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ABSTRACT

Introduction: Fatigue, cognitive impairment,
depression, and pain are highly prevalent
symptoms in multiple sclerosis (MS). These
often co-occur and may be explained by a
common etiology. By reviewing existing litera-
ture, we aimed to identify potential underlying
biological processes implicated in the intercon-
nectivity between these symptoms.
Methods: A literature search was conducted to
identify articles reporting research into the
biological mechanisms responsible for the
manifestation of fatigue, cognitive impairment,
depression, and pain in MS. PubMed was used
to search for articles published from July 2011
to July 2021. We reviewed and assessed findings

from the literature to identify biological pro-
cesses common to the symptoms of interest.
Results: Of 693 articles identified from the
search, 252 were selected following screening of
titles and abstracts and assessing reference lists
of review articles. Four biological processes
linked with two or more of the symptoms of
interest were frequently identified from the lit-
erature: (1) direct neuroanatomical changes to
brain regions linked with symptoms of interest
(e.g., thalamic injury associated with cognitive
impairment, fatigue, and depression), (2) pro-
inflammatory cytokines associated with so-
called ‘sickness behavior,’ including manifesta-
tion of fatigue, transient cognitive impairment,
depression, and pain, (3) dysregulation of
monoaminergic pathways leading to depressive
symptoms and fatigue, and (4) hyperactivity of
the hypothalamic–pituitary-adrenal (HPA) axis
as a result of pro-inflammatory cytokines pro-
moting the release of brain noradrenaline,
serotonin, and tryptophan, which is associated
with symptoms of depression and cognitive
impairment.
Conclusion: The co-occurrence of fatigue, cog-
nitive impairment, depression, and pain in MS
appears to be associated with a common set of
etiological factors, namely neuroanatomical
changes, pro-inflammatory cytokines, dysregu-
lation of monoaminergic pathways, and a
hyperactive HPA axis. This association of
symptoms and biological processes has impor-
tant implications for disease management
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strategies and, eventually, could help find a
common therapeutic pathway that will impact
both inflammation and neuroprotection.

Keywords: Biological processes; Cognitive
impairment; Co-occurrence; Depression;
Fatigue; Multiple sclerosis; Symptoms; Pain

Key Summary Points

Fatigue, cognitive impairment,
depression, and pain are highly prevalent
symptoms that often co-occur in multiple
sclerosis (MS); therefore, these symptoms
may be explained by a common etiology.

By reviewing existing literature, we aimed
to identify potential underlying biological
processes implicated in the
interconnectivity among fatigue,
cognitive impairment, depression, and
pain symptoms in MS.

We found that the co-occurrence of
fatigue, cognitive impairment, depression,
and pain in MS appears to be associated
with a common set of underlying
etiological factors, namely
neuroanatomical changes, pro-
inflammatory cytokines, dysregulation of
monoaminergic pathways, and a
hyperactive hypothalamic-pituitary-
adrenal axis.

These findings have important
implications for pharmacological and
non-pharmacological disease
management strategies as well as for
future research activities in MS.

INTRODUCTION

Multiple sclerosis (MS) is a neurological disease
characterized by inflammation and degenera-
tion of the central nervous system (CNS) [1]. In
2020, it was estimated to affect 2.8 million
people globally [2], with the number expected

to increase over time [3, 4]. There are a broad
range of symptoms associated with MS, and
they manifest differently between patients.
However, common symptoms impacting the
social and physical functioning of people living
with MS (PlwMS) include fatigue [5], cognitive
impairment [6], pain [7], and depression [8] and
are estimated to affect approximately 37–78%
[9], 34–65% [10], 29–86% [11], and 5–59% [12]
of patients, respectively. The range of preva-
lence observed for each symptom likely reflects
differences in study populations and method-
ologies used.

Notably, these symptoms often co-occur,
having a significant impact on patients’ lives.
Co-occurrence of fatigue, pain, depression, and
cognitive complaints has been shown to have a
negative association with quality of life (QoL),
with worsening symptoms being linked to
poorer psychological and physical QoL. A sin-
gle-factor model was found to explain the
associations among these symptoms [13]. Other
research suggests that these symptoms cluster in
two distinct patterns: an ‘emotional/cognitive’
cluster comprising depression and cognitive
impairment and a ‘physical’ cluster that
includes pain and fatigue, each of which has
been shown to contribute to the prediction of
QoL and perceived health status [14, 15]. The
cluster of fatigue, depression, and pain has
shown a strong negative predictive relationship
with physical activity behavior (i.e., the group
of PlwMS who reported the worst clustered
fatigue, depression, and pain was the least
physically active). This relationship was driven
predominantly by functional limitations [16].

Regarding the prevalence and relative impact
of these clustered symptoms across the disease
course, evidence suggests that symptom co-oc-
currence is evident immediately following
diagnosis in the majority of patients, with pain
and fatigue reported as the symptoms that most
commonly co-occur [17]. The rate of symptom
co-occurrence remains relatively stable during
the first year post-diagnosis [17]. In older adults,
symptom clusters are characterized by a pre-
dominance of fatigue, depression, and anxiety
symptoms—and associated severe sleep prob-
lems [18].
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Given that symptom co-occurrence is rela-
tively widespread among PlwMS, it may be that
there is a common etiology explaining this
phenomenon. Identifying such a unifying
pathway (or pathways) driving symptom inter-
connectivity might help to inform the devel-
opment of behavioral and pharmacological
interventions targeted at alleviating multiple
symptoms simultaneously. Furthermore, a bet-
ter understanding of the interconnected nature
(or ‘clustering’) of these symptomatic domains
may help to inform symptom assessment prac-
tices, including the development of more
accurate patient-reported outcome (PRO)
measures.

To this end, the objective of the present
article was to provide a narrative review of
existing literature to identify potential under-
lying biological processes that may explain the
interconnected nature of fatigue, cognitive
impairment, depression, and pain in PlwMS.

METHODS

The purpose of the literature search was to
identify published articles containing the find-
ings of primary research focused on investigat-
ing the biological processes implicated in the
interconnectivity among fatigue, cognitive
impairment, depression, and pain in PlwMS.

PubMed was used to search for all articles
published during the 10 years prior to July 16,
2021, using the search terms ‘Multiple Sclerosis
AND ((cognition AND fatigue AND depression)
OR (cognition AND fatigue AND pain) OR
(cognition AND pain AND depression) OR (fa-
tigue AND pain AND depression)).’ Note that as
the focus of the search was to identify inter-
connectivity between multiple symptoms, the
search strategy would not necessarily identify
articles that described fewer than three of the
symptoms listed. Since this is a narrative review,
no typical criteria for inclusion and exclusion
were predefined. We simply retained papers
that reported research related to the topic in
question. Importantly, the intention was not to
conduct a systematic review of the literature,
but to pragmatically search for relatively recent
literature on the topic, including previous

reviews that capture earlier research not detec-
ted during our search.

Titles and abstracts of returned articles were
screened to identify papers reporting the find-
ings of research into the biological processes
linked with the symptoms of interest. Addi-
tional relevant articles were identified from the
reference lists of a number of review articles
returned during the search. The full texts of all
relevant articles were then reviewed. For each
paper, we used an Excel tracking document to
record the respective symptoms and biological
processes and the associated key findings. Based
on this information, we identified a set of
mechanistic groupings under which to catego-
rize findings. These groupings serve to structure
the results section in the present article.

This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors. As such, ethics commit-
tee approval was not sought.

RESULTS

The literature search identified a total of 693
articles. Screening of titles resulted in the
exclusion of 406 articles, with a further 212
articles excluded during screening of the
abstracts. This resulted in 75 articles, consisting
of 46 original articles and 29 review articles. An
additional 206 articles were identified from the
reference lists of the 29 reviews. This resulted in
252 original articles that were reviewed to
extract relevant results that reported biological
processes associated with fatigue, cognitive
impairment, depression, or pain in MS (Fig. 1).

Following review of the relevant literature,
articles were categorized based on one or more
symptoms measured (fatigue, cognitive impair-
ment, depression, and pain). In total, 222 arti-
cles contained results relevant to one of the
symptoms of interest (i.e., associated the mea-
surement of a biological process with the mea-
surement of the symptom of interest), 25
articles studied 2 symptoms, and 5 articles
measured C 3 symptoms. Additionally, follow-
ing categorization of the biological processes
associated with the symptoms of interest across
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all relevant articles, four primary biological
processes were identified and named as follows:
neuroanatomy, inflammation, monoamines,
and the hypothalamic–pituitary-adrenal (HPA)
axis. In total, 228 articles contained results
relating to neuroanatomy (changes in the
structure and function of the CNS assessed
using traditional and novel imaging tech-
niques); 9 articles contained results related to
inflammation (changes in inflammatory cells,
cytokines or other inflammatory mediators in
MS); 3 articles contained results related to
monoamines (serotonin, dopamine, nora-
drenaline, and/or associated pathways), and 4

articles contained results related to HPA axis
function (changes in HPA axis hormones).
Additionally, five studies included results that
referred to more than one of the aforemen-
tioned biological processes, while three articles
referred to processes not specifically captured by
the previous categories (myelin oligodendro-
cyte glycoprotein antibody positivity, vitamin
D levels, and resting muscle oxygen consump-
tion in the upper limb; Table 1 and Table S1 in
the electronic supplementary material).

Figure 2 provides a graphical representation
of the literature search results and potential key
biological processes underpinning the

Fig. 1 Flow diagram of literature search and article screening. *Original research articles sourced from reviews were screened
for duplicates with the n = 46 original research articles first identified in the search
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Table 1 Articles stratified by symptoms and biological processes

Symptoms Articles, n Biological processes Articles, n

Cognitive impairment 144 Neuroanatomy 228

Fatigue 48 Inflammation 9

Depression 25 Monoamines 3

Pain 5 HPA axis 4

Fatigue/depression 11 Neuroanatomy/HPA axis 1

Cognitive impairment/fatigue 9 Inflammation/HPA axis 2

Cognitive impairment/depression 5 Neuroanatomy/inflammation 1

Cognitive impairment/fatigue/depression 2 Neuroanatomy/inflammation/HPA axis 1

Fatigue/depression/pain 2 Other 3

Cognitive impairment/fatigue/depression/pain 1 Total 252

Total 252

HPA hypothalamic–pituitary-adrenal

[22-179] [44, 49, 63, 69, 93, 
116, 120, 174-176, 
180-227] 

[36, 39, 49, 63, 92, 
100, 120, 129, 130, 
192, 196-198, 201, 
202, 204, 208, 228-
246] 

[63, 192, 
247-251] 

[252-254] 

[252, 253, 
255-259] 

[255, 257, 259-262] 

[263-265] [266]

[267, 268] 

[269] 

[253] 

Fig. 2 Graphical representation of the literature search
results and potential key biological processes underpinning
the interconnectivity among fatigue, cognitive impairment,
depression, and pain. The potential links between the
biological processes and symptoms are color-coded, e.g., a
blue circle or line indicates a link with depression.
References shown in the colored boxes support the

relationships represented in the figure. The dashed gray
lines and associated references represent the way in which
each of the biological mechanisms may directly impact the
others. HPA, hypothalamic-pituitary-adrenal
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interconnectivity among fatigue, cognitive
impairment, depression, and pain.

