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ABSTRACT  

BACKGROUND: Chronological age (CA) is a predictor of adverse COVID-19 outcomes; 

however, CA alone does not capture individual responses to SARS-CoV-2 infection. Here, 

we evaluated the influence of aging metrics PhenoAge and PhenoAgeAccel to predict 

adverse COVID-19 outcomes. Furthermore, we sought to model adaptive metabolic and 

inflammatory responses to severe SARS-CoV-2 infection using individual PhenoAge 

components. 

METHODS: In this retrospective cohort study, we assessed cases admitted to a COVID-19 

reference center in Mexico City. PhenoAge and PhenoAgeAccel were estimated using 

laboratory values at admission. Cox proportional hazards models were fitted to estimate risk 

for COVID-19 lethality and adverse outcomes (ICU admission, intubation, or death). To 

explore reproducible patterns which model adaptive responses to SARS-CoV-2 infection, we 

used k-means clustering using PhenoAge components. 

RESULTS: We included 1068 subjects of whom 222 presented critical illness and 218 died. 

PhenoAge was a better predictor of adverse outcomes and lethality compared to CA and 

SpO2 and its predictive capacity was sustained for all age groups. Patients with responses 

associated to PhenoAgeAccel>0 had higher risk of death and critical illness compared to 

those with lower values (log-rank p<0.001). Using unsupervised clustering we identified four 

adaptive responses to SARS-CoV-2 infection: 1) Inflammaging associated with CA, 2) 

metabolic dysfunction associated with cardio-metabolic comorbidities, 3) unfavorable 

hematological response, and 4) response associated with favorable outcomes. 

CONCLUSIONS: Adaptive responses related to accelerated aging metrics are linked to 

adverse COVID-19 outcomes and have unique and distinguishable features. PhenoAge is a 

better predictor of adverse outcomes compared to CA. 

Keywords: SARS-CoV2; COVID-19; Biological Aging; Inflammaging, PhenoAge 
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BACKGROUND 

Coronavirus disease (COVID-19), caused by SARS-CoV-2 infection, has proven to be a 

major health concern worldwide. Older chronological age and the presence of chronic 

comorbidities have been associated with a more severe disease course and increased mortality 

in COVID-19 [1–3]. Chronological age (CA) has been shown to be inadequate for resource 

allocation and risk stratification in the setting of multiple diseases, including COVID-19; 

consequently, alternative metrics have emerged to estimate mortality, since aging is 

recognized to vary across all individual at different rates independent of CA [4–6]. Recently, 

new tools have been developed to estimate the aging rate based on biomarkers commonly 

used in clinical practice and, to date, there is only one study assessing the impact of a 

biological aging metric on COVID-19 [7]. While there are a wide range of tools which can be 

used to estimate biological aging, those derived from clinical markers such as PhenoAge and 

PhenoAgeAccel can be particularly useful as some of the parameters used in their estimation 

may overlap with those which are altered within pathophysiological processes in COVID-19, 

particularly inflammatory markers, fasting glucose and serum albumin [8]. 

Many of the pathways assessed by PhenoAge have implications in the adaptation to 

exogenous and endogenous stressors. Hence, we hypothesized that PhenoAge and 

PhenoAgeAccel might capture adaptive responses to SARS-CoV-2 infection which alter the 

metabolic dynamic and physiological responses to COVID-19 and may aggravate and 

intensify inflammation and increase risk for adverse outcomes and lethality [9,10]. Given the 

overlapping pathways between PhenoAge, PhenoAgeAccel and the adaptive response to 

severe SARS-CoV-2 infection, we consider that these metrics in an acute setting might model 

physiological adaptations to infection. Therefore, we aimed to identify the role of PhenoAge 

and PhenoAgeAccel as predictors of adverse outcomes and lethality related to COVID-19 

beyond CA and its individual components. Furthermore, we sought to apply multivariate 
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clustering techniques to explore the presence of reproducible patterns which model adaptive 

responses to severe SARS-CoV-2 infection. 

