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Abstract: Rhodium(I)-complexes catalyzed the 1,4-conjugate addition of arylzinc chlorides to
N-Boc-4-pyridone in the presence of chlorotrimethylsilane (TMSCl). A combination of [RhCl(C2H4)2]2

and BINAP was determined to be the most effective catalyst to promote the 1,4-conjugate addition
reactions of arylzinc chlorides to N-Boc-4-pyridone. A broad scope of arylzinc reagents with
both electron-withdrawing and electron-donating substituents on the aromatic ring successfully
underwent 1,4-conjugate addition to N-Boc-4-pyridone to afford versatile 1,4-adducts 2-substituted-
2,3-dihydropyridones in good to excellent yields (up to 91%) and excellent ee (up to 96%) when
(S)-BINAP was used as chiral ligand.

Keywords: N-boc-4-pyridone; rhodium (I)-complexes; conjugate addition; 2,3-dihydropyridones

1. Introduction

1,4-conjugate addition of organometallic reagents to enones is one of the most reliable and widely
used carbon-carbon bond formation processes to afford β-substituted carbonyl compounds, which are
highly useful synthons for further organic transformations [1–5]. The combination of metal catalysts
with an organometallic reagent has been particularly effective in promoting 1,4-addition to enones.
Among the metal catalysts, copper is the most commonly used species [3]. Other metal catalysts
including nickel and palladium have also been reported to be effective in 1,4-conjugate addition of
organozinc, organoaluminum, organoziconium, and organomercury compounds to α,β-unsaturated
enones. Organometallic reagents such as organolithiums, Grignard reagents and diorganozinc reagents
have also been widely used in this regard and high yields of 1,4-adducts can be achieved in most cases.
However, the competing 1,2-additions as well as 1,6-additions accompanied with these organometallic
reagents have limited their applications [6–11]. Over the last 30 years, significant progresses have
been made in asymmetric 1,4-conjugate additions, especially in the addition of organozinc or
Grignard reagents using copper(I) catalysts in combination with chiral phosphorous ligands [12–14].
Although high yields and high entioselectivity can be achieved in these copper-catalyzed reactions, the
substituents introduced to the β-position are limited to alkyl groups [12–14]. In recent years, there has
been a growing interest in rhodium-catalyzed C-C bond forming reactions of organometallic reagents,
due to the mild reaction conditions and toleration of various functional groups [15,16]. Since the first
report by Miyaura in 1997 [17], rhodium-catalyzed 1,4-conjugate addition of organometallic reagents to
unsaturated substrates has emerged as a versatile and efficient methodology for the formation of C-C
bonds due to their tolerance with water and a wide range of substrates [18,19]. Rhodium-catalyzed
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1,4-conjugate addition reactions utilize mild organometallic reagents such as organoboron and arylzinc
reagents under mild reaction conditions, which are extremely useful in introducing versatile aromatic
groups to the β-position. For the abovementioned reasons, considerable efforts have been devoted
to developing the rhodium-catalyzed 1,4-conjugate addition of alkenyl(aryl)boronic acids as well
as arylzinc reagents. A broad scope of substrates such as cyclic or acyclic enones and enoates have
been reported [18,19]. Rhodium(I) complexes have been demonstrated to be excellent catalysts for
1,4-conjugate addition of alkenyl- and arylboronic acids to α,β-unsaturated ketones, esters, and even
less reactive amides [18–27].

