt, cold,
osmotic pressure, and UV-B light [37]. Among plant genes, there must exist a specific set of
interacting genes that respond to each abiotic stress. Thus, it is important but challenging to
extract genes responding to each abiotic stress from plant gene expression data.

3.1.1 Data source. The gene expression datasets used in our experiment were downloaded
from the NASC Arrays [http://affy.arabidopsis.info/link_to_iplant.shtml]. Each sample profiles
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22810 genes. The plant gene expression datasets are shown in supplementary file (S1 Table).
Table 1 lists the reference numbers and sample numbers for each stressor.

3.1.2 The selection of parameter λ. In order to obtain the most effective results, we used
gene expression data to train the parameter λ. For each sample, the parameter varied from 0–1
with a step of 0.1, and GO Terms were used to select the most appropriate parameter. The
results are provided in Table 2.

3.1.3 gene ontology (GO) analysis. In this paper, GO Term is used to evaluate the genes
that responded to plant abiotic stressors[38]. GO Term Finder analysis provided information
to aid with the biological interpretation of high-throughput experiments. GO Term Finder is
available publicly at [http://go.princeton.edu/cgi-bin/GOTermFinderS] [39]; it aims to describe
genes in the query/input set and to find the genes that may have something in common.

For the sake of simplicity, 500 genes were selected from the gene expression data by the
NMFSC, PMD, SPCA, CIPMD, PRFE and NMF-L21 methods. The threshold parameters used
were: maximum P-value = 0.01, and minimum number of genes = 2.

3.1.4 Response to stimulus. Table 3 summarizes the results of the response to a stimulus
whose background frequency in the TAIR (A.thaliana (common wallcress))set was 6617/30320
(21.8%). The results are presented according to P-value and sample frequency. The P-value
was calculated using a hyper-geometric distribution (details can be seen in[40]). The sample
frequency denotes the number of the characteristic genes selected. For example, 330/500
denotes that 330 genes corresponding to GO terms out of 500 genes were selected by the
method.

Table 1. Reference and Sample Numbers for Stress Types.

Stress type Drought Salt UV-B Cold Heat Osmotic Control

Reference Number 141 140 144 138 146 139 137

Sample Number 6 7 6 7 8 6 9

doi:10.1371/journal.pone.0158494.t001

Table 2. The Selection of Parameter λ.

Stress type Drought Salt UV-B Cold Heat Osmotic

Shoot 0.3 0.3 0.2 0.5 0.3 0.3

Root 0.3 0.3 0.3 0.3 0.3 0.3

doi:10.1371/journal.pone.0158494.t002

Box 1. NMF-L2,1 method.
Input: X ∊ Rn×c and parameter λ.
Output: Y ∊ Rd×c,A ∊ Rn×d.
1: Initialize Qt 2 Rb×b as an identity matrix and A ∊ Rn×d as a nonnegative
matrix,
set t = 0.

2: repeat

ComputeUtþ1 ¼ Q�1
t BTðBQ�1

t BTÞ�1
X.

Setting U > 0.
Compute diagonal matrix Qt+1 according to Eq (11).
t = t+1.
A and Y are obtained from U according to Eq (7).

Until convergence.
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As listed in Table 3, the six methods were compared by sample frequency and P-value.
NMFSC, NMFL21, PRFE, SPCA and PMD are unsupervised methods, so we first compare the
five algorithms. In the 12 terms, the results show that our method could extract more charac-
teristic genes than the other methods for eight of twelve samples. For example, for shoot sam-
ples exposed to UV-B stress, the sample frequency was 76.4% by our method, 72% by NMFSC,
72.4% by PMD, 66.4% by SPCA and 61.8% by PRFE. This shows that our method is markedly
improved over PRFE, PMD and SPCA. When compared with the supervised method CIPMD,
except the salt and UV-B stress, our methods performs worth than CIPMD. Generally speak-
ing, since supervised methods take the class labels into consideration, they usually have better
performance than unsupervised methods.

3.1.5 Response to the abiotic stimulus. Table 4 summarizes the results of the six methods
for datasets describing the response to abiotic stimulus whose background frequency in the
TAIR (A.thaliana (common wallcress)) set is 1539/29556 (5.2%). The numbers of characteristic
genes and the P-values of genes responding to an abiotic stimulus (GO:0009628) in root and
shoot samples are listed in Table 4.

As described above in the ‘Response to stimulus’ section, we first compare the five algo-
rithms NMFSC, NMFL21, PRFE, SPCA and PMD. From the results we can see that our
method could extract more characteristic genes than the PMD and SPCA methods for all data-
sets. For the four sample datasets (drought, salt, UV-B and osmotic), our method performed
worse than NMFSC, but superior to PMD and SPCA. When compared with the supervised

Table 3. Response to Stimulus (GO: 0050896).

