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Abstract: Changes associated to atomic layer deposition (ALD) of SiO2 from 3-aminopropyl tri-
ethoxysilane (APTES) and O3, on a nanoporous alumina structure, obtained by two-step electro-
chemical anodization in oxalic acid electrolyte (Ox sample) are analysed. A reduction of 16% in pore
size for the Ox sample, used as support, was determined by SEM analysis after its coverage by a
SiO2 layer (Ox+SiO2 sample), independently of APTES or O3 modification (Ox+SiO2/APTES and
Ox+SiO2/APTES/O3 samples). Chemical surface modification was determined by X-ray photoelec-
tron spectroscopy (XPS) technique during the different stages of the ALD process, and differences
induced at the surface level on the Ox nanoporous alumina substrate seem to affect interfacial effects
of both samples when they are in contact with an electrolyte solution according to electrochemical
impedance spectroscopy (EIS) measurements, or their refraction index as determined by spectro-
scopic ellipsometry (SE) technique. However, no substantial differences in properties related to the
nanoporous structure of anodic alumina (photoluminescent (PL) character or geometrical parameters)
were observed between Ox+SiO2/APTES and Ox+SiO2/APTES/O3 samples.

Keywords: nanoporous alumina structure; atomic layer deposition; surface modification; APTES
and ozone precursors; XPS; impedance and optical measurements

1. Introduction

Atomic Layer Deposition (ALD), formerly known as atomic layer epitaxy, is nowa-
days a well-stablished technique allowing for the deposition of smooth and pinhole-free
thin films of several materials, namely oxides, nitrides, and sulfides, among others [1–3].
Furthermore, ALD enables the deposition of conformal coatings even in three-dimensional,
high aspect ratio nanostructured substrates, while keeping an accurate control on the
thickness and stoichiometry of the deposits [4]. These features arise from the self-limited
nature of the ALD technique, in which reaction kinetics are controlled by surface chemistry,
rather than by mass transport phenomena [5]. From all the above reasons, ALD constitutes
an outstanding deposition technique, being specifically suitable for surface coating of
nanoporous structures, such as nanoporous anodic alumina or polymeric track-etched
membranes [4,6–8]. Depending on the material of choice for the ALD deposition, different
features of nanoporous membranes can be tuned or improved. In fact, nanoporous alumina
structures (NPASs) or membranes (NPAMs) obtained by electrochemical anodization of
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aluminium (two step anodization method [9,10]) consisting in a parallel array of cylindrical
pores with narrow pore radius distribution and without tortuosity, whose geometrical
parameters (pore size, interpore distance and pore length) can be selected depending on
the electrochemical anodization conditions have demonstrated to be adequate supports for
ALD deposition of one or two layers of different ceramic oxides, thus enabling to modify
their pore-size/porosity and physicochemical characteristics (surface chemistry, selectivity,
electrical and diffusive properties) as well as optical characteristics (refraction index, light
transmission, . . . ) [7,8,11,12]. Lately, NPASs have been considered as very good candi-
dates to develop chemical/biological sensors due to their biocompatibility (which can be
improved by a given coating layer) and high aspect ratio, which favours the enhancement
of optical signals by pore-walls modification with specific molecules [13,14].

On the other hand, silicon dioxide is a material of particular interest for membrane
modification due to its dielectric nature, high chemical and thermal stability. In this con-
text, silica-alumina composite membranes synthesized through chemical vapor deposition
(CVD) of tetraethylorthosilicate (TEOS) and aluminium tri-sec-butoxide precursor have
been proposed for application in membrane reactors due to their high gas permeation and
selectivity [15] The ALD deposition of conformal SiO2 films from a wide variety of silane
precursors, including tetraethoxysilane, tris[dimethylamino]silane, bis[diethylamino]silane,
(N,N-dimethylamino)trimethylsilane, vinyltrimethoxysilane, trivinylmethoxysilane, tetrakis
(dimethylamino)silane, tris(dimethylamino)silane, tetrakis(ethylamino)silane, aminodisi-
lane and 3-aminopropyltriethoxysilane (APTES) has been explored in the literature, [16–22].
This work focuses on the thermal ALD deposition process based on the self-catalytic re-
action between 3-aminopropyltriethoxysilane, water, and ozone as precursors. The main
advantages of this SiO2 deposition approach, based on APTES precursor, lies in the fact
that it shows a high degree of thickness control and remarkably good surface coverage even
into nanoscale pores, which can be achieved at low growth temperatures of 120–200 ◦C [22].
Also, APTES precursor is noncorrosive, liquid at room temperature, with sufficient vapor
pressure under moderate heating, and commercially available at low cost [23]. Conse-
quently, ALD of SiO2 offers exceptional deposition conformality with high aspect ratio
even for nanoporous structures like alumina templates [23,24]. In addition, application
of APTES modified polymeric membranes and APTES functionalized alumina monoliths
for the immobilization of molecules (biotin, rabbit IgG,...) or effective purification of
immunoglobulins, respectively, have already been reported [25–28], opening the field of
application of APTES-modified NPAMs.