Neuroanatomy

Structural Brain Changes
Neuroanatomical changes were identified as the
primary biological process associated with fati-
gue, cognitive impairment, depression, and
pain, representing [ 90% of all articles identi-
fied from our search.

Global brain atrophy begins at an early stage
of MS and accelerates with disease progression
(see [82, 272]). A longitudinal study found an
association between progressive brain atrophy
during a 2-year period and worsening fatigue
over the subsequent 6 years in patients with MS
[205], while associations were also seen between
whole-brain lesion volume and fatigue [222],
and impairments in processing speed
[107, 224], and between a decrease in brain
volume and depression [236] and impairments
in processing speed [107, 224].

A degree of overlap is apparent between the
locations of subcortical atrophy in PlwMS and
the presence of cognitive impairments, fatigue,
and pain. For example, PlwMS who reported
fatigue showed greater atrophy in regions
involved in the processing of effort and reward,
such as the striatum, than those without fati-
gue. This is consistent with the idea that
impairment of cortico-striatal networks con-
tributes to fatigue in MS [181, 183, 185, 187].
However, atrophy of subcortical areas, includ-
ing the striatum (caudate and putamen), globus
pallidus, thalamus, and nucleus accumbens,
was also associated with impairments in cogni-
tion, particularly processing speed
[31, 107, 137]. In addition, changes in gray
matter thickness of the caudate, putamen, and
thalamus were associated with pain [251].

Furthermore, overlap was evident in the
areas of cortex associated with fatigue, cognitive
impairment, depression, and pain in PlwMS.
Atrophy of frontal and/or parietal cortex was
more extensive in individuals reporting fatigue
[183, 185, 210] and in those with impairments
in verbal learning, spatial learning, attention,
conceptual reasoning, and processing speed

[32, 115, 159]. Atrophy of frontal cortex, along
with atrophy of temporal [246], cingulate, and
parietal cortex [228], was associated with
depression in PlwMS [228, 232, 246]. Atrophy of
frontal and parietal cortex was also associated
with pain [251].

Functional Connectivity
Global CNS neurodegeneration, as well as
damage to specific structures in the brain and
spinal cord, can lead to disruption of neural
networks and functional connectivity. The
demyelination typical of MS may disrupt com-
munication between the nodes of neural net-
works. Several articles identified from our
literature search support the hypothesis that
disruption to this functional connectivity is
associated with the four symptoms of interest.

Disruption to the functional connectivity of
the default mode network (DMN), which is
involved in internally oriented cognitive pro-
cesses such as ‘mind wandering,’ recall of past
events, and simulation of future events [273], is
associated with cognitive impairment and
depression [65, 85, 139, 164, 241]. Decreased
cognitive performance was associated with
reduced resting-state network connectivity,
including in the DMN, in people with relaps-
ing–remitting MS (RRMS) [65, 105, 274] and
progressive forms of MS [139]. By contrast, a
group of individuals with early-stage MS
showed increased functional connectivity in
the DMN despite marked reductions in white
matter integrity [85]. As the participants in the
latter group were also cognitively impaired rel-
ative to controls, Hawellek et al. argued that
their findings suggest reduced cognitive effi-
ciency in early-stage MS.

However, it is important to consider that
while neurodegenerative damage can directly
influence symptoms associated with the affec-
ted brain structures, compensatory mechanisms
may mitigate the impact of this damage via the
increased or decreased recruitment of other
brain structures. This is known as cortical reor-
ganization (reviewed in [275–277]). It is thus
possible that the increased functional connec-
tivity observed by Hawellek et al. within the
DMN reflects a compensatory process aimed at
reducing cognitive impairment. Likewise,
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increased DMN resting-state connectivity
within the periphery of the posterior cingulate
cortex was suggested to have a compensatory
role in cognitively impaired individuals with
RRMS [278].

Task-based functional magnetic resonance
imaging (MRI) studies in MS have provided
further evidence of cortical reorganization by
showing that on certain cognitive function
measures, PlwMS can perform comparably to
healthy controls while recruiting different cor-
tical and subcortical structures and demon-
strating different brain activation patterns
[27, 124, 125, 131, 220]. Patients with clinically
isolated syndrome (CIS) who improved their
performance on a test of working memory and
processing speed over a 12-month interval
showed increased activation of the right lateral
prefrontal cortex (PFC) over the same period,
suggesting that this may be a compensatory
response [28]. Parry and colleagues proposed
that medial PFC recruitment may be a form of
adaptive plasticity that compensates for deficits
related to reduced right PFC activity in MS
[124]. At baseline, PlwMS performing a count-
ing Stroop task showed stronger activation of
left medial PFC, but weaker activation of right
PFC, than healthy controls. However, after tak-
ing a central cholinesterase inhibitor, rivastig-
mine, this difference disappeared [124].
Furthermore, while patients with clinically
definite MS and CIS did not differ significantly
from healthy controls in performance on the
Paced Visual Serial Addition Task, individuals
with clinically definite MS showed increased
activation of the hippocampus and parahip-
pocampal area compared with patients with
CIS, which may have indicated a need in the
patients with clinically definite MS to bolster
their working memory capacity via recruitment
of these additional brain regions [131].