In the course of our investigation on access to highly versatile 2-substituted-2,3-dihydropyridones
2, we are intrigued by the possibility of rhodium(I)-complex catalyzed 1,4-addition of arylzinc
cholorides or arylboronic acids to N-protected-4-pyridones 1 (Scheme 1). We are interested in
N-heterocycles such as 2-substituted-2,3-dihyrdopyrdones 2 because they are an important class
of medicinal compounds, and many medicinally important compounds in clinical or pre-clinical
studies contain piperidine subunits [28–31]. 2-Substituted-2,3-dihyrdopyrdines are precursors for
medicinally important N-heterocycles such as pyridines, piperidones, piperidines, indolizidenes,
and quinolizidenes.
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Due to their importance in medicinal chemistry, considerable efforts have been devoted to develop
efficient synthetic strategies for the synthesis of piperidine derivatives. Most of these strategies involve
using chiral auxiliaries/chiral starting materials and have been developed into effective methods for
the synthesis of a wide variety of N-heterocycles [32–40]. The synthesis of 2,3-dihydro-4-pyridones
via conjugate addition reactions have also been reported [38–51]. Great progress has been made
using dialkylzinc reagents in conjunction with copper catalysts, but challenges still remain in
increasing reactivity and general applicability [40–46]. Recent developments in copper-catalyzed
asymmetric conjugate additions of Grignard reagents [47,50,51] and rhodium-catalyzed 1,4-addition
of arylboroxines/boronic acids promise greater reactivity and versatility [40]. Recent advances in the
NHC-Cu-catalyzed conjugate arylation of β-substututed cyclic enones to afford quaternary stereogenic
centers has also been reported [52]. Despite the fact that rhodium(I)-complexes-catalyzed 1,4-conjugate
addition of boronic acids is one of the most potent methods for C-C bond formation, there are no
reported examples on 1,4-conjugate addition of boronic acids to N-Boc-4-pyridones or substrates that
contain piperidine subunits, presumably due to the unreactive nature of these nitrogen-containing
substrates with boronic acids [20–27].

2. Results and Discussions

As a starting point, we employed the standard rhodium(I)-BINAP reaction conditions
(Scheme 2) [20,53]. Initially, the reaction of N-Boc-4-pyridone 3A with 2.0 equiv of p-tolylboronic
acid 4a was carried out in dioxane/water (10 to 1 ratio) in the presence of 1.5 mol % of [RhCl(C2H4)2]2