Another important aspect is that the ALD of SiO2 is a three-step reaction sequence
based on the subsequent exposure of substrates to APTES, water, and ozone (O3), as it can
be observed in Figure 1, where it is possible to see that in the first step APTES is chemisorbed
onto the surface of the substrate material (Figure 1a), after this, during the H2O cycle, the
aminopropyl groups existing in APTES catalyze the hydrolysis of ethoxy ligands, leaving
the surface terminated with OH groups (Figure 1b). In addition, during the O3 cycle,
occurs the combustion of the remaining aminopropyl ligands, enabling the production of
combustion gases such as CO, CO2, H2O, and NOx. As it was already indicated [29] among
these by-products, CO reacts with surface OH groups to form monodentate formates
and SiH on the surface (Figure 1c). Finally, the monodentate formates with SiH groups,
along with the OH groups, produced during H2O exposure, serve as the reactive sites
for APTES chemisorption, thus completing the entire ALD cycle [22,23,29]. As a result,
surface functional groups change during the different steps that take place during a SiO2
ALD deposition cycle, ranging from etoxy, amino and hydroxide groups. This causes that
the same material may have slightly different surface groups, which in turn may affect its
physicochemical and/or transport properties.
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Figure 1. Schematic drawing of the surface reactions taking place during the different steps in a SiO2 ALD deposition cycle: 
(a) APTES cycle; (b) H2O cycle and (c) O3 cycle. 
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an external recirculating bath. An anodization voltage of 40 V measured versus a Pt coun-
ter-electrode was applied by a computer controlled DC power supply (Keithley 2400 
sourcemeter, Keithley Instruments, Inc., Cleveland, OH, USA) for 24 h, in order to pro-
mote the growth of a self-ordered nanoporous alumina structure [9,10]. 

The nanoporous oxide layer grown during the first anodization step was selectively 
etched in an aqueous mixture of CrO3 and H3PO4, at room temperature for 48 h, thus lead-
ing to a nanostructured Al surface which retains a regular arrangement of dimples left by 
the pore bottoms during the first anodization step. A second anodization step, performed 
under the same electrochemical conditions as the first one is then carried out, the duration 
of which was adjusted to 33 h in order to obtain a nanoporous alumina sample with 
around of 60 µm in thickness, according with the oxide growth rate of approximately 1.8 
µm/h which has been experimentally measured. The remaining Al substrate was selec-
tively removed by exposing the backside of the samples to CuCl2 and HCl aqueous solu-
tion, whereas the alumina barrier layer occluding the pores bottom was dissolved by wet 
chemical etching in 5% wt. orthophosphoric acid at room temperature for 3 h (sample Ox), 
also resulting in a noticeable increase in pore size from the starting average pore diameter 
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ALD SiO2 coating was carried out in a thermal ALD reactor (Savannah 100, Cam-
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whereas the reaction chamber was kept at 180 °C throughout the ALD processes. A con-
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Figure 1. Schematic drawing of the surface reactions taking place during the different steps in a SiO2 ALD deposition cycle:
(a) APTES cycle; (b) H2O cycle and (c) O3 cycle.

In this work, we analyzed the chemical change caused in a nanoporous alumina
structure after being modified with a SiO2 layer by ALD technique, which exhibits two
different surface terminations (with amino or monodentate formates groups), as indicated
in Figure 1a,c, as well as the changes that such terminations provokes in different param-
eters of interest for sample applications. These changes have been studied by means of
several characterization techniques such as scanning electron microscopy (SEM), X-ray
photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and di-
verse optical techniques (photoluminescence, transmittance and spectroscopic ellipsometry
measurements), in order to have a complete characterization of the modified samples.

2. Materials and Methods
2.1. Materials

The nanoporous alumina structure (NPAS) used as support was synthesized by the
well-stablished two step anodization method [9,10]. In brief, high purity (99.999%) Al foils
(SMP, Barcelona, Spain) with a thickness of 0.5 mm were cut into discs of 25 mm in diameter,
thoroughly cleaned by sonication in isopropyl and ethyl alcohols and electropolished in
a mixture of perchloric acid in ethanol (1:3 vol.) at 5 ◦C under an anodic voltage of
20 V, applied between the Al foils and a platinum counter-electrode. Afterwards, the
aluminum substrates were rinsed in ultrapure water (18.2 MΩ·cm) and submitted to a first
anodization process in a mechanically stirred 0.3 M oxalic acid electrolyte, kept at 0–3 ◦C
by an external recirculating bath. An anodization voltage of 40 V measured versus a Pt
counter-electrode was applied by a computer controlled DC power supply (Keithley 2400
sourcemeter, Keithley Instruments, Inc., Cleveland, OH, USA) for 24 h, in order to promote
the growth of a self-ordered nanoporous alumina structure [9,10].

The nanoporous oxide layer grown during the first anodization step was selectively
etched in an aqueous mixture of CrO3 and H3PO4, at room temperature for 48 h, thus
leading to a nanostructured Al surface which retains a regular arrangement of dimples
left by the pore bottoms during the first anodization step. A second anodization step,
performed under the same electrochemical conditions as the first one is then carried out,
the duration of which was adjusted to 33 h in order to obtain a nanoporous alumina sample
with around of 60 µm in thickness, according with the oxide growth rate of approximately
1.8 µm/h which has been experimentally measured. The remaining Al substrate was
selectively removed by exposing the backside of the samples to CuCl2 and HCl aqueous
solution, whereas the alumina barrier layer occluding the pores bottom was dissