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Abstract

 

PD-1 is an immunoglobulin superfamily member bearing an immunoreceptor tyrosine-based
inhibitory motif, and disruption of the PD-1 gene results in the development of lupus-like au-
toimmune diseases. In this study, we examined effects of the PD-1 deficiency on the thy-

 

mocyte differentiation at the clonal level using T cell receptor (TCR)-

 

b

 

 (V

 

b

 

8) and TCR-

 

a

 

/

 

b

 

(H-Y and 2C) transgenic mice. In these TCR transgenic lines, PD-1 expression in the thymus

 

was variably augmented, but as in the normal mice, confined largely to the CD4

 

2

 

CD8

 

2

 

 

 

thy-
mocytes. The transgenic mice crossed with PD-1

 

2

 

/

 

2

 

 mice in the neutral genetic backgrounds
exhibited selective increase in the CD4

 

1

 

CD8

 

1

 

 (DP) population with little effect on other thy-
mocytes subsets. Similarly, the absence of PD-1 facilitated expansion of DP thymocytes in re-
combination activating gene (RAG)-2

 

2

 

/

 

2

 

 

 

mice by anti-CD3

 

e

 

 antibody injection. On the other
hand, H-Y or 2C transgenic PD-1

 

2

 

/

 

2

 

 mice with the positively selecting background showed
significantly reduced efficiency for the generation of CD8

 

1

 

 

 

single positive cells bearing the
transgenic TCR-

 

a

 

/

 

b

 

 in spite of the increased DP population. These results collectively indi-
cate that PD-1 negatively regulates the 

 

b

 

 selection and modulates the positive selection, and
suggest that PD-1 deficiency may lead to the significant alteration of mature T cell repertoire.

Key words: immunoreceptor tyrosine-based inhibitory motif • knock-out mice • positive 
selection • T cell receptor transgenic mice • RAG-2–deficient mice

 

Introduction

 

Progenitor T cells must go through distinct check points
as they differentiate in the thymus before becoming ma-

 

ture T cells (1). The most immature CD4

 

2

 

CD8

 

2

 

 (DN)

 

thymocytes (2) can differentiate into CD4

 

1

 

CD8

 

1

 

 

 

(DP)

 

cells only after the expression of TCR 

 

b

 

 chains, a process
termed 

 

b

 

 selection (3, 4). The DP thymocytes, which
subsequently rearrange the TCR 

 

a

 

 chain genes and ex-
press TCR-

 

a

 

/

 

b

 

, are subjected to the positive and nega-
tive selection by the specificity of TCR (5–7). Only posi-
tively selected thymocytes can mature into either CD4

 

1

 

or CD8

 

1

 

 single positive (SP) T cells. In the 

 

b

 

 selection
of pre-T cells, the signaling from TCR-

 

b

 

/pre–TCR-

 

a

 

(pT

 

a

 

)–CD3 complex (8; pre-TCR) is shown to play a
crucial role (9–11). Based on the analysis of pT

 

a

 

-deficient
mice (10), it is indicated that pre-T cells drastically ex-

pand during 

 

b

 

 selection, which is essential for the subse-
quent generation of clonal diversification. However, it re-
mains to be verified whether the 

 

b

 

 selection process
somehow affects the final TCR repertoire of mature T
cells.

PD-1 is a 55-kD type I transmembrane protein of the
immunoglobulin superfamily bearing an immunoreceptor
tyrosine-based inhibitory motif (ITIM) in its cytoplasmic
region (12, 13). In the thymus, PD-1 is selectively ex-
pressed in a very minor population of DN thymocytes
(14), while it is also induced on peripheral T and B cells
after activation (12). Expression of PD-1 in DN thy-
mocytes is significantly augmented in both normal and re-
combination activating gene (RAG)-2–deficient mice by
the injection of anti-CD3 mAb, implying that PD-1
might be involved in the 

 

b

 

 selection process (14). Re-
cently, PD-1–deficient mice were found to spontaneously
develop autoimmune diseases characterized by lupus-like
glomerulonephritis with immune complex deposition and
destructive arthritis as they age (16), and it has been sug-
gested that the PD-1 deficiency results in the breakdown
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of peripheral tolerance against self-reactive T cells (16).
The possibility that the PD-1 deficiency affects the reper-
toire of mature T cells also remains open (15). In the
present study, we report that the absence of PD-1 signifi-
cantly facilitates the transition of thymocytes from DN to
DP stage in the TCR transgenic lines as well as in RAG-
2