METHODS 

Study design and setting 

We conducted a retrospective study comprising a cohort of hospitalized patients aged ≥18 

years recruited from March 16th to August 14th, 2020 with confirmed SARS-CoV-2 

infection by RT-qPCR test from nasopharyngeal swabs at the Instituto Nacional de Ciencias 

Médicas y Nutrición Salvador Zubirán (INCMNSZ), a COVID-19 reference center in Mexico 

City. Amongst all evaluated patients within the study period, we only considered patients 

with complete data to estimate PhenoAge (n=1068). All proceedings were approved by the 

INCMNSZ Research and Ethics Committee, written informed consent was waived due to the 

retrospective nature of the study. A complete diagram of study recruitment is presented in 

Supplementary Figure 1. 

Clinical information 

Information collected at the time of triage and emergency department evaluation included 

demographic variables, medical history of comorbidities including type 2 diabetes (T2D), 

obesity, chronic obstructive pulmonary disease (COPD), asthma, hypertension, 

immunosuppression, HIV infection, cardiovascular disease (CVD), chronic kidney disease 

(CKD), chronic liver disease (CLD), smoking habits and current symptoms, as described 

elsewhere [11]. Physical examination included weight (in kilograms), height (in meters) and 

vital signs including oxygen saturation measured by pulse oximetry (SpO2). Baseline testing 

was performed for complete blood count, basic metabolic panel, liver function tests, 

inflammatory biomarkers and arterial blood gas. A complete list of clinical variables and 

laboratory measures is provided in Supplementary Methods. All analyses were performed 

using only clinical and laboratory measures obtained at admission. 
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PhenoAge and PhenoAgeAccel calculation 

PhenoAge is a biological age estimation calculated using baseline measures for the following 

parameters: CA, glucose, albumin, creatinine, alkaline phosphatase (ALP), C-reactive protein 

(CRP), leucocyte count, lymphocyte percentage, red blood cell distribution width (RDW) and 

mean corpuscular volume (MCV). PhenoAgeAccel, a calculation obtained by regressing 

PhenoAge values onto CA using linear regression, provides an unbiased interpretation of the 

rate of aging independently of CA: A PhenoAgeAccel value of 0 represents a phenotypic age 

consistent with an individual’s CA, while negative and positive values represent the 

biochemical profile of a chronologically younger and a chronologically older individual, 

respectively [12,13]. In the context of SARS-CoV-2 infection, the rate of aging cannot be 

formally assessed by PhenoAgeAccel due to the underlying acute inflammatory process; 

therefore, we hypothesized that patients with responses that corresponded to those expected 

for their CA would have a PhenoAgeAccel ≤0 and those who had a worse response than 

expected would have a PhenoAgeAccel >0 years. 

Categorization of patients and definition of outcomes 

For the purpose of this study, patients admitted to the intensive care unit (ICU) or who 

required invasive mechanical ventilation (IMV) were categorized as critical cases and 

patients who died were termed lethal cases; the rest of inpatients were categorized as severe 

cases. Our primary outcomes were both death and a composite event of either death, ICU 

admission or IMV that we termed “adverse outcomes”. Attending physicians, based on 

clinical judgment, determined ICU requirement. Clinical recovery was defined as hospital 

discharge based on the absence of clinical symptoms requiring inpatient management. 

Follow-up time was estimated from date of symptom onset to last follow-up (censoring) or 

death, whichever occurred first. 
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Statistical analysis 

Descriptive statistics were presented as absolute frequencies and percentages for categorical 

variables and as mean ± SD or median (IQR) for continuous variables. We performed 

comparisons of for PhenoAccelAge cut-offs using Student’s t-test for symmetric, normally 

distributed continuous variables or the Mann-Whitney U test otherwise. Multiple-group 

comparisons were carried out using one-way analysis of variance (ANOVA) or Kruskal-

Wallis test with post hoc Tukey or Dunn test, where appropriate. Categorical variables were 

compared using the chi-square test or the Fisher’s exact test for comparison of groups with 

<5 success counts. Missing data was assumed missing at random and was completed using 

multiple imputation by chained equations using the mice R package. Statistical significance 

was set at a two-tailed p-value <0.05; all statistical analyses were conducted using R version 

4.0.2. 