and 3 mol % of ligands such as phosphoramidite ligands (A, B) [12–14], 1,5-diphenyl-1,5-cyclooctadiene
(C) [54], and BINAP (D) [18,19]. Under these standard reactions conditions, no 1,4-adduct 5Aa was
formed (Scheme 2, entries 1–2, 5, 7). No desired 1,4-adduct 5Aa was formed even after 24 h at 100 ◦C
in dioxane/water (10 to 1 ratio) with the increased catalyst loading of 15 mol % of [RhCl(C2H4)2]2 and
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30 mol % of ligands (Scheme 2, entries 3–4, 6). Only a trace amount of 1,4-adduct 5Aa was observed
after extended heating with 15 mol % [RhCl(C2H4)2]2 and 30 mol % of BINAP at 100 ◦C for 48 h
(Scheme 2, entry 8). The substituents on nitrogen were also investigated (Scheme 2, entries 9–10). With
ethyl carbonate as a protecting group, a trace amount of 1,4-adduct 5Ba was observed. No 1,4-adduct
5Ca was attained with N-methylated substrate 3C (Scheme 2, entry 10).
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We then turned our attention to arylzinc chlorides, which have been reported to be more reactive
nucleophiles towards 1-benzyloxycarbonyl-4-quinolone and structurally similar 2,3-dihydro-4-pyridones
under rhodium(I)-complexes-catalyzed reaction conditions [18,19]. There is also one isolated example
on rhodium(I)-BINAP-catalyzed 1,4-conjugate addition to N-tert-butoxycarbonyl-4-pyridone [55].
Other approaches involving 2,3-dihydro-4-pyridones via direct conjugate addition of organocuprates
and Grignard reagents have also been reported [56,57]. In our study, ligands such as phosphoramidite
ligands (A, B) [12–14], 1,5-diphenyl-1,5-cyclooctadiene (C) [54], and BINAP (D) [18,19] were initially
studied in rhodium(I)-catalyzed conjugate addition of p-tolylZnCl 6a to N-Boc 4-pyridone 3A at
−5 ◦C. As shown in Scheme 3, p-tolylZnCl 6a underwent 1,4-conjugate addition to N-Boc-4-pyridone
3A catalyzed by rhodium(I)-phosphoramidite in the presence of chlorotrimethyl silane (TMSCl)
with low chemical yield (Scheme 3, entry 1). Slightly higher chemical yield was observed when
phosphoramidite B was used as a ligand (Scheme 3, entry 2). When 1,5-diphenyl-1,5-cyclootadiene
was used with [RhCl(C2H4)2]2, a higher chemical yield 32% can be attained under similar reaction
conditions (entry 4). With both ligands A and B, no significant increases in chemical yields were
obtained, even with 15 mol % [RhCl(C2H4)2]2 and 30 mol % of ligands (Scheme 3, entries 3 and 5). This
ligand screening showed that when 3 mol % of BINAP was used as a ligand, 1,4-adduct 5Aa can be
attained in good chemical yield (89%, Scheme 3, entry 6). We also investigated the effect of substituents
on nitrogen (Scheme 3, entries 8–9). With ethyl carbonate as a protecting group, the yield of 1,4-adduct
5Ba was much lower (Scheme 3, entry 8). No 1,4-adduct 5Ca was attained with N-methylated substrate
3C (Scheme 3, entry 9). Notably no desired 1,4-adduct was observed without the addition of TMSCl
(Scheme 3, entry 7). It has been reported that the addition of chlorotrimethylsilane as a Lewis acid may
facilitate the activation of the substrate toward 1,4-addition and also stabilize the product by forming a
silyl enol ether, which is then converted to the carbonyl group under acidic work-up conditions [58].
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With the optimized reaction conditions in hand, we next examined the scope of rhodium-BINAP-
catalyzed arylzinc reagents conjugate addition (Scheme 4). In general, arylzinc reagents underwent
smooth conjugate addition to N-Boc-4-pyridone with good to excellent chemical yields. Simple
arylzinc reagents such as phenylzinc and naphthylzinc chlorides added to N-Boc-4-pyridone with
excellent chemical yields (Scheme 4, entries 3–5). The arylzinc reagents with electron donating
substituents usually showed higher reactivity (Scheme 4, entries 1, 2, 6–9). The arylzinc reagents with
strong electron withdrawing groups such as fluoro, trifluoromethyl, and bistrifluromethyl groups also
underwent conjugate addition but with lower chemical yields (entries 10–12). Compared to para- and
meta-substituted arylzinc reagents, the ortho-substituted arylzinc reagents gave lower yields due to
steric hindrance (entries 2, 8). We also conducted asymmetric conjugate addition of arylzinc reagents
to N-Boc-4-pyridone. When (S)-BINAP was used as the chiral ligand, excellent ee can be achieved
(entries 1 and 3, up to 96% ee).
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3. Materials and Methods

3.1. General Procedures, Materials and Intrumentation

The 1H- and 13C-NMR spectra were recorded on a BRUKER 300 NMR spectrometer (BRUKER,
Winston Salem, NC, USA), operating at 300 MHz for 1H, 75 MHz for 13C and 282 MHz for 19F. Samples
for NMR spectra were dissolved in deuterated chloroform (with TMS). Infrared (IR) spectra were
recorded on a Nicolet iS10 FT-IR spectrometer as neat samples (thin films). Analytical thin layer
chromatography (TLC) was performed on silica gel plates, 60 µ mesh with F254 indicator. Visualization
was accomplished by UV light (254 nm), and/or a 10% ethanol solution of phosphomolybdic acid
and/or KMnO4 stain prepared by dissolving 1.5 g KMnO4, 10 g potassium carbonate, and 1.25 mL 10%
sodium hydroxide in 200 mL water. Flash chromatography was performed with 200–400 µ silica gel.

3.1.1. Materials

Unless stated otherwise, solvents and chemicals were obtained from commercial sources and
used without further purification. Anhydrous tetrahydrofuran (THF) was purchased from Sigma
Aldrich. TMSCl was distilled from CaH2 under a positive nitrogen atmosphere. Arylzinc reagents
were prepared from the corresponding aryllithium reagent and ZnCl2. Aryllithium reagents were
prepared from the corresponding arylhalides and t-BuLi (1.70 M in pentane). t-BuLi (1.70 M in pentane)
was commercially available and titrated using sec-BuOH and 1,10-phenanthroline monohydrate in
THF. All glassware was flamed-dried under high vacuum and purged with argon and then cooled
under a dry nitrogen atmosphere. Low temperature baths were prepared using ice NaCl water bath, or
dry ice-isopropanol slush bath mixtures. All ArZnCl 1,4-conjugate addition reactions were conducted
under a positive, dry argon atmosphere in anhydrous solvents in flasks fitted with rubber septa.