The capacity for compensation is, however,
finite. PlwMS who showed minor impairment
on attentional tasks relative to healthy controls
displayed increased and additional activation of
various brain areas, mainly in frontal cortex and
posterior parietal cortex, that were not activated
in healthy controls [125]. However, this addi-
tional activation was not observed in PlwMS
whose performance was severely impaired,

suggesting that in individuals with severe cog-
nitive impairment the capacity to compensate
by recruiting additional brain areas may have
been exhausted [125].

In addition to compensatory mechanisms,
PlwMS may have a level of reserve capacity that
offers some protection from the symptomatic
changes associated with the disease. Greater
intellectual enrichment (based on vocabulary
knowledge) in PlwMS was associated with less
deactivation of the DMN and with less recruit-
ment of the PFC during both low (0-Back and
1-Back tasks) and high (2-Back task) cognitive
demands, with a better cognitive performance
during the high-demand tasks also associated
with greater intellectual enrichment [164]. The
authors proposed that the DMN and PFC pro-
vide a link between intellectual enrichment and
cognitive status in PlwMS, with greater main-
tenance of the DMN and lower need for pre-
frontal recruitment representing a basis of
cognitive reserve [164]. Taken together, these
results suggest that damage to the DMN may
contribute to cognitive decline, while intellec-
tual enrichment may provide protection against
the cognitive impacts of the disease. Given that
disruption to the DMN is linked with both
cognitive decline and depression, it is interest-
ing to postulate that intellectual enrichment
might also protect against depression in PlwMS.

Disrupted functional connectivity is also
associated with fatigue and depression
[85, 141, 194, 200, 219, 235, 240]. Fatigue
severity in PlwMS has been negatively corre-
lated with functional connectivity of certain
brain regions, while positively correlated with
connectivity between other regions [194, 200].
In people with RRMS, fatigue severity was neg-
atively correlated with functional connectivity
between the basal ganglia and frontal and
parietal cortex (independent of age, sex, and
disease severity), but positively correlated with
functional connectivity between caudate
nucleus and motor cortex [194]. No association
between fatigue severity and basal ganglia
functional connectivity was observed in healthy
controls, suggesting that this phenomenon was
specific to PlwMS [194]. Investigating the stri-
atal subdivisions, Jaeger and colleagues found
that fatigue severity negatively correlated with
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functional connectivity of the caudate nucleus
and ventral striatum with the sensorimotor
cortex (SMC), while positively correlating with
functional connectivity of the dorsolateral PFC
with the rostral inferior parietal gyrus and the
SMC [200]. In individuals with early-onset MS
(onset\ 30 years of age), fatigue severity nega-
tively correlated with functional connectivity
between the left insula and posterior cingulate
gyrus and between the right thalamus and left
parietal operculum [219]. The authors of the
latter study reported increased connectivity
between the right thalamus and right precentral
gyrus and between the left hippocampus and
left precentral gyrus in PlwMS reporting fatigue
versus those without fatigue, although func-
tional connectivity in these regions did not
correlate with fatigue severity [219].

There is evidence that increased functional
connectivity may be a compensatory mecha-
nism for countering fatigue in PlwMS. For
example, after performing a mentally challeng-
ing task, PlwMS with cognitive fatigue showed
increasingly stronger resting-state functional
connectivity between the left superior frontal
gyrus and occipital, frontal, and temporal areas
than healthy controls and PlwMS without cog-
nitive fatigue [211]. Similarly, when performing
a motor activity after completing a cognitive
task, PlwMS with fatigue recruited significantly
more of their brain than they had when doing
the same motor activity prior to the cognitive
task; this was not observed in healthy controls
[220]. Notably, the increased brain activity
required to perform mental or physical activi-
ties has also been proposed to potentially con-
tribute to the fatigue observed in MS [279].

Disrupted activity in the limbic system is
associated with levels of depression in PlwMS
[235, 240]. People with MS and comorbid major
depressive disorder (MDD) exhibited increased
local path length in the right hippocampus and
right amygdala compared with PlwMS without
MDD and with healthy controls [235]. No sig-
nificant difference was observed in the local
path length between healthy controls and
PlwMS without MDD [235]. Further analyses
showed that, compared with the healthy con-
trols and those with MS but no MDD, PlwMS
with MDD had an increased shortest distance

between the right hippocampus/right amygdala
and a series of frontal and prefrontal cortical
regions, including the dorsolateral PFC [235],
which is thought to play a key role in the
pathophysiology of depression [280]. A large
study in PlwMS (n = 77) demonstrated that
depression scores negatively correlated with
functional connectivity of both the hippocam-
pus and amygdala with the dorsolateral PFC,
providing further support for a role of these
regions in mediating depression in PlwMS [240].

Inflammation

Pro-inflammatory cytokines released from lym-
phocytes that have infiltrated the CNS of PlwMS
contribute to the inflammatory signaling path-
ways at the heart of MS pathogenesis [20, 21].
However, they also act directly on the brain to
produce so-called ‘‘sickness behaviors,’’ includ-
ing symptoms such as fatigue, depression, pain,
and transient cognitive decline [281]. It is
unsurprising, therefore, that these symptoms
are commonly experienced by PlwMS, given the
inflammatory component of the disease, par-
ticularly in its early stages. We identified several
articles that demonstrate a relationship among
inflammation, depression, and fatigue.