Association of PhenoAge and PhenoAgeAccel with clinical status 

We evaluated the behavior of PhenoAge and PhenoAgeAccel across comorbidity and 

severity spectrums by comparing values between severe, critical, and lethal cases and with an 

increasing number of comorbidities. Additionally, we conducted a sensitivity analysis where 

we stratified age in <50, 50-70 and >70 years to assess this relationship across different age 

groups. We also compared characteristics of patients with PhenoAgeAccel≤0 to those with 

PhenoAgeAccel>0; continuous variables were transformed to approach a symmetric 

distribution and standardized using z-scores. Furthermore, we performed a survival analysis 

to assess occurrence of adverse outcomes and lethality alone across subgroups, these results 

are presented as Kaplan-Meier curves compared with log-rank tests.  
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Cox regression analyses and performance of predictions 

We modeled univariate Cox proportional-hazards regressions to predict the development of 

adverse outcomes and lethality alone for COVID-19 with SpO2, PhenoAge, PhenoAgeAccel 

and all individual components of PhenoAge. To determine which variables were better 

predictors compared to CA, we examined the C-statistic and differences in Bayesian 

Information Criterion (ΔBIC): a positive ΔBIC indicates that the model is a better predictor 

than CA. For multivariate analyses we fitted Cox regression models assessing the incidence 

of adverse outcomes or lethality alone for COVID-19: the first model included PhenoAge 

components which were chosen by minimization of BIC and the second model included only 

PhenoAgeAccel and CA. All models were further adjusted for sex and comorbidities as a 

sensitivity analysis due to the reported role of these variables in modifying the risk of 

developing adverse outcomes in COVID-19 patients [14]. Predictive performance of the 

individual predictors from these models were evaluated using areas under the receiving 

operating characteristic curve (AUROC) and clinical decision curves using the pROC and 

rmda R packages. 

Clustering of PhenoAge components to characterize adaptive responses to COVID-19 

To identify different adaptive responses to SARS-CoV-2 infection captured by PhenoAge we 

carried out an unsupervised k-means clustering analysis. Since not all individual PhenoAge 

components were associated with outcomes after adjustment for covariates, we decided to 

perform variable selection to optimize multivariate clustering. Variable selection was 

performed by regressing individual PhenoAge components to lethality with an Elastic Net 

Cox penalization parameter using k-fold cross-validation (k=10, α=0.5); z-scores of selected 

variables were used for k-means clustering using the fpc R package with 100 runs. The 

optimal number of clusters was determined comparing 30 indices with the NbClust R 

package and cluster stability was evaluated with the Jaccard similarity index (>0.7) using 
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1,000 bootstrapped samples with the clusterboot R package. The resulting subgroups were 

extensively characterized by comparing adverse outcomes, comorbidities, symptom 

presentation, demographic variables, and laboratory measures. 

RESULTS 

Study population 

We included 1,068 hospitalized COVID-19 patients with a median age of 53 years (44–63) 

and a median PhenoAge of 82.4 years (70.5–95.7), whereof 675 (63.2%) were male subjects. 

Most patients had at least one comorbidity (73.2%), particularly obesity, hypertension and 

type 2 diabetes mellitus (T2D). During the follow-up, 628 patients (58.8%) were severe 

cases, 222 (20.8%) were critical cases and 218 (20.4%) were lethal cases; overall, 440 

patients (41.2%) had adverse outcomes for COVID-19 (Table 1). 