3.1.2. General Procedure A

Rh(I)-BINAP-catalyzed 1,4-conjugate addition reactions. This method was modified from the
procedure reported by Hayashi [18]. Starting N-Boc-4-pyridone (0.5 mmol) was added to a solution
of [RhCl(C2H4)2]2 (0.015 mol %, 0.0075 mmol) and BINAP (0.033 mol %, 0.0165 mmol) in dry THF
(1.0 mL) at −5 ◦C under argon with continuous stirring. After stirring for 15 min, ArZnCl (1.0 M
in THF, 3.0 quiv, 1.5 mmol, prepared from corresponding arylbromides in a separate flask [59]) and
TMSCl (1.0 M in THF, 3.0 equiv, 1.5 mmol) were added simultaneously dropwise over 10 min to this
solution. The resulting mixture was then warmed up to room temperature and stirred for 20 h at room
temperature. Then, the reaction mixture was diluted with dichloromethane (4.0 mL), quenched with
saturated aqueous NH4Cl (4.0 mL) and extracted with dichloromethane (3 × 8.0 mL). The combined
organic phase was washed with water (8.0 mL), brine (8.0 mL), then dried over anhydrous Na2SO4,
filtered, concentrated in vacuo, and purified by flash column chromatography (silica, 10%–20% ethyl
acetate in hexanes, v/v) to give pure compounds.

HRMS data for compounds 5Aa, 5Ad, 5Af−Ag, 5Ai, 5Ak–Al were analyzed by TOF MS,
see supplementary. Compounds 5Ab–Ac, 5Ae, 5Ah, and 5Aj have been fully characterized and
reported [55,57,60].

3.2. Synthesis of Adducts 5Aa, 5Ad, 5Af–Ag, 5Ai, 5Ag, 5Ak–Al

N-Boc-2-(4-methylphenyl)-2,3-dihydro-4-pyridone (5Aa). Employing General Procedure A and using
N-Boc-4-pyridone (97 mg, 0.5 mmol), [RhCl(C2H4)2]2 (2.92 mg, 0.0075 mmol), (S)-BINAP (10.3 mg,
0.0165 mmol), ArZnCl (1.0 M in THF, 3.0 equiv, 1.5 mmol), TMSCl (163 mg, 1.5 mmol) and the resultant
reaction mixture was slowly warmed to 0 ◦C and stirred for an additional 24 h at 0 ◦C, after purification
by flash column chromatography (silica, 10%–20% ethyl acetate:hexanes, v/v) gave white solid 5Aa
(128 mg, 89%). The ee was determined on a Daicel Chiralcel OD-H column with a solvent system
of hexanes/2-propanol (9:1 ratio), flow rate = 1.0 mL/min. tr(major) = 7.1 min., tr(minor) = 7.8 min.
92% ee. m.p. 82.6–84.3 ◦C; IR (neat) 3081 (w), 2982 (w), 2926 (w), 1729 (s), 1661 (s), 1597 (s), 1412 (w),
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1369 (m), 1339 (s), 1299 (s), 1253 (m), 1210 (m), 1145 (s), 1096 (m), 1010 (m), 923 (m), 845 (m), 815 (m),
774 (m) cm−1; 1H-NMR δ 1.33 (s, 9 H), 2.17 (s, 3H), 2.63 (td, J = 1.5, 16.5 Hz, 1 H), 2.98 (dd, J = 7.50,
16.5 Hz, 1 H), 5.20 (dd, J = 1.17, 8.4 Hz, 1 H), 5.49 (d, J = 7.50 Hz, 1 H), 6.96 (s, 4 H), 7.79 (d, J = 8.4 Hz,
1 H); 13C-NMR δ 21.0, 28.0, 41.9, 55.4, 83.6, 107.0, 125.8, 129.4, 135.8, 137.6, 142.9, 151.5, 192.3. HRMS
(EI-ion trap) m/z: [M]+ calcd. for C17H21NO3, 287.1520; found 287.1521.