Stress
type

NMF-L21 NMFSC PMD SPCA CIPMD PRFE

P-value Sample
frequency

P-value Sample
frequency

P-value Sample
frequency

P-
value

Sample
frequency

P-value Sample
frequency

P-
value

Sample
frequency

Drought s 2.77E-
122

353/500
70.60%

5.28E-
109

342/500
68.40%

1.09E-
55

276/500
55.20%

1.19E-
55

273/500
54.60%

9.08E-
106

338/
50067.7%

3.39E-
93

314/
50062.8%

Drought r 2.69E-
69

293/500
58.60%

2.39E-
88

318/500
63.60%

3.67E-
65

287/500
57.40%

5.27E-
65

289/500
57.70%

5.54E-
101

333
\50066.6%

3.49E-
41

240/50048%

Salt s 7.71E-
53

271/500
54.20%

2.01E-
52

268/500
53.70%

3.78E-
48

262/500
52.40%

3.31E-
21

262/500
52.40%

2.00E-
81

309/
50061.9%

1.72E-
39

236/
50047.5%

Salt r 5.64E-
96

326/500
65.20%

3.69E-
94

325/500
65.00%

1.25E-
80

314/500
62.80%

1.42E-
34

237/500
47.40%

1.31E-
70

295/50059% 2.95E-
55

163/
50052.6%

UV-B s 6.26E-
152

382/500
76.40%

1.62E-
126

360/500
72.00%

4.99E-
128

362/500
72.40%

2.59E-
33

332/500
66.40%

1.81E-
103

335/
50067.3%

7.72E-
89

308/
50061.8%

UV-B r 5.85E-
42

247/500
49.40%

3.81E-
64

286/500
57.20%

1.21E-
36

242/500
48.20%

9.56E-
22

210/500
42.50%

6.85E-
95

326/
50065.2%

3.16E-
34

227/
50045.5%

Cold s 1.61E-
85

312/500
62.40%

3.81E-
77

304/500
60.80%

1.58E-
66

294/500
58.80%

4.31E-
62

283/500
56.60%

7.52E-
98

329/
50065.9%

1.10E-
47

250/
50050.3%

Cold r 2.56E-
81

309/500
61.80%

7.59E-
79

306/500
61.20%

8.44E-
72

291/500
58.20%

3.08E-
61

281/500
56.20%

6.92E-
105

337/
50067.5%

7.84E-
46

248/
50049.6%

Heat s 3.43E-
25

218/500
43.60%

4.28E-
19

204/500
40.80%

2.56E-
23

220/500
44.00%

2.56E-
23

300/500
46.40%

2.39E-
98

330/
50066.0%

9.16E-
31

220/
50044.2%

Heat r 3.96E-
23

214/500
42.80%

3.22E-
16

197/500
39.40%

1.18E-
19

205/500
41.0%

1.69E-
17

200/500
40.00%

7.27E-
105

337/
50067.5%

2.10E-
14

182/
50036.6%

Osmotic s 5.96E-
73

298/500
59.60%

1.02E-
82

311/500
62.20%

3.07E-
75

294/500
58.80%

4.20E-
49

263/500
52.60%

6.15E-
92

322/
50064.5%

2.17E-
51

257/
50051.4%

Osmotic r 5.84E-
55

273/500
54.40%

1.65E-
47

260/500
52.10%

2.67E-
21

221/500
44.20%

1.12E-
34

237/500
47.50%

2.54E-
76

302/
50060.2%

9.00E-
25

208/
50041.6%

‘s’ denotes shoot samples; ‘r’ denotes root samples.

doi:10.1371/journal.pone.0158494.t003
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method CIPMD, except the salt, heat and UV-B stress, CIPMD performs better than other
methods.

3.1.6 Characteristic terms. In Table 5, we list the characteristic terms. Our method out-
performed SPCA and PMD for all 12 items and outperformed NMFSC for seven items. Only
in one item (shoot sample in UV-B) the PRFE outperforms than our method. However, for
one of the twelve items (cold in root) our method produced the same result as NMFSC. From
these results, it can be concluded that our method is more effective than other unsupervised
methods. The response to water deprivation (GO:0009414) for shoot samples is also analyzed
in Table 5. The background frequency of the response to water deprivation (GO: 0009414) is
1.4%. It is obvious that NMF-L2,1 is able to extract more characteristic genes than the other
methods, and the sample frequency in response to water deprivation by our method is 18.1%,
while it is 13.2% for NMFSC, 11.9% for PMD, 16.8% for CIPMD, 11.2% for PRFE and 8.2% for
SPCA, indicating that our method performs 6.2% better than PMD, 7% better than PRFE and
almost 10% better than SPCA.