PhenoAge and PhenoAgeAccel predict adverse COVID-19 outcomes  

We observed a significant increase in both PhenoAge and PhenoAgeAccel with aggravation 

of clinical status and this tendency was preserved when stratifying by number of 

comorbidities and age categories (Figure 1A-D, Supplementary Figure 2). Overall, we 

found that a high proportion of critical and lethal cases had elevations in PhenoAge and most 

of them had PhenoAgeAccel >0 (Figure 1E-F). Using Cox regression, we found that CRP, 

lymphocytes percentage, albumin, SpO2, PhenoAge and PhenoAgeAccel were better 

predictors for adverse outcomes compared to CA alone. For lethality, only SpO2 and 

PhenoAge were better predictors than CA. (Supplementary Tables 1 and 2). In multivariate 

Cox regression models, we found that the model comprising lymphocyte percentage, glucose, 

CRP and CA was the best to predict adverse outcomes, while the model comprising albumin, 

creatinine, CRP and CA was the best to predict lethality. Notably, the models including only 

PhenoAgeAccel and CA had a comparable predictive performance for both adverse outcomes 

and lethality, even after adjusting for sex and comorbidities (Supplementary Tables 3 and 
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4). When assessing the predictive performance of these selected variables, we found that 

PhenoAgeAccel had a better performance than CA and PhenoAge for adverse outcomes, 

while the AUC for PhenoAge was higher in the prediction of lethality (p<0.001). Similar 

results were displayed in clinical decision curves (Supplementary Figure 3). 

PhenoAgeAccel differentiates clinical outcomes independently of CA 

We compared demographic and clinical characteristics between patients with 

PhenoAgeAccel≤0 or PhenoAgeAccel>0, with the latter indicating a response to stress higher 

than that expected by CA. Cases with PhenoAgeAccel>0 had higher rates of lethality, ≥1 

comorbidity, T2D, early-onset diabetes (T2D diagnosis at ≤40 years), hypertension and 

immunosuppression; these patients had increased PhenoAge and little differences in CA 

(Table 1). Patients with PhenoAgeAccel>0 presented a more pronounced decline in 

respiratory and metabolic function, as well as immune dysregulation, as shown by the 

presence of lower lymphocyte percentage and marked elevations on inflammatory biomarkers 

such as CRP and fibrinogen. Accordingly, these patients had higher incidence of COVID-19 

adverse outcomes and lethality (log-rank p<0.001, Figure 2). 

PhenoAge components identify four main adaptive responses to SARS-CoV-2 infection 

Next, we sought to use PhenoAge components under the assumption that it would allow us to 

identify adaptive responses to severe SARS-CoV-2 infection. We identified that CA, glucose, 

MCV, RDW, lymphocyte percentage, PCR, albumin and creatinine were the best predictors 

of mortality and adverse outcomes using Elastic Net Cox regression; using these variables, 

we identified a stable 4-cluster solution with the k-means clustering algorithm. Cluster 1 was 

composed of 449 subjects (42.1%), who were predominantly male (69.6%), they had the 

oldest CA with a median of 61 years, but had a median PhenoAgeAccel of 0.07 years, which 

means they had a response similar to that expected for their CA, they also had a high 

incidence of adverse outcomes, ICU admission, IMV requirement and lethality alone, as well 
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as higher proportions of cardiovascular disease, COPD and CKD (Figure 3, Supplementary 

Figure 4). Cases in Cluster 1 had a higher risk of mortality (HR 3.04, 95%CI 1.94-4.79) and 

adverse outcomes (HR 1.86, 95%CI 1.42-2.43) compared to Cluster 4, adjusted for sex, age, 

and comorbidities. Cluster 2 included 134 subjects (12.5%) who had the highest mean 

PhenoAge (101.71 years) and PhenoAgeAccel (16.03 years) values. Adverse outcomes were 

as high as in Cluster 1, but patients in Cluster 2 had higher rates of comorbidities, particularly 

T2D, early-onset diabetes and hypertension along with increased rates of cardiovascular 

disease, asthma and smoking, despite having a younger CA (median of 54 years). 

Furthermore, cases in Cluster 2 had higher risk of mortality (HR 3.66, 95%CI 2.17-6.17) and 

adverse outcomes (HR 2.13, 95%CI 1.54-2.94) compared to Cluster 4, adjusted for sex, age 

and comorbidities. Cluster 3 included 49 subjects (4.6%) who had the lowest CA (46 years) 

and a median PhenoAgeAccel of 5.90 years; this cluster had female predominance and the 

highest prevalence of immunosuppression and smoking. Cases in Cluster 3 also had higher 

risk of adverse COVID-19 outcomes (HR 1.84, 95%CI 1.12-3.01) and mortality (HR 2.67, 

95%CI 1.19-5.97) compared to Cluster 4. Finally, Cluster 4 included 436 subjects (40.8%) 

who had the lowest PhenoAge (median of 69.64 years) and PhenoAgeAccel (median of -8.01 

years) with a slightly older median CA of 48.0 years compared to cluster 3; the incidence of 

adverse outcomes was the lowest, with a large proportion of patients experiencing clinical 

improvement (Figure 3, Supplementary Figure 4). 