N-Boc-2-(2-napthanyl)-2,3-dihydro-4-pyridone (5Ad). Employing General Procedure A and using
N-Boc-4-pyridone (97 mg, 0.5 mmol), [RhCl(C2H4)2]2 (2.92 mg, 0.0075 mmol), BINAP (10.3 mg,
0.0165 mmol), ArZnCl (1.0 M in THF, 3.0 equiv, 1.5 mmol) and TMSCl (163 mg, 1.5 mmol) after
purification by flash column chromatography (silica, 10%–20% ethyl acetate:hexanes, v/v) gave white
solid 5Ad (147 mg, 91%): mp 113.8–115.1 ◦C; IR (neat) 3065 (w), 2981 (w), 1717 (s), 1667 (s), 1606 (s),
1451 (m), 1369 (m), 1309 (s), 1257 (m), 1222 (m), 1142 (s), 950 (m), 851 (m), 757 (s) cm−1; 1H-NMR
(300 MHz, CDCl3) δ 1.40 (br s, 9H), 2.84 (d, J = 16.5 Hz, 1H), 3.16 (dd, J = 7.8, 16.5 Hz, 1H), 5.34 (d,
J = 8.4 Hz, 1H), 5.76 (d, J = 7.2 Hz, 1H), 7.30 (dd, J = 1.5, 8.4 Hz, 1H), 7.35–7.43 (m, 2H), 7.68–7.76 (m,
3H), 7.97 (d, J = 8.4 Hz, 1H); 13C-NMR (75 MHz, CDCl3) δ 28.0, 41.8, 55.9, 83.8, 107.1, 123.9, 124.6, 126.2,
126.4, 127.6, 128.0, 128.9, 132.9, 133.2, 136.2, 142.9, 151.5, 192.0. HRMS (EI-ion trap) m/z: [M]+ calcd. for
C20H21NO3, 323.1521; found 323.1529.

N-Boc-2-(3,5-dimethylphenyl)-2,3-dihydro-4-pyridone (5Af). Employing General Procedure A and using
N-Boc-4-pyridone (97 mg, 0.5 mmol), [RhCl(C2H4)2]2 (2.92 mg, 0.0075 mmol), BINAP (10.3 mg,
0.0165 mmol), ArZnCl (1.0 M in THF, 3.0 equiv, 1.5 mmol) and TMSCl (163 mg, 1.5 mmol) after
purification by flash column chromatography (silica, 10%–20% ethyl acetate:hexanes, v/v) gave white
solid 5Af (129 mg, 86%): mp 100.0–101.7 ◦C; IR (neat) 3012 (w), 2978 (w), 2918 (w), 1713 (s), 1663 (s),
1596 (s), 1460 (w), 1418 (m), 1369 (m), 1337 (m), 1315 (s), 1257 (m), 1220 (m), 1142 (s), 1017 (m), 843
(s), 762 (s), 703 (w) cm−1; 1H-NMR (300 MHz, CDCl3) δ 1.32 (br s, 9H), 1.13 (s, 6H), 2.64 (td, J = 1.5,
16.5 Hz, 1H), 2.98 (dd, J = 7.8, 16.5 Hz, 1H), 5.21 (dd, J = 1.2, 8.4 Hz, 1H), 5.44 (d, J = 7.8 Hz, 1H), 6.65
(s, 2H), 6.75 (s, 1H), 7.82 (d, J = 8.4 Hz, 1H); 13C-NMR (75 MHz, CDCl3) δ 21.4, 28.0, 41.9, 55.6, 83.6,
107.0, 123.5, 128.2, 129.0, 129.5, 138.3, 138.8, 143.0, 151.5, 192.3. HRMS (EI-ion trap) m/z: [M]+ calcd. for
C18H23NO3, 301.1678; found 301.1683.