 

2

 

/

 

2

 

 mice injected with anti-CD3 mAb, suggesting that
PD-1 controls the threshold of 

 

b

 

 selection. On the other
hand, efficiency of positive selection for the transgenic T
cells in the relevant genetic background was significantly
reduced in the absence of PD-1. Mechanisms for the op-
posing effects of PD-1 deficiency on 

 

b 

 

and positive selec-
tions as well as their possible involvement in the develop-
ment of lupus-like diseases are discussed.

 

Materials and Methods

 

Mice.

 

C57BL/6 (B6) mice were purchased from Japan SLC.
PD-1–deficient mice (15) were backcrossed into B6 mice for at
least eight generations. V

 

b

 

8 (17), H-Y (18) and 2C transgenic
(19), and RAG-2

 

2

 

/

 

2

 

 mice (20) were maintained in specific
pathogen-free conditions. For genotyping of mice, restricted
DNAs of TCR transgenic (V

 

b

 

8, H-Y, and 2C; EcoRI) and
RAG-2

 

2

 

/

 

2

 

 alleles (EcoRI plus EcoRV) were probed with the
300-bp PstI-SacI fragment of V

 

b

 

8.2 and the 950-bp PstI-EcoRV
fragment of RAG-2 cDNA, respectively. The transgenes and the
targeted alleles were confirmed by the appearance of additional
bands at 

 

z

 

2.4 and 1.2 kb, respectively.

 

Antibodies.

 

mAbs for PD-1 (12), H-Y TCR-

 

a

 

 (T3.70 [21]),
2C TCR-

 

a

 

/

 

b

 

 clonotype (1B2 [22]), and CD3

 

e

 

 (145-2C11)
were all purified from ascites and biotinylated if necessary.

Figure 1. Augmented expression of PD-1 in
CD42CD82 compartment in TCR transgenic
lines. (a) Thymocytes from wild-type (WT), Vb8,
H-Y (H-2d), female H-Y (H-2b), and 2C (H-2b)
mice were examined for PD-1 expression. Top,
CD4/CD8 contour plots. Bottom, histograms for
PD-1 expression in total, CD41CD81, and CD42

CD82 thymocytes. (b) Thymocytes from H-Y
(H-2b) and 2C (H-2b) mice were examined for the
expression of PD-1. The contours of CD4/CD8
profiles gated in PD-11 (left) or PD-12 (right)
fractions are shown. (c) CD69 and PD-1 expres-
sions are shown in total thymocytes from wild-
type, female H-Y (H-2b/d), and 2C (H-2b) mice.
The numbers indicate percentages in gated re-
gions. Tg, transgenic.



 

893

 

Nishimura et al. Brief Definitive Report

 

The following mAbs were purchased from PharMingen: anti–
mouse CD8

 

a

 

-FITC, phycoerythrin-R (PE)-conjugated anti-CD4
(RM4-5), biotinylated anti–mouse CD24 (M1/69), FITC- and
biotinylated anti–mouse CD69 (H1.2F3), biotinylated anti–
mouse CD8

 

b

 

 (53-5.8), and biotinylated anti–mouse TCR-

 

d

 

(GL3). Streptavidin-conjugated RED670 was obtained from
GIBCO BRL.

 

Flow Cytometry.

 

Flow cytometric analysis was performed as
described previously (15). Analysis was performed using a FACS-
Calibur™ (Becton Dickinson) and CELLQuest™ software (Bec-
ton Dickinson).