3.2 Results for tumor datasets. Two tumor datasets were also analyzed to verify the per-
formance of the proposed method. The medulloblastoma dataset contains 34 samples, which
can be divided into 25 tumor and 9 normal tissue samples, and assesses the expression of 5893
genes [41]. The leukemia dataset consists of 5000 genes and 38 samples [42]. The samples
include 27 tumor and 11 normal tissue samples.

To make a fair comparison, all the six methods extracted 100 genes as characteristic genes
from the two tumor datasets. The Gene Ontology (GO) enrichment and functional annotation

Table 4. Response to an Abiotic Stimulus (GO:0009628).

Stress
type

NMF-L21 NMFSC PMD SPCA CIPMD PRFE

P-
value

Sample
frequency

P-
value

Sample
frequency

P-
value

Sample
frequency

P-
value

Sample
frequency

P-
value

Sample
frequency

P-
value

Sample
frequency

Drought s 6.32E-
59

182/
50036.4%

4.89E-
36

149/500
29.80%

3.91E-
34

107/500
21.40%

7.50E-
21

87/500
17.00%

2.28E-
50

170/50034% 4.85E-
28

136/
50027.2%

Drought r 1.82E-
22

126/500
25.20%

3.65E-
23

127/500
25.40%

1.78E-
10

68/500
13.60%

4.14E-
08

63/500
12.60%

1.21E-
55

177/
50035.5%

8.05E-
60

183/
50036.6%

Salt s 2.71E-
50

170/500
34.00%

9.95E-
43

159/500
31.80%

9.93E-
39

113/500
22.60%

9.83E-
33

105/500
21.00%

5.65E-
44

161/
50032.2%

1.00E-
39

114/
50022.8%

Salt r 7.32E-
36

149/500
29.80%

8.58E-
47

165/500
33.00%

1.36E-
15

78/500
15.60%

6.18E-
12

71/500
14.00%

5.52E-
57

295/50059% 7.90E-
39

153/
50030.8%

UV-B s 9.11E-
46

164/500
32.80%

4.95E-
49

168/500
33.80%

1.76E-
13

74/500
14.80%

7.84E-
23

90/500
18.00%

7.04E-
55

176/
50035.3%

1.53E-
27

135/
50027.1%

UV-B r 1.17E-
14

110/500
22.00%

2.75E-
22

100/500
20.00%

5.30E-
10

67/500
13.40%

8.00 E-
4

52/500
10.00%

5.20E-
61

184/
50036.9%

4.30E-
51

171/
50034.3%

Cold s 5.78E-
64

188/
50037.60%

3.85E-
61

183/500
36.60%

5.82E-
35

106/500
21.60%

1.17E-
19

85/500
17.00%

8.99E-
52

172/
50034.4%

5.02E-
56

178/
50035.6%

Cold r 1.05E-
53

175/
50035.00%

1.59E-
52

173/500
34.60%

2.74E-
23

91/500
18.20%

4.10E-
19

84/500
16.80%

6.31E-
58

180/
50036.1%

4.24E-
61

184/
50037.0%

Heat s 7.16E-
22

125/
50025.00%

3.43E-
76

118/500
23.60%

1.44E-
24

93/500
18.60%

4.64E-
22

89/500
17.80%

1.13E-
52

173/
50034.6%

1.37E-
35

148/
50029.8%

Heat r 9.27E-
34

145/
50029.00%

6.04E-
32

142/500
28.40%

1.41E-
15

78/500
15.60%

1.35E-
08

64/500
12.80%

1.64E-
52

173/
50034.6%

1.18E-
49

169/
50033.9%

Osmotic s 6.35E-
56

178/500
35.60%

8.22E-
61

184/500
36.80%

6.55E-
38

112/500
22.40%

2.02E-
18

83/500
16.60%

4.88E-
47

165/
50033.1%

4.76E-
28

136/
50027.2%

Osmotic r 1.32E-
49

169/
50033.80%

2.01E-
39

154/500
30.80%

1.40E-
14

76/500
15.20%

2.87E-
17

81/500
16.20%

1.28E-
47

166/
50033.3%

1.67E-
54

176/
50035.2%

‘s’ denotes shoot samples; ‘r’ denotes root samples.

doi:10.1371/journal.pone.0158494.t004
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of the extracted genes by all six methods was performed by ToppFun, which is publicly avail-
able at [http://toppgene.cchmc.org/enrichment.jsp].

Tables 6 and 7 list the top 10 closely related terms with P-value corresponding to different
methods for the two tumor datasets. From Table 6, it can be seen that NMF-L2,1 outperforms
the other three methods for all terms. For example, for the term M11197 in Table 6, the P-
value from NMF-L2,1 is 7.36E-129 and 70/389 denotes that NMF-L2,1 extracts 70 genes corre-
sponding to M11197, whereas NMFSC, PMD,CIPMF, PRFE and SPCA extracted 62, 62,48, 52
and 55 genes corresponding to M11197, respectively, and the total number of genes corre-
sponding to M11197 was 389. In Table 7 we can see that our method outperforms than other
method in seven terms, only in other three terms(17092989, 19755675, 11108479) PRFE have a
lower P-value than our method. Thus, we can conclude that our method extracts more genes
than others.

In summary, we conclude that our method is generally superior to others and is effective for
the extraction of genes.

4 Conclusions
In this paper, we proposed an effective method to select characteristic genes withL2,1-norm
minimization of both the error function and the regularization term. The L2,1-norm-based
error function is robust to outliers and noise in the data points and is computationally efficient.
Furthermore, the L2,1-norm-based regularization term is used to generate a sparse solution.
We also used the nonnegative factorization method to avoid the problems stemming from the

Table 5. Characteristic Terms Selected fromGO by Algorithms.

Stress
type

GO Terms Background
frequency

Sample frequency and ratio

NMF-L21 NMFSC PMD SPCA CIPMD PRFE

Drought s GO:0009414 response to water
deprivation

207/298870.70% 91/
50018.20%

66/500
13.20%

47/500
9.40%

23/500
4.60%

84/
50016.8%

56/
50011.2%

Drought r GO:0009415 response to water
deprivation

207/298870.70% 58/500
11.60%

62/500
12.40%

26/500
5.20%

24/500
4.80%

69/
50013.8%

30/5000.6%

Salt s GO:0009651 response to salt
stress

395/29887 1.30% 80/500
16.00%

80/500
16.00%

41/500
8.20%

28/500
5.60%

64/
50012.8%

42/5008.4%

Salt r GO:0009651 response to salt
stress

395/298871.30% 74/500
14.80%

76/500
15.20%

33/500
6.60%

22/500
4.40%

57/
50011.4%

37/5007.4%

UV-B s GO:0009416 response to light
stimulus

557/298871.90% 31/5006.20% 24/
5004.80%

23/500
4.60%

30/500
6.00%

none 40/5008%

UV-B r GO:0009416 response to light
stimulus

557/298871.90% 34/5006.80% 24/
5004.80%

24/500
4.80%

22/
5004.40%

none none

Cold s GO:0009409 response to cold 276/298870.90% 62/500
12.40%

59/500
11.80%

44/500
8.80%

34/500
6.80%

54/
50019.8%

57/
50011.4%

Cold r GO:0009409 response to cold 276/29887 0.90% 67/500
13.40%

67/500
13.40%

43/500
8.60%

33/500
6.60%

56/
50011.2%

48/5009.6%

Heat s GO:0009408 response to heat 140/29887 0.50% 67/500
13.40%

59/
50011.8%

45/500
9.00%

30/500
6.00%

97/
50019.4%

59/
50011.8%

Heat r GO:0009408 response to heat 140/298870.50% 80/500
16.00%

91/500
18.20%

43/500
8.60%

28/500
5.60%

93/
50018.6%

52/
50010.4%

Osmotic s GO:0006970 response to
osmotic stress

474/29887 1.60% 91/
50018.20%

94/500
18.80%

55/500
11.00%

29/500
5.80%

95/50019% 55/50011%

Osmotic r GO:0006970 response to
osmotic stress

474/298871.60% 80/500
16.00%

79/500
15.80%

39/500
7.80%

27/500
5.40%

68/
50013.6%

47/5009.4%

‘s’ denotes shoot samples; ‘r’ denotes root samples.

doi:10.1371/journal.pone.0158494.t005
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high-dimensional and nonnegative nature of the data. In summary, our method can cope with
high dimensionality, non-negativity, sparseness and noise simultaneously.

Furthermore, the genes selected by our method and others from both plant and tumor data-
sets were compared using GO enrichment. These results indicate that the proposed NMF-L2,1
method is superior to SPCA and PMD for selecting characteristic genes.

Table 6. P-value Terms for the Medulloblastoma Dataset.