Adaptive responses to severe SARS-CoV-2 have distinguishable clinical features 

Finally, we compared normalized clinical variables and laboratory measures across these 

subgroups and observed the following patterns (Figure 4): 1) Patients in Cluster 1 had 

elevations in multiple inflammatory biomarkers, including CRP, fibrinogen, D-Dimer, TPNI, 

BUN and LDH, and a decrease in lymphocyte percentage and albumin, as well as an 

elevation in leukocytes and platelets, they also had a decline in the respiratory function as 
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shown by low SpO2, PaO2/FiO2 ratio and high respiratory rate at the time of initial 

evaluation. Cycle threshold (CT) for viral load were higher than Cluster 2 but lower than 

Clusters 3 and 4. Based on those features, we propose that patients in Cluster 1 show an 

adaptive response related to inflammaging in accordance with CA. 2) Patients in Cluster 2 

had a marked elevation in blood glucose, and triglycerides, as well as an increase in BMI; 

these patients also had a decline in respiratory function and elevations in pulse pressure, 

lactate, BUN, and ferritin. We labeled this response as related to metabolic dysfunction, 

driven by cardio-metabolic comorbidities and, particularly, type 2 diabetes. 3) Patients in 

Cluster 3 had a pronounced elevation in RDW and decrease in MCV, they also had an 

increase in platelets and a decrease in creatinine and inflammatory biomarkers; they 

displayed a decline in respiratory function and a slight elevation of triglycerides and BMI, but 

not glucose. CT viral load was the highest amongst all subgroups. We labeled this as a 

response with worsened hematologic markers and a pro-thrombotic profile. 4) Finally, 

patients in cluster 4 had higher lymphocyte percentage and albumin levels and they showed 

lower values of leukocytes, CRP and multiple inflammatory biomarkers, they also displayed 

an enhanced respiratory function and, although they had small increases in BMI and 

triglycerides, they had a decrease in blood glucose. This adaptive response was related to a 

less pronounced inflammation compared to what would have been expected given their CA 

and showed a pattern of clinical resilience. 

DISCUSSION 

In this study we observed that PhenoAge is a better predictor for development of adverse 

outcomes and lethality compared to CA in patients with severe COVID-19. Moreover, 

patients with PhenoAgeAccel>0 showed higher risk of adverse outcomes and COVID-19 

lethality, and had impaired metabolic, respiratory, and immunologic functions. Notably, these 

trends persisted even after adjusting for sex and comorbidities, two major factors which have 



Acc
ep

ted
 M

an
us

cri
pt

 

12 
 

been heavily associated with adverse outcomes for COVID-19 [3,15–17]. Based on these 

findings, we hypothesized that PhenoAge components would allow us to distinguish 

physiological adaptations to severe COVID-19. Using unsupervised clustering, we found that 

PhenoAge components may help distinguish different subtypes of adaptive responses to 

SARS-CoV-2 infection, with poorer prognosis linked to inflammaging in accordance to CA 

and metabolic dysregulation, as has previously been hypothesized [18]. We also 

characterized an adaptive response cluster prone to impaired hematologic markers with pro-

thrombotic features and a favorable profile of patients with low rates of adverse outcomes. 

Our results allow us to position PhenoAge as a metric which characterizes acute adaptations 

to stress, we also found that PhenoAgeAccel is a metric of favorable or worsened adaptive 

responses to such acute events independently of CA, which may help the clinician to hasten 

medical treatment in patients at higher risk. 