 

Results and Discussion

 

We have comparatively analyzed the expression of PD-1
in the thymus of normal and various TCR transgenic mice.
As shown in Fig. 1 a, PD-1 was expressed in only 

 

z

 

1% of
total thymocytes of normal mice, which was confined to
the DN population as reported previously (14). PD-1

 

1

 

 

 

cells
in the DN population showed two peaks, PD-1

 

high

 

 and
PD-1

 

low

 

, which represented 

 

g

 

/

 

d

 

 T cells and 

 

a

 

/

 

b

 

 T cells,
respectively (14). In the thymus of V

 

b

 

8 transgenic mice,
there was a slight yet significant increase in the PD-1

 

1

 

 cells
(1.2 versus 3.8%), which mostly reflected the increase in
the PD-1

 

low 

 

cells in the DN population (40 versus 65%). In
both mice, the CD4

 

1

 

CD8

 

1

 

 

 

population totally lacked the
expression of PD-1. We then examined the mice trans-
genic for both TCR 

 

a

 

 and 

 

b

 

 chain genes. In the thymus of
H-Y mice, 

 

z

 

20% of total thymocytes and nearly 90% of

the DN population were found to express PD-1 with high
intensities in both neutral (H-2

 

d

 

) and positively selecting
(H-2

 

b

 

) backgrounds. The thymus of 2C mice in the posi-
tively selecting background (H-2

 

b

 

) exhibited as much as
63% PD-1

 

1

 

 cells, and again nearly 90% of the DN popula-
tion strongly expressed PD-1. Unlike normal and V

 

b

 

8
transgenic mice, significant proportions of DP thymocytes
in H-Y and 2C mice also exhibited PD-1, 

 

z

 

15 and 50%,
respectively (Fig. 1 a).

However, the CD4/CD8 expression of thymocytes in
the TCR-

 

a

 

/

 

b

 

 transgenic mice was quite diffuse, particu-
larly in 2C mice. To have a better picture of the distribu-
tion of PD-1

 

1

 

 cells, the CD4/CD8 profiles of PD-1

 

1

 

 and
PD-1

 

2

 

 populations were analyzed separately. As shown in
Fig. 1 b, PD-1

 

1

 

 cells were present in the CD4low and/or
CD8low in addition to DN populations in both H-Y (H-2b)
and 2C (H-2b) mice. The vast majority of CD4highCD8high

DP cells as well as CD4highCD82 and CD42CD8high SP
populations lacked PD-1 expression. In the female H-Y
(H-2b/d) transgenic as well as control mice, CD691 thy-
mocytes barely expressed PD-1 and vice versa (Fig. 1 c),
implying that thymocytes during the positive selection pro-
cess lacked PD-1 expression. In 2C (H-2b) mice, the ma-
jority of thymocytes expressed CD69 weakly, including
both PD-11 and PD-12 cells (Fig. 1 c). In the TCR trans-
genic mice, b selection largely proceeds based on the ex-
pression of transgenic TCR b chain, either as TCR-b ho-
modimer (23, 24) in Vb8 transgenic mice or as TCR-a/b

Table I. The Frequency of Thymocyte Subpopulations in Vb8 or H-2d/d H-Y Transgenic Mice in the Nonselection Environment with or 
without PD-1 Deficiency

Genotype
No. of mice
examined Total cell no.

CD41CD81

cell no. 31026
CD81

cell no. 31026
CD41

cell no. 31026
CD42CD82

cell no. 31026

31028 (%) (%) (%) (%)
Vb8 3 0.99 6 0.3 73.51 6 2.27 5.76 6 0.59 16.29 6 0.82 4.10 6 0.64

(74.25 6 0.17) (5.83 6 0.66) (16.45 6 0.36) (4.14 6 0.63)
Vb8 3 PD-11/2 3 1.04 6 0.19 74.04 6 16.31 6.37 6 0.52 19.34 6 3.00 4.25 6 0.59

(70.94 6 3.20) (6.24 6 1.04) (18.70 6 1.89) (4.12 6 0.39)
Vb8 3 PD-12/2 4 1.49 6 0.17 109.82 6 12.65 7.70 6 0.92 25.90 6 2.33 5.84 6 1.30

(73.56 6 0.52) (5.16 6 0.13) (17.41 6 1.02) (3.88 6 0.47)
P values between PD-11/2

and PD-12/2 background 0.0048 0.0055 0.009 ,0.001 0.06

H-Y (H-2d/d) 9 1.27 6 0.39 80.04 6 30.83 6.02 6 2.10 23.27 6 5.72 17.86 6 4.43
(61.58 6 7.17) (5.08 6 1.84) (18.89 6 3.65) (14.58 6 3.24)

H-Y (H-2d/d) 3 PD-11/2 7 1.43 6 0.42 92.61 6 31.09 5.77 6 2.10 26.18 6 7.16 18.45 6 4.49
(64.20 6 4.32) (4.18 6 1.63) (18.53 6 2.39) (13.08 6 1.79)