In a prospective study of peripheral immune
cells in individuals with progressive MS
(n = 13), the times of greatest depression (based
on Center for Epidemiological Studies Depres-
sion [CES-D] score) were associated with fewer
CD8? T cells and a higher CD4?/CD8? T cell
ratio than the times of least depression [260].
The participants were enrolled in a placebo-
controlled trial of cyclosporine, where 6 of the
13 individuals received cyclosporine and the
others received placebo. In the placebo group,
the number and percentage of CD4? T cells
were higher at the times of greatest psycholog-
ical distress versus the times of least depression
[260].

There were no differences in absolute num-
bers of CD4? and CD8? T cells between indi-
viduals with RRMS and comorbid MDD (n = 10)
and those with RRMS without MDD (n = 34)
[257]. However, differences in T cell function
were observed, with more tumor necrosis factor
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(TNF)-a- and interferon (IFN)-c-producing
CD8? T cells detected in the comorbid MDD
group—a trend that was retained when the
authors controlled for Expanded Disability Sta-
tus Scale score or disease-modifying therapy
(DMT) [257]. The frequency of CD8? T cells did
not predict depression severity but was a sig-
nificant predictor of fatigue scores [257]. This
latter finding was consistent with that of a prior
study, where levels of the pro-inflammatory
cytokines TNF-a- and IFN-c were significantly
greater (both p = 0.01) in whole blood samples
from PlwMS with fatigue (n = 15; Fatigue
Severity Scale [FSS] mean scores C 5) than
PlwMS without fatigue (n = 15; FSS mean
scores\4) [253].

In samples of cerebrospinal fluid (CSF) from
people with RRMS (n = 47), levels of interleukin
(IL)-6 (but not IL-8) positively correlated with
self-rated depression and fatigue symptoms
(p\ 0.05) [255]. It could not be determined
whether these associations were specific to MS
as the study did not include healthy controls.
Using a multinominal logistic regression anal-
ysis, Kallaur and colleagues examined immune
inflammatory markers in healthy controls
(n = 249), PlwMS without MDD (n = 108;
Hospital Anxiety and Depression Scale [HADS]
depression subscale score B 8), and PlwMS with
MDD (n = 42; HADS depression subscale
score[8) [262]. Serum IL-6 levels were the
highest in individuals with MS and comorbid
MDD [262]. These data in PlwMS are consistent
with previous reports that IL-6 is an inflamma-
tory marker associated with depression in the
general population [282, 283]. Of note, serum
levels of the T helper 2 (Th2) cytokine IL-4 were
higher in PlwMS without MDD than in healthy
controls, but significantly lower in PlwMS with
MDD than in those without MDD. According to
the authors, the latter finding may indicate that
depression in PlwMS is related to increased
peripheral immune-inflammatory potential
[262].

In the articles we identified, there was lim-
ited information on the relationship between
inflammation and cognitive impairment. In a
cohort of individuals diagnosed with either
RRMS or secondary progressive MS, greater
levels of depression and fatigue were detected in

participants classified as cognitively impaired
(n = 25) than in those classified as cognitively
preserved (n = 25) [254]; notably, the percent-
age of IFN-c-producing CD4? and CD8? T cells
was higher in the cognitively preserved group.
The latter finding led the authors to conclude
that inflammation might not contribute to
cognitive dysfunction during remission in MS;
however, they also acknowledged that measur-
ing intracellular IFN-c may not reflect the cir-
culating levels of IFN-c [254]. The participants
were not on steroid therapy or taking psy-
choactive drugs or antidepressants, but it was
not clear if they were receiving any other
treatments that could have influenced the
results of the study. For example, IFN-b therapy
has been associated with lower levels of IFN-c-
producing CD8? T cells [257].

The mechanistic role of inflammation in the
symptoms of interest is further supported by
evidence of worsening symptoms during MS
relapses (i.e., periods of acute inflammatory
activity) [284, 285], although we acknowledge
that structural changes occurring during MS
relapses may also contribute to symptom wors-
ening at this time. While the exact mechanisms
of inflammatory-mediated symptom manifes-
tation are not fully understood, it is likely a
combined result of acute inflammation, chronic
inflammation, and immune-mediated neu-
rodegeneration affecting specific regions of the
CNS, as well as immune-mediated alterations to
monoaminergic pathways and activation of the
HPA axis, both of which are discussed in more
detail below.

Monoamines

Monoamine neurotransmission plays an
important role in mood regulation [286], and
disruption of the associated monoaminergic
pathways has been implicated in the manifes-
tation of classic MDD symptoms, namely low
mood and changes in appetite, pain responses,
and sleep [287]. It has been proposed that in
PlwMS, fatigue may result from an imbalance in
dopamine secondary to abnormalities in, and
disruption of communication between, the
frontal and striatal regions of the brain, which
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are heavily innervated by dopaminergic neu-
rons. This hypothesis is supported by evidence
of the successful treatment of fatigue in MS and
other disorders (e.g., Parkinson’s disease,
chronic fatigue syndrome, cancer) using
dopaminergic psychostimulants and other
modulators of dopamine [288].