The process of aging in the immune system is characterized by a progressive impairment of 

innate and adaptive immune responses upon antigen exposure (immunosenescence) and 

systemic low-grade chronic inflammation (inflammaging) [19], both of which have been 

associated with hindered responses against multiple bacterial and viral infections and which 

could partly explain the disproportionate effect of SARS-CoV-2 infection with increasing CA 

[20,21]. These immunological changes associated to aging and chronic diseases may be a 

consequence of telomere shortening, damage to the DNA and epigenetic changes in 

hematopoietic cells [5,22]. Intrinsic differences in individual responses to SARS-CoV-2 

infection could make individuals more susceptible to developing cytokine storms and have 

hypercoagulable state; in addition, accumulation of senescent (i.e. dysfunctional, non-

proliferative) non-lymphoid cells in multiple tissues, particularly in the lung, may further 

promote inflammation and tissue destruction via NK receptors, in fact, a recent study has 

found that specific natural killer cell immunotypes may be related to COVID-19 severity 
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[23]. Patients with cardio-metabolic comorbidities, particularly obesity and type 2 diabetes, 

may have worse proinflammatory and hypercoagulability states, causing further endothelial 

damage [14,24,25]. In our study we observed that older individuals with marked elevations in 

several inflammatory biomarkers (Cluster 1) and patients with PhenoAgeAccel>0, metabolic 

dysregulation and a high burden of comorbidities (Cluster 2) had worse respiratory function 

and the highest rates of adverse outcomes and lethality due to COVID-19; while younger 

patients and with PhenoAgeAccel≤0  (Cluster 4) had an important improvement in 

respiratory parameters and a reduction in inflammatory biomarkers compared to the other 

subgroups. Recent findings identified that adaptive immune responses were not responsible 

for disease severity and adverse outcomes in patients with COVID-19 [26]. In accordance 

with our observations, these findings indicate that additional adaptations to SARS-CoV-2 

infection including inflammatory, metabolic, respiratory, and hematologic changes could 

explain heterogeneous risk profiles in COVID-19. 

The COVID-19 pandemic has disproportionally affected older adults and patients with 

underlying chronic comorbidities, with several studies pointing at the relevance of CA and 

comorbidity for risk stratification of COVID-19 outcomes [3,6,27]. Given that age could be a 

potential confounder, we evaluated the effect of PhenoAgeAccel on adverse outcomes and 

lethality in SARS-CoV-2 infection and found that this metric was superior to CA in the 

prediction of adverse outcomes, but not lethality alone. Conversely, PhenoAge was 

consistently a better predictor for both outcomes of interest; these results suggest that 

although CA influences disease severity, its use should be accompanied by additional metrics 

to better reflect heterogeneous risk profiles associated to COVID-19, as previously reported. 

[15,28]. To date, only one study by Kuo et al. assessed the relationship between PhenoAge 

and COVID-19 outcomes using data from the UK Biobank. Authors reported that 

PhenoAgeAccel estimated 10-14 years prior to SARS-CoV-2 infection was a better predictor 
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of positivity to SARS-CoV-2 or COVID-19 related lethality compared to CA. In contrast, our 

study evaluates PhenoAge at the time of SARS-CoV-2 infection, which allowed us to capture 

the heterogeneity of physiological responses to SARS-CoV-2 infection using a metric which 

was designed to assess biological age; however, with its components being collected during 

an event of acute stress, PhenoAge and PhenoAgeAccel would not allow to assess an 

underlying process of accelerated aging. Prior efforts in UK cases characterized symptom 

clusters in COVID-19, which already reflected the heterogeneity of clinical presentations and 

responses to SARS-CoV-2 infection [29].Notably, we identified that cycle threshold was 

higher (indicating a lower viral load) for adaptive responses associated with better outcomes, 

which has previously been reported [30].  

Here, we have characterized four adaptive responses to severe COVID-19, with relevant 

prognostic and pathophysiological implications. Our results contrast with a recent large-scale 

effort to identify disease phenotypes in COVID-19; here, the authors identified three 

phenotypes with ranged from younger individuals with mild disease, moderate cases in 

middle aged subjects and severe cases in older adults [31]. Nevertheless, these differences do 

not explain increased severity in younger individuals, which we captured as Clusters 2 and 3 

in our study. Therefore, our approach also allowed us identify factors beyond CA driving 

COVID-19 severity, complementing previous efforts aimed at identifying COVID-19 

phenotypes. The identified adaptive responses to acute SARS-CoV-2 are highly 

heterogeneous in accordance with previous findings and its characterization requires further 

studies which investigate underlying pathophysiological implications of each infection 

subtype. Given that the identified adaptive responses have different disease trajectories and 

risk of adverse outcomes, its respective pathophysiological alterations could be used to 

inform studies focusing on monitoring disease trajectories or informing treatment modalities. 



Acc
ep

ted
 M

an
us

cri
pt

 

15 
 

Our study has certain limitations, such as the inclusion of a non-representative population 

composed only of hospitalized patients with severe COVID-19; moreover, we were not able 

to study the effects of longitudinal PhenoAge trajectories on clinical course due to the lack of 

repeated measurements over time. Because of the fact that PhenoAge and PhenoAgeAccel 

were estimated at admission, it remains unclear the role that PhenoAge values prior to the 

disease and its longitudinal changes may have on reduced physiological reserve, diminished 

intrinsic capacity or frailty in the setting of COVID-19 [32–34]. Lastly, we only used 

PhenoAge and PhenoAgeAccel to estimate adaptive responses potentially linked to aging; 

however, it is well known that different biological age estimators may illustrate distinct 

points of view of the aging process [35]. Prospective studies assessing aging measures before, 

during and after the infection are necessary to further elucidate the impact of premature aging 

on the clinical course of COVID-19 patients; additionally, other parameters should be taken 

into account, such as imaging features, immunophenotyping and histopathological findings. 

Finally, to examine whether the identified adaptive responses to SARS-CoV-2 infection have 

distinguishable pathophysiological differences or treatment implications, in-depth 

phenotyping studies are still required. 

In conclusion, we propose that PhenoAge and PhenoAgeAccel may be better predictors for 

adverse COVID-19 outcomes and lethality compared to CA given that they likely capture 

physiological adaptations to acute stress. These associations may contribute to characterize 

adaptive responses which are altered by underlying processes such as aging and 

comorbidities, and the physiological reserve in response to severe SARS-CoV-2 infection. 

Finally, we propose that clustering of these adaptive responses might aid in understanding 

pathophysiological processes related to the heterogeneity of severe COVID-19.  
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TABLE 1. Patient demographics and medical history of comorbidities assessed at triage or evaluation at the emergency department at 

a Tertiary Care Center in Mexico City, comparing COVID-19 cases according to PhenoAgeAccel values. 

Abbreviations: CA: Chronological age. CVD: Cardiovascular disease; CKD: Chronic Kidney Disease; COPD: Chronic Obstructive 

Pulmonary Disease; HIV: Human Immunodeficiency Virus. 

Characteristic Overall (n=1068) PhenoAgeAccel ≤0 (n=630) PhenoAgeAccel >0 (n=438) P-value 

Male (%) 675 (63.2) 389 (61.7) 286 (65.3) 0.263 

Age (years) 53 (44-63) 52 (43-62) 54 (45-64) 0.026 

PhenoAge (years) 82.4 (70.5-95.7) 74.22 (64.4-84.2) 95.68 (83.9-107.9) <0.001 

≥1 comorbidity (%) 770 (73.2) 426 (68.4) 344 (80.2) <0.001 

Diabetes Mellitus (%) 273 (25.6) 98 (15.6) 175 (40) <0.001 

Early-onset Diabetes (%) 25 (2.3) 2 (0.3) 23 (5.3) <0.001 

Obesity (%) 468 (43.9) 266 (42.4) 202 (46.1) 0.230 

Cardiovascular disease (%) 47 (4.4) 23 (3.7) 24 (5.5) 0.200 

Hypertension (%) 315 (29.5) 159 (25.2) 156 (35.6) <0.001 
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Characteristic Overall (n=1068) PhenoAgeAccel ≤0 (n=630) PhenoAgeAccel >0 (n=438) P-value 