H-Y (H-2d/d) 3 PD-12/2 7 1.81 6 0.36 125.11 6 27.92 7.29 6 1.99 31.53 6 6.22 17.69 6 4.72
(68.74 6 3.67) (4.11 6 1.37) (17.48 6 1.72) (9.81 6 2.58)

P values between PD-11/2

and PD-12/2 background 0.006 0.0042 0.135 0.009 0.47

Numbers in parentheses indicate percentages of subsets based on the expression of CD4 and CD8. All numbers are shown as mean 6 SD.
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complex in H-Y and 2C transgenic mice. Although the
studies on pTa2/2 mice suggest that the three types of pre-
TCR complex mentioned above achieve b selection in
somewhat distinct fashions (25, 26), signaling downstream
of the CD3 complex is expected to be similar (11). Our re-
sults here have reinforced that PD-1 expression is induced
during the b selection process of DN thymocytes, which is
variably enhanced in the TCR transgenic mice. It remains
to be further analyzed whether PD-1 is also expressed dur-
ing the later selection processes such as positive and nega-
tive selection, particularly in 2C mice (see below).

To explore the functions of PD-1, we crossed Vb8 and
H-Y (H-2d/d) transgenic mice with PD-12/2 mice and ana-
lyzed their thymocytes. As summarized in Table I, the total
cell number of thymocytes in Vb8 3 PD-12/2 transgenic
mice was significantly increased compared with that in Vb8 3
PD-11/1 transgenic mice (1.49 6 0.17 vs. 0.99 6 0.3 3
1028, P , 0.005). The increase was ascribed mostly to DP
thymocytes (109.82 6 12.65 vs. 73.51 6 2.27 3 1026, P ,
0.01), whereas the number of DN thymocytes remained un-
affected. Essentially similar results were obtained in the H-Y
(H-2d) mice, DP thymocytes being increased selectively in
the absence of PD-1 (80.04 6 30.83 vs. 125.11 6 27.92 3
1026, P , 0.005). The results strongly suggest that PD-1
negatively regulates the transition of DN thymocytes to the
DP stage in the TCR transgenic mice. The numbers of
CD41 and CD81 SP thymocytes were increased propor-
tionally to DP thymocytes in both Vb8 3 PD-12/2 and
H-Y (H-2d/d) 3 PD-12/2 mice, suggesting that the overall

efficiency for the positive selection based on the TCRs of
transgenic b chains and endogenous a chains was largely un-
affected in the absence of PD-1.

Next, to define the effect of PD-1 deficiency on the posi-
tive selection for the transgenic TCR-a/b, we crossed PD-
12/2 mice with the female H-Y (H-2b) and 2C (H-2b) mice,
in which the CD81 cells expressing the transgenic TCR-a/b
are positively selected. The number of DP thymocytes in
female H-Y (H-2b) mice was significantly increased in the
absence of PD-1, as before (Table II). In the female H-Y
(H-2b) 3 PD-11/2 mice, the number of CD81 SP cells was
also increased proportionally to both DP and CD41 SP cells
(z1.5-fold; Table II). In contrast, the number of CD81 SP
cells in the female H-Y (H-2b) 3 PD-12/2 mice remained
the same as in the control female H-Y (H-2b) mice (17.6 6
7.63 vs. 16 6 3.89 3 106) in spite of the fact that the num-
bers of DP and CD41 SP cells were increased in parallel
z1.5-fold (Table II). FACS® analysis indicated that the rela-
tive proportions of both T3.70 (transgenic TCR-a)high and
CD242CD81 cells were indeed decreased in the absence of
PD-1 (Fig. 2 a), indicating that the efficiency of positive se-
lection for the clonotypic T3.701CD81 SP cells was signifi-
cantly reduced. On the other hand, the proportion of CD41

SP thymocytes, which are positively selected on the basis of
diversified TCRs of the transgenic TCR-b and endogenous
TCR-a, was unaffected (Fig. 2 a).

In 2C (H-2b) mice, the number of total as well as DP
thymocytes was far less and the relative proportion of CD81

SP thymocytes was much higher than in female H-Y

Table II. The Frequency of Thymocyte Subpopulations in Female H-2b/b H-Y and H-2b/b2C Transgenic Mice with or without PD-1 Deficiency

Genotype
No. of mice
examined Total cell no.