We identified three articles that explored the
relationship between monoamines and the
symptoms of fatigue and depression in PlwMS.
In a study assessing the effect of the wakeful-
ness-promoting drug modafinil on fatigue in
MS, Niepel and colleagues found that PlwMS
with fatigue (n = 17) had reduced autonomic
function (assessed by diastolic blood pressure)
and reduced levels of alertness (assessed by
several subjective and objective measures) at
baseline compared with PlwMS who did not
have fatigue (n = 9) and with age- and sex-
matched healthy volunteers (n = 9). However,
there was no difference between PlwMS with
fatigue and either PlwMS without fatigue or
healthy volunteers in other measures of auto-
nomic function (systolic blood pressure, heart
rate, pupil diameter). The authors hypothesized
that PlwMS with fatigue might be more sensi-
tive to the alerting and sympathetic-activating
effects of modafinil than PlwMS without fatigue
or healthy controls, but found no difference
among the three groups in the magnitude of
increases in alertness and sympathetic measures
following a single 200-mg dose of modafinil.
Regardless, the authors postulated that the role
of monoamines in fatigue in MS is supported by
the anti-fatigue effect of modafinil and that this
is likely achieved by stimulation (via the
dopaminergic system) of the wakefulness-pro-
moting noradrenergic locus coeruleus nucleus,
which is damaged in MS [267].

The role of impaired serotonergic neuro-
transmission in depression is well established
[269]. The kynurenine pathway is the primary
non-protein route of metabolism for trypto-
phan (the precursor of serotonin) and is known
to be disrupted in the inflammatory milieu
characteristic of MS [269, 289]. Aeinehband
et al. used liquid chromatography-mass spec-
trometry to determine levels of tryptophan,
kynurenine, kynurenic acid, and quinolinic
acid in CSF samples from 48 individuals with

RRMS. Of the 48 participants, 12 fulfilled crite-
ria for depression based on clinical rating scales.
A modest correlation was found between low
levels of tryptophan and psychiatrist ratings of
depression. However, the predictive value of
this measure was limited, since low levels of
tryptophan were also detected in some non-
depressed PlwMS [289].

Fatigue, depression, and pain are all associ-
ated with signs of anhedonia, such as reduced
motivation and a lack of positive affect, and
with overlapping structural and functional
alterations in areas of the brain involved in
reward processing [270]. Dysfunctional reward
processing may be a functional mechanism
common to fatigue, depression, and pain in
PlwMS since monoaminergic neurotransmis-
sion plays a key role in reward processing and is
disrupted by neuroinflammation [270, 290].
Pardini and colleagues examined the relation-
ship between reward-related cognition and
fatigue in MS by assessing fatigue values among
PlwMS at baseline and after 3 months of ther-
apy with escitalopram or bupropion and deter-
mining correlation with these and patients’
reward perception [268, 291]. Reward respon-
siveness was reduced in PlwMS who had fatigue
compared with PlwMS who did not have fati-
gue. It should be noted that the investigators
excluded individuals with depression from the
study to control for possible confounding fac-
tors; these findings are therefore applicable only
to this selected population [268, 291]. The
authors concluded that the more marked
response to bupropion (a dopamine/nora-
drenaline-enhancing drug) in individuals pre-
senting with lower activation scale reward-
responsiveness behavioral (BAS-RR) scores (i.e.,
with reduced dopaminergic tone) supported the
theory that reward perception could underpin
fatigue in PlwMS. However, in subjects with
higher BAS-RR scores (i.e., with higher pre-
frontal dopaminergic tone), both escitalopram
and bupropion alleviated fatigue, indicating
that other mechanisms may also be at play in
MS-related fatigue.

Recent studies that examined the structural
and functional alterations in regions of the
brain associated with monoaminergic neuro-
transmission further implicate the
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monoaminergic pathways in MS-related fatigue
[292, 293]. Carandini and colleagues identified
damage to several of the monoaminergic fiber
tracts projecting from the brainstem nuclei in
individuals with RRMS (n = 68), but not in
healthy controls (n = 34) [292]. Moreover, the
damage to the brainstemmonoaminergic nuclei
tracts was moderately associated with worsen-
ing cognitive fatigue (assessed by the Modified
Fatigue Impact Scale cognitive subscale [MFIS-
Cog]). In PlwMS classed as highly fatigued
(MFIS-Cog[ 15; n = 26), noradrenaline trans-
porter (NAT)-enriched functional connectivity
was significantly lower in several frontal and
prefrontal areas than in PlwMS in the mildly
fatigued group (MFIS-Cog B 15; n = 29) [293].
Furthermore, the NAT-enriched functional
connectivity values negatively correlated with
the MFIS-Cog scores [293]. No between-group
differences in dopamine transporter- or sero-
tonin transporter-enriched functional connec-
tivity were observed [293]. The authors
acknowledged that their results may appear to
disagree with a role for dopamine in fatigue in
MS, but noted that these data do not exclude a
contribution of dopamine to the changes in
NAT-related functional connectivity.

Hypothalamic–pituitary-adrenal axis

The HPA axis is the primary system responsible
for the synthesis, release, and diurnal control of
stress hormones [294]. Evidence suggests that
communication between the immune system
and the HPA axis is disrupted in MS and that
HPA axis hyperactivity is implicated in neu-
rodegeneration [295]. Notably, HPA axis dys-
regulation is also associated with depression
[296] and, possibly, chronic fatigue [297]. Our
literature search identified several studies link-
ing stress hormones (particularly cortisol) with
depression and fatigue in MS
[230, 233, 253, 257, 263, 264, 266]. In their
cross-sectional study of 23 PlwMS (RRMS sub-
type) and 50 age- and sex-matched controls,
Fassbender et al. found that the former group
had higher depression and anxiety scale scores
and a failure of suppression of cortisol release
after dexamethasone pretreatment. The authors