N-Boc-2-(4-methoxylphenyl)-2,3-dihydro-4-pyridone (5Ag). Employing General Procedure A and using
N-Boc-4-pyridone (97 mg, 0.5 mmol), [RhCl(C2H4)2]2 (2.92 mg, 0.0075 mmol), BINAP (10.3 mg,
0.0165 mmol), ArZnCl (1.0 M in THF, 3.0 equiv, 1.5 mmol) and TMSCl (163 mg, 1.5 mmol) after
purification by flash column chromatography (silica, 10%–20% ethyl acetate:hexanes, v/v) gave white
amorphous solid 5Ag (138 mg, 91%): mp 70.0−71.9 ◦C; IR (neat) 2984 (w), 2932 (w), 2836 (w), 1719
(s), 1663 (s), 1594 (s), 1508 (s), 1508 (w), 1366 (w), 1342 (s), 1285 (s), 1246 (s), 1171 (s), 1104 (s), 1027 (s),
981 (m), 852 (w), 787 (m), 769 (s), 645 (m) cm−1; 1H-NMR (300 MHz, CDCl3) δ 1.47 (br s, 9H), 2.74 (td,
J = 1.5, 16.5 Hz, 1H), 3.11 (dd, J = 7.5, 16.5 Hz, 1H), 3.77 (s, 3H), 5.34 (dd, J = 1.5, 8.4 Hz, 1H), 5.61 (d,
J = 7.5 Hz, 1H), 6.81 (d, J = 8.7 Hz, 2H), 7.14 (dd, J = 8.7 Hz, 2H),7.90 (d, J = 8.4 Hz, 1H); 13C-NMR δ

28.0, 41.9, 55.1, 55.3, 83.7, 106.9, 114.1, 127.2, 131.1, 142.8, 151.5, 159.2, 192.4. HRMS (EI-ion trap) m/z:
[M]+ calcd. for C17H21NO4, 303.1471; found 303.1471.

N-Boc-2-(3,5-dimethoxylphenyl)-2,3-dihydro-4-pyridone (5Ai). Employing General Procedure A and using
N-Boc-4-pyridone (97 mg, 0.5 mmol), [RhCl(C2H4)2]2 (2.92 mg, 0.0075 mmol), BINAP (10.3 mg,
0.0165 mmol), ArZnCl (1.0 M in THF, 3.0 equiv, 1.5 mmol) and TMSCl (163 mg, 1.5 mmol) after
purification by flash column chromatography (silica, 10%–20% ethyl acetate:hexanes, v/v) gave clear
sticky oil 5Ai (141 mg, 85%): IR (neat) 2975 (w), 2838 (w), 1719 (s), 1664 (s), 1592 (s), 1457 (m), 1420
(m), 1368 (m), 1288 (s), 1203 (m), 1144 (s), 1066 (m), 999 (m), 940 (w); 833 (m), 759 (m), 697 (m) cm−1;
1H-NMR (300 MHz, CDCl3) δ 1.46 (br s, 9H), 2.76 (d, J = 16.5 Hz, 1H), 3.11 (dd, J = 7.8, 16.5 Hz, 1H),
3.74 (s, 6H), 5.33 (d, J = 8.4 Hz, 1H), 5.58 (d, J = 7.8 Hz, 1H), 6.33 (s, 3H), 7.94 (d, J = 8.4 Hz, 1H);
13C-NMR (75 MHz, CDCl3) δ 28.0, 41.9, 55.3, 55.7, 83.8, 99.3, 104.1, 107.0, 125.3, 128.2, 129.0, 141.3, 142.9,
151.4, 161.1, 192.0. HRMS (EI-ion trap) m/z: [M]+ calcd. for C18H23NO5, 333.1576; found 333.1578.
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N-Boc-2-(4-trifluoromethylphenyl)-2,3-dihydro-4-pyridone (5Ak). Employing General Procedure A and
using N-Boc-4-pyridone (97 mg, 0.5 mmol), [RhCl(C2H4)2]2 (2.92 mg, 0.0075 mmol), BINAP (10.3 mg,
0.0165 mmol), ArZnCl (1.0 M in THF, 1.5 equiv, 0.75 mmol) and TMSCl (163 mg, 1.5 mmol) after
purification by flash column chromatography (silica, 10%–20% ethyl acetate:hexanes, v/v) gave white
amorphous solid 5Ak (80 mg, 47%): mp 78.1−79.5 ◦C; IR (neat) 3076 (w), 2980 (w), 2930 (w), 1728
(s), 1661 (s), 1604 (s)1474 (w), 1454 (m), 1394 (m), 1309 (s), 1258 (m), 1217 (m), 1147 (s), 1110 (s), 1069
(s), 1017 (m), 979 (w), 839 (m), 759 (m) cm−1; 1H-NMR (300 MHz, CDCl3) δ 1.42 (br s, 9H), 2.71 (d,
J = 16.8 Hz, 1H), 3.14 (dd, J = 7.2, 16.8 Hz, 1H), 5.32 (d, J = 8.4 Hz, 1H), 5.66 (d, J = 7.2 Hz, 1H), 7.28 (d,
J = 8.1 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H),7.92 (d, J = 8.4 Hz, 1H); 13C-NMR (75 MHz, CDCl3) δ 28.0, 41.6,
55.4, 84.2, 107.2, 125.87, 125.93, 126.2, 130.1, 130.5, 142.8, 151.2, 191.3. 19F-NMR (282 MHz, CDCl3) δ
−62.7; HRMS (EI-ion trap) m/z: [M]+ calcd. for C17H18NO3F3, 341.1239; found 341.1242.