CD41CD81

cell no. 31026
CD81

cell no. 31026
CD41

cell no. 31026
CD42CD82

cell no. 31026

31028 (%) (%) (%) (%)
H-Y (H-2b/b) 10 1.57 6 0.44 98.07 6 32.15 16 6 3.89 17.74 6 4.87 25.01 6 7.17

(61.84 6 4.08) (10.79 6 3.70) (11.51 6 2.85) (16.1 6 2.85)
H-Y (H-2b/b) 3 PD-11/2 10 2.45 6 0.62 168 6 44 23.2 6 10.8 27.47 6 7.3 25.52 6 11.0

(69.22 6 6.13) (9.67 6 4.40)
0.03*

(11.30 6 1.78) (10.12 6 3.02)

H-Y (H-2b/b) 3 PD-12/2 15 2.41 6 0.72 172 6 52 17.6 6 7.63 27.0 6 10.0 23.44 6 9.14
(71.62 6 5.37) (7.40 6 2.21) (11.23 6 1.87) (9.75 6 2.47)

P values between PD-11/1

and PD-12/2 background 0.0001 0.0001 0.08 0.002 0.63

2C (H-2b/b) 5 0.21 6 0.09 5.72 6 2.74 6.00 6 2.78 1.46 6 0.55 8.15 6 2.82
(26.1 6 4.7) (28.0 6 4.1) (6.9 6 0.8) (39.0 6 6.8)

2C (H-2b/b) 3 PD-12/2 5 0.19 6 0.05 6.28 6 1.74 3.33 6 1.08 2.64 6 0.84 6.91 6 2.06
(34.0 6 3.6) (17.3 6 1.7) (13.8 6 1.4) (36.0 6 3.7)

P values between PD-11/1

and PD-12/2 background 0.36 0.35 0.05 0.017 0.23

Numbers in parentheses indicate percentages of subsets based on the expression of CD4 and CD8. All numbers are shown as mean 6 SD.
*P value between H-Y and H-Y 3 PD-11/2 mice.
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(H-2b) mice (Table II, and Fig. 1), probably reflecting
higher affinity and/or avidity of 2C TCR-a/b for the se-
lecting ligands (27, 28). In the 2C (H-2b) 3 PD-12/2

mice, a significant reduction of CD81 SP thymocytes was
observed in terms of both absolute cell number and relative
proportion, whereas the DP population was increased
slightly compared with 2C (H-2b) 3 PD-11/1 mice (Table
II, and Fig. 2 b). Furthermore, within the CD42CD81

population, the percentages of those with the mature phe-
notypes (CD242 and CD8bhigh) were significantly reduced
in 2C (H-2b) 3 PD-12/2 (50%) than in 2C (H-2b) 3 PD-
11/1 mice (70%) (Fig. 2 b), suggesting that the reduction of
positively selected CD81 SP thymocytes in the former
mice was apparently underestimated by the presence of
transient CD4low/2CD81 cells. Consistently, expression of
CD69, a marker associated with positive selection, was also
significantly reduced in both total and DP thymocytes in
the absence of PD-1 (Fig. 2 b). Although there was an ap-
parent increase in the CD41 SP thymocytes (Table II, and
Fig. 2 b), the vast majority of CD41 SP thymocytes in both
groups highly expressed the clonotypic epitope (1B2) of
transgenic TCR-a/b (Fig. 2 b). Therefore, it probably re-
flects the increase in the transitional thymocytes rather than
positively selected mature CD41 SP cells, which is consis-
tent with the accelerated b selection in the absence of PD-1.

These results have collectively suggested that the effi-
ciency of positive selection for the cells expressing trans-
genic TCR-a/b is significantly reduced in the absence of
PD-1.