concluded that affective symptoms and dys-
function of the HPA system were associated
with laboratory (cell counts) and neuroradio-
logical (gadolinium enhancement of MS pla-
ques) indicators of cerebral inflammation,
which suggested that affective and neuroen-
docrinological disorders in MS are causally
linked with inflammatory brain injury [230]. In
their cross-sectional study, Gold et al. found
that PlwMS with comorbid MDD (n = 8) had
normal morning salivary cortisol levels but
elevated evening salivary cortisol levels, result-
ing in a flattened slope, providing further evi-
dence for a role of HPA axis hyperactivity in
major depression in MS [233]. Gold et al.
assessed the volume of hippocampal subre-
gions, diurnal salivary cortisol, and depression
in 29 PlwMS (RRMS subtype) and 20 matched
healthy controls. PlwMS had smaller hip-
pocampal volumes than the controls, particu-
larly in the cornu ammonis (CA) 1 and
subiculum subregions. In addition, PlwMS who
had depressive symptoms had smaller CA2-CA3
and dentate gyrus (CA23DG) volumes and
higher cortisol levels than the controls. In the
MS group, CA23DG volume was correlated with
depressive symptoms and cortisol levels. The
authors concluded that this provided in vivo
evidence for the selective association of smaller
hippocampal CA23DG subregion volumes with
cortisol hypersecretion and depressive symp-
toms in MS. A distinction between severity of
depression and cortisol response was identified
by Kern et al. These authors postulated that a
hyperactive HPA axis is primarily present in
PlwMS expressing moderately elevated depres-
sive symptoms and that the cortisol-awakening
response does not differ significantly between
PlwMS with less severe depression and healthy
controls [266].

Regarding fatigue in MS, Gottschalk et al.
found that PlwMS (RRMS subtype) with fatigue
had significantly higher adrenocorticotropin
levels in the combined dexamethasone/corti-
cotropin-releasing hormone (Dex-CRH) test
than PlwMS without fatigue, indicating that the
former exhibit higher HPA axis activity [263].
Powell et al. noted a similar association between
HPA axis activity and recalled fatigue (but not
same-day fatigue) in individuals with RRMS
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[264]. In contrast, Heesen et al. found that
fatigue was not significantly correlated with any
parameter of the Dex-CRH test [254]. This
inconsistency may potentially be explained by
differences in disease subtype between the
studies by Gottschalk/Powell and Heesen and
the fact that MS treatment known to affect
cytokines (which influence HPA activity) was
not an exclusion criterion in the Heesen et al.
study, nor was there categorization of partici-
pants into those with and without fatigue.

One explanation for the perturbations of the
HPA axis identified by several research groups is
modulation of HPA axis activity in an inflam-
matory environment. Specifically, it has been
shown that pro-inflammatory cytokines, such
as IL-1 and IL-6, can activate the HPA axis by
promoting the release of brain noradrenaline,
serotonin, and tryptophan [271], which, in
turn, may contribute to the development of
certain symptoms in MS (e.g., depression and
fatigue).

DISCUSSION

We identified neuroanatomical changes,
inflammation, monoaminergic pathway dis-
ruption, and dysregulation of the HPA axis as
the common processes associated with the
manifestation of fatigue, cognitive impairment,
depression, and pain in MS. In addition, we
have described the overlap between the areas of
the brain which are subject to structural and
functional changes associated with these fre-
quently occurring MS symptoms. Some of this
overlap may arise because lesions in MS often
occur in highly connected deep gray matter
‘hubs,’ such as the thalamus, whereby the ripple
effects of such lesions can affect many other
brain circuits. Notably, in PlwMS, areas of the
brain can exhibit increased connectivity with
other regions. For example, functional connec-
tivity between the thalamus and other areas
typically increases rather than decreases, sug-
gesting that the thalamus may play a more
central role within brain networks in PlwMS
than in healthy controls [298, 299].

The interpretation of functional brain chan-
ges in MS is complicated by the difficulty in

distinguishing between changes that are a direct
effect of the disease process vis-à-vis compen-
satory changes as the brain attempts to avoid
and overcome loss of function. The occurrence
of compensatory changes may vary between
individuals and over time, with the capacity for
compensatory change diminishing as the dis-
ease progresses [125]. A further complication in
interpreting measures of functional connectiv-
ity is that this is not a static property of brain
networks, but rather one that changes dynami-
cally, even during a resting-state functional MRI
scan [300]. It is thus possible that methodolog-
ical differences between studies may influence
the changes in functional connectivity
observed.

Studying common pathways underlying core
symptoms in MS can provide additional
insights into the mechanisms of disease patho-
genesis and help to gain a better understanding
of the symptoms experienced by people living
with MS. Fatigue, depression, pain, and cogni-
tive impairment are relatively common symp-
toms with which many patients present, and as
such physicians may not always immediately
associate them with MS. By highlighting their
frequent co-occurrence and shared pathogene-
sis, our study suggests that it is worth investi-
gating the possibility of MS in patients who
present with these symptoms, particularly in
combination, and especially when other risk
factors are present.