N-Boc-2-(3,5-ditrifluoromethylphenyl)-2,3-dihydro-4-pyridone (5Al). Employing General Procedure A and
using N-Boc-4-pyridone (97 mg, 0.5 mmol), [RhCl(C2H4)2]2 (2.92 mg, 0.0075 mmol), BINAP (10.3 mg,
0.0165 mmol), ArZnCl (1.0 M in THF, 1.5 equiv, 0.75 mmol) and TMSCl (163 mg, 1.5 mmol) after
purification by flash column chromatography (silica, 10%–20% ethyl acetate:hexanes, v/v) gave yellow
sticky oil 5Al (84 mg, 41%): IR (neat) 2981 (w), 1725 (m), 1671 (m), 1601 (m), 1459 (w), 1417 (w), 1372
(w), 1303 (m), 1275 (s), 1213 (m), 1125 (s), 1014 (m), 897 (m), 846 (m), 766 (m) cm−1; 1H-NMR (300 MHz,
CDCl3) δ 1.41 (br s, 9H), 2.73 (d, J = 16.5 Hz, 1H), 3.15 (dd, J = 7.8, 16.5 Hz, 1H), 5.34 (d, J = 8.4 Hz,
1H), 5.69 (d, J = 7.8 Hz, 1H), 7.57 (s, 2H), 7.90 (s, 1H), 7.92 (d, J = 8.4 Hz, 1H); 13C-NMR (75 MHz,
CDCl3) δ 27.9, 41.2, 55.0, 84.8, 107.4, 117.6, 121.2, 122.2, 124.8, 126.1, 132.2, 132.6, 141.7, 142.6, 150.9,
190.6. 19F-NMR (282 MHz, CDCl3) δ −63.0; HRMS (EI-ion trap) m/z: [M]+ calcd. for C18H17NO3F6,
409.1113; found 409.1119.

4. Conclusions

We have successfully developed rhodium(I)-complexes-catalyzed 1,4-conjugate additions of
arylzinc chlorides to N-Boc-4-pyridone in the presence of chlorotrimethylsilane (TMSCl). A
combination of [RhCl(C2H4)2]2 and BINAP was determined to be the most effective catalyst for
1,4-conjugate addition of arylzinc chlorides to N-Boc-4-pyridones. We also demonstrated that
this reaction is compatible with a broad scope of substrates with both electron-withdrawing
and electron-donating substituents on the aromatic ring to afford 1,4-adducts 2-substituted-2,3-
dihydropyridones in high yields. Excellent ee can be achieved when (S)-BINAP is used as the
chiral ligand. These 1,4-adducts are versatile intermediates that can be utilized for the synthesis
of medicinally important N-heterocycles such as pyridines, piperidones, piperidines, indolizidenes,
and quinolizidenes.

Supplementary Materials: Supplementary materials are available online.
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