We have reported previously that the injection of anti-
CD3e mAb into RAG-22/2 mice induces significant ex-
pansion of DP cells expressing PD-1 (14). Since the proce-
dure is considered to mimic the b selection process (29),
we have generated RAG-22/2 3 PD-12/2 mice and in-
jected varying amounts of anti-CD3e mAb. 50 mg of the
anti-CD3e mAb induced more expansion of the thy-
mocytes in RAG-22/2 3 PD-12/2 than in RAG-22/2 3
PD-11/1 mice (47.1 6 21.8 vs. 27.3 6 14.5 3 1026; n 5
9, P , 0.05), whereas no significant difference was ob-
served any more by 100 mg or more (54.5 6 26.1 vs. 53.1 6
12.3 3 1026; n 5 6, P . 0.05). Our preliminary bio-
chemical studies indicate that the cross-linking of PD-1 in-
deed inhibits the cell activation signals such as Ca21 influx
mediated by B cell receptor (BCR) cross-linking in a B cell
line transfected with PD-1 cDNA (our unpublished data).
Therefore, it is suggested that PD-1 functions as a nega-
tively regulating receptor for antigen stimulation.

These results have strongly suggested that PD-1 nega-
tively regulates the b selection process probably by affect-
ing the threshold of pre-TCR/CD3 complex–mediated

Figure 2. Effects of PD-1 deficiency on T cell development in the TCR-a/b transgenic mice in positively selecting background. (a) Thymocytes
from female H-Y (H-2b) mice with or without the PD-1 mutation were analyzed for expression of CD4, CD8a, CD24, and transgenic TCR-a (T3.70).
(b) Thymocytes from 2C (H-2b) mice with or without the PD-1 mutation were analyzed for expression of CD4, CD8a, transgenic TCR-a/b (1B2),
CD24, CD69, and CD8b for total thymocytes (top), CD42CD81 (middle), and CD41CD81 and CD41CD82 (bottom) subsets. Numbers indicate per-
centages of subsets in gated regions.
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signaling. It has been further indicated that the efficiency of
positive selection for SP thymocytes expressing transgenic
TCR-a/b, but not for those expressing diversified endog-
enous TCR a chains, is significantly reduced in the ab-
sence of PD-1. Two explanations may be considered for
this phenomenon. First, reduced efficiency of positive selec-
tion in the absence of PD-1 can be an indirect consequence
of the accelerated b selection. Since PD-1 deficiency is
suggested to lower the threshold for pre–TCR-b/CD3
signaling, the DP thymocytes developed in the absence of
PD-1 would include those that were selected by a weaker
activation signal that otherwise could not allow them to
expand. Such DP cells that expanded by suboptimal b se-
lection signaling may not be qualified for positive selection
as long as the transgenic TCR-a/bs are fixed, resulting in
the reduced efficiency of the subsequent positive selection.
However, these unqualified thymocytes may be rescued by
the expression of endogenous TCR a chain to form new
TCR-a/bs with compensatory higher avidity for the se-
lecting ligands, which may explain the unchanged effi-
ciency of positive selection for such thymocytes in the ab-
sence of PD-1. Alternatively, PD-1 might directly affect
the positive selection process, independently of the effect
on the b selection. Unlike in normal and Vb8 transgenic
mice, the H-Y and 2C mice expressed PD-1 in a portion
of DP thymocytes, the CD4lowCD8low population, which
may undergo positive selection (30). It may then be possi-
ble that the deficiency of PD-1 causes the hyperactivation
of this population upon interaction with selecting ligands
for TCR, resulting in negative rather than positive selec-
tion. We consider the latter less likely because the effi-
ciency of the positive selection for CD41 SP thymocytes
was unaffected in H-Y 3 PD-12/2 mice in both neutral
and positive selecting backgrounds. If PD-1 directly regu-
lates the positive selection process, the PD-1 deficiency
should affect both CD41 SP and CD81 SP thymocytes sim-
ilarly. In addition, at least in the H-Y model, PD-1 is not
significantly expressed in the CD691 population (Fig. 1 c).

Whichever is the case, PD-1 deficiency is strongly sug-
gested to result in the significant alteration of the final T
cell repertoire either directly or indirectly. We have re-
ported that B6 mice deficient for PD-1 develop autoim-
mune diseases, including lupus-like glomerulonephritis and
destructive arthritis, as they age, which are greatly acceler-
ated by the additional lpr/lpr mutation (16). In addition to
the dysregulation of peripheral tolerance (16), it is tempting
to speculate that the altered T cell repertoire formation in
the absence of PD-1 may also increase the likelihood of the
emergence of mature autoreactive T cells and thereby pre-
dispose the mice to the systemic autoimmune diseases.
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