ID Name P-value Sample frequency

NMF-L21 NMFSC PMD SPCA CIPMD PRFE

M11197 Housekeeping genes identified as expressed
across 19 normal tissues

7.63E-129
70/389

3.28E-121
62/389

5.59E-92 59/
389

6.28E-81 55/
389

1.227E-6848/
389

7.112E-7552/
389

12456497 Human Leukemia Durig03 88 genes 1.35E-11851/
81

1.29E-99 43/
81

3.26E-77 38/
81

4.90E-79 39/
81

1.592E-7738/
81

2.331E-5831/
81

GO:0022626 Cytosolic ribosome 9.06E-111
54/96

8.62E-81 37/
96

3.03E-56 32/
96

7.30E-68 37/
96

1.152E-3825/
96

2.955E-4528/
96

GO:0006415 Translational termination 8.43E-108
53/95

7.19E-78 37/
95

6.91E-56 32/
95

9.59E-68 37/
95

1.388E-3526/
95

2.146E-3426/
95

GO:0006414 Translational elongation 1.35E-105
56/130

1.86E-77 40/
130

2.04E-57 35/
130

7.25E-66 39/
130

1.311E-4935/
130

6.78E-3628/
130

GO:0006614 SRP-dependent cotranslational protein
targeting to membrane

7.66E-104
53/107

5.26E-75 37/
107

6.38E-54 32/
107

2.18E-65 37/
107

4.160E-5432/
107

1.499E-4026/
107

GO:0044391 ribosomal subunit 1.86E-99 55/
148

1.54E-70 38/
148

1.97E-51 33/
148

7.75E-62 38/
148

1.317E-3023/
148

3.727E-3928/
148

GO:0003735 Structural constituent of ribosome 4.11E-95 54/
156

3.35E-67 37/
156

2.38E-48 32/
156

8.85E-59 37/
156

9.511E-4633/
156

3.656E-3427/
156

GO:0005198 Structural molecule activity 5.09E-65 58/
641

1.07E-54 44/
641

9.98E-37 38/
641

2.68E-44 43/
641

1.952E-2628/
641

1.192E-2935/
641

GO:0003723 RNA binding 9.48E-57 63/
1568

2.16E-39 47/
1568

7.72E-26 41/
1568

2.37E-30 45/
1568

7.033E-2037/
1568

1.153E-2037/
1568

doi:10.1371/journal.pone.0158494.t006

Table 7. P-value Terms for the Leukemia Dataset.

ID Name P-value sample frequency

NMF-L21 NMFSC PMD SPCA CIPMD PRFE

M11197 Housekeeping genes identified as expressed across
19 normal tissues.

3.65E-41 40/
389

3.49E-40 33/
389

1.57E-30
21/389

5.62E-23
23/389

2.584E-
1820/389

1.05E-
3230/389

17092989 Human Lymphoma Foge l07 33 genes 1.20E-33 18/
33

6.25E-29 14/
33

3.49E-32
12/33

2.57E-19
10/33

3.93E-2212/
33

8.43E-
5123/33

19755675 Human Leukemia Li09 419 genes 4.55E-25 25/
410

4.27E2220/
410

4.48E-21
18/410

none 6.82E-2223/
410

5.88E-
2928/410

19699293 Human Leukemia Bienkowska09 80 genes 2.17E-22 14/
75

2.88E-15 9/75 8.91E-16
11/75

1.95E-13 9/
75

2.58E-1712/
75

3.03E-
1712/732

15474998 Mouse StemCell Lindmark04 950 genes 4.71E-21 24/
732

2.45E-20 22/
732

4.89E-18
20/732

1.52E-15
20/732

none none

16872506 Human Leukemia Yukinawa06 2000 genes 1.54E-20 33/
1505

4.05E-18 28/
1505

1.10E-16
23/1505

none none none

18689800 Human EmbryonicStemCell Thomas08 1088 genes 1.97E-20 29/
1023

1.06E-17 26/
1023

4.59E-19
21/1023

1.03E-10
20/1023

2.28e-1121/
1023

3.62E-
1222/1023

11108479 Human Leukemia Ben-Dor00 143 genes 1.22E-18 14/
129

1.17E-15 11/
129

1.10E-16
12/129

1.61E-15
12/129

1.424E-
1714/129

1.45E-
2217/129

12077300 Human Lymphoma Lossos02 152 genes 5.43E-17 13/
99

6.91E-14 10/
99

8.21E-16
10/99

3.41E-129/
99

none none

M11620 Genes induced in the liver during hepatitis B (HBV)
viral clearance in chimpanzees.

3.20E-15 12/
101

3.27E-12 9/
101

3.58E-129/
101

4.18E-12 8/
101

6.96E-119/
101

5.68E-
1411/101

doi:10.1371/journal.pone.0158494.t007
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