Chronic kidney disease (%) 12 (1.1) 3 (0.5) 9 (2.1) 0.034 

COPD (%) 16 (1.5) 9 (1.4) 7 (1.6) 0.804 

Asthma (%) 22 (2.1) 10 (1.6) 12 (2.7) 0.280 

Immunosuppression (%) 62 (5.8) 26 (4.1) 36 (8.2) 0.007 

HIV (%) 10 (0.9) 7 (1.1) 3 (0.7) 0.539 

Smoking (%) 160 (15.1) 95 (15.1) 65 (15) 0.984 

Follow-up time (days) 15 (11-21) 14.5 (11-20) 15 (10-23) 0.045 

Severe cases (%) 628 (58.8) 453 (71.9) 175 (40) <0.001 

Critical cases (%) 222 (20.8) 101 (16) 121 (27.6) <0.001 

Lethal cases (%) 218 (20.4) 76 (12.1) 142 (32.4) <0.001 
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FIGURE LEGENDS 

Figure 1. Levels of PhenoAge and PhenoAgeAccel tend to increment across groups with 

increasing disease severity even after taking the number of comorbidities and age categories 

into account (A-D). The scatter plots of PhenoAge (E) and PhenoAgeAccel (F) regressed onto 

CA highlight that patients with worse clinical status tend to display higher PhenoAge and 

PhenoAgeAccel values. Significance codes: * <0.05, ** <0.01, *** <0.001. Abbreviations: 

CA: Chronological Age. Comorb: Comorbidities. 

 

Figure 2. Comparison of transformed and standardized clinical variables comprising 

individual components of PhenoAge (A), respiratory and metabolic function (B) and 

inflammatory biomarkers (C) between patients with PhenoAgeAccel>0 and 

PhenoAgeAccel≤0; the Ordered Quantile (ORQ) transformation was used to normalize all 

variables. Patients with PhenoAgeAccel>0 had a higher risk of development of adverse 

outcomes (D) and lethality (E) as shown by the Kaplan-Meier curves among these groups. 

Significance codes: * <0.05, ** <0.01, *** <0.001. 

Abbreviations: ALP: Alkaline phosphatase. ALT: Alanine aminotransferase. AST: Aspartate 

aminotransferase. BMI: Body mass index. BUN: Blood urea nitrogen. CA: Chronological age. 

CRP: C-reactive protein. LDH: Lactate dehydrogenase. Lymph: Lymphocytes. MCV: Mean 

corpuscular volume. PaFi: Partial pressure of oxygen to fraction of inspired oxygen ratio. 

RDW: Red blood cells distribution width. SpO2: Pulse oxygen saturation. TPNI: Troponin I. 

 

Figure 3. Observed clusters displayed differential values of CA (A), PhenoAge (B) and 

PhenoAgeAccel (C) and the rates of adverse outcomes, ICU admission, IMV requirement and 

lethality varied significantly across clusters (D). 
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Abbreviations: CA: Chronological age. ICU: Intensive care unit. IMV: Invasive mechanical 

ventilation. 

 

Figure 4. Comparison across clusters of multiple laboratory measures and clinical variables 

related to individual PhenoAge components (first column), respiratory and metabolic function 

(second column), inflammation (third column) and symptoms (fourth and fifth columns) 

reveal distinct patterns of adaptive responses to SARS-CoV-2 infection the Ordered Quantile 

(ORQ) transformation was used to normalize all variables. 

Abbreviations: ALP: Alkaline phosphatase. ALT: Alanine aminotransferase. AST: Aspartate 

aminotransferase. BUN: Blood urea nitrogen. CA: Chronological age. CRP: C-reactive 

protein. CT: Cycle threshold. LDH: Lactate dehydrogenase. Lymph: Lymphocytes. MCV: 

Mean corpuscular volume. PaFi: Partial pressure of oxygen to fraction of inspired oxygen 

ratio. RDW: Red blood cells distribution width. SpO2: Pulse oxygen saturation. TPNI: 

Troponin I. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 