Our findings also raise important considera-
tions related to the measurement and moni-
toring of symptoms in PlwMS, as well as disease
phenotyping. The ability to precisely measure
the biological pathways we have identified, and
predict the types and severity of consequent
symptoms, would have important implications
for intervention strategies. Such capabilities
would also be invaluable in helping newly
diagnosed patients to gain an insight into what
they might expect from their particular disease
phenotype. Current imaging methods typically
available to most neurologists may not be suit-
able for detecting the nuanced and subtle fea-
tures required to gain such clinical insights. For
example, traditional MRI modalities may not be
sensitive enough to detect thalamic changes or
changes to structures implicated in
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monoaminergic pathway disruption; however,
more advanced MRI techniques such as sus-
ceptibility-weighted imaging, functional MRI,
diffusion tensor imaging, and magnetic reso-
nance spectroscopy could be used to assess
these types of pathology [301, 302]. Alternative
measurement approaches that promise utility in
this regard include assessing the local connec-
tivity of different structures by assessing the
whole brain as one network using path lengths
and clustering coefficients or by using mag-
neto-/electroencephalography to assess the
brain in a non-static way (i.e., microstates)
[303].

Identifying common pathways underlying
multiple symptoms could have important
implications for pharmacological and non-
pharmacological disease management. Most
DMTs approved for use in MS exert their ther-
apeutic effects via anti-inflammatory mecha-
nisms [304]. Beyond the approved MS DMTs,
additional symptomatic treatments include
drugs that enhance monoamine neurotrans-
mission and can treat symptoms with an
anhedonic component, i.e., pain, fatigue, and
depression [270], and drugs that can reduce
cognitive dysfunction [305–307] and fatigue
[305, 308]. There are also several non-pharma-
cological interventions with the potential to
alleviate fatigue, cognitive impairment, depres-
sion, and pain by impacting the common
pathways identified, e.g., sun exposure [309],
diet [310], cognitive behavioral therapy
[270, 311, 312], and exercise [313, 314]. Cog-
nitive behavioral therapy may positively influ-
ence levels of inflammatory markers in addition
to alleviating the anhedonic symptoms them-
selves [270, 311, 312]. Exercise, now viewed as a
cornerstone in MS management, is an effective
symptomatic treatment [313], exerting positive
effects on the mechanistic pathways identified
in our review [314].

Having demonstrated that several different
symptomatic treatment strategies are available,
it is interesting to note that in a sample of
35,755 PlwMS, 25.5%, 26.1%, 65.2%, and
73.0% had received neither pharmacological
nor non-pharmacological therapy for depres-
sion, pain, fatigue, and cognitive dysfunction,
respectively [316], suggesting that symptomatic

therapy may be an unmet need in MS. Given
that these symptoms often remain untreated or
incompletely treated, successfully targeting any
or all of them could greatly enhance patients’
QoL. As our understanding of the biological
pathways leading to, and connecting, symp-
toms of interest increases, it may become pos-
sible to identify potential novel therapeutic and
non-pharmacological strategies that target sev-
eral of these symptoms at once. Future thera-
peutics that could plausibly alleviate multiple
symptoms simultaneously include neuro-
restorative agents [301], kynurenine metabo-
lites and analogues [317], and agents that reg-
ulate the HPA axis.

Our investigation into the biological pro-
cesses involved in symptom interconnectivity
provides a foundation for future research,
which could investigate (1) sub-groups of
PlwMS who experience some, none, or all of the
symptoms in question to identify biological
differences between these groups, (2) the causal
relationship between the biological processes
and symptoms discussed here, (3) the effec-
tiveness of pharmacological and non-pharma-
cological interventions to assess their impact on
multiple symptoms simultaneously, and (4)
longitudinal relationships between structural
brain changes and symptoms. Importantly, the
measurement of symptoms (i.e., PROs) should
be carried out using instruments that have been
developed in line with best practice guidelines
so that relationships between objectively asses-
sed biological variables are being tested against
the most accurate available measures of patient
outcomes.

Limitations of our review include that the
literature search was restricted to the previous
10 years, that a single database was used for the
search, and that we did not conduct a strict
systematic search with clearly predefined
inclusion and exclusion criteria. However,
because we included studies from the reference
lists of previous systematic review articles
identified during our search, we captured rele-
vant studies published before our cutoff date.
Some of the studies had a small sample size, and
there was also a paucity of articles focused on
the symptom of pain, suggesting that this may
be another important area for future research
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efforts. We acknowledge that due to the search
strategy we employed, which used the symp-
toms of interest in groups of three, potentially
informative papers that reported the etiology of
individual symptoms may not have been cap-
tured. We also used broad terms for each
symptom, e.g., we did not discriminate between
different types of pain, which we appreciate
could have different causes. It is important to
note that correlation is not equivalent to
causality, with further research necessary to
determine the relationship between the bio-
logical processes and symptoms covered in this
review. Finally, a limitation that has implica-
tions not only for the present article, but also
for the field of MS symptomology more broadly,
is the difficulty to accurately measure and dis-
criminate between these often similar and
overlapping symptoms. For example, depres-
sion typically presents with fatigue and fatigue
can easily be misdiagnosed as depression. As
such, to capture these symptomatic domains
accurately, the target symptoms must be mea-
sured independently using instruments based
on robust symptom definitions, with items
derived from a sound conceptualization of the
underlying construct.

CONCLUSIONS

The co-occurrence of fatigue, cognitive impair-
ment, depression, and pain experienced by
PlwMS appears to be associated with a common
set of underlying etiological factors, namely
neuroanatomical changes, pro-inflammatory
cytokines, dysregulation of monoaminergic
pathways, and a hyperactive HPA axis. These
findings help to advance our understanding of
the interconnected nature of MS symptoms,
have implications for pharmacological and
non-pharmacological disease management
strategies, and highlight important topics for
future research that might facilitate the devel-
opment of approaches that target both the
inflammatory and neurodegenerative compo-
nents of MS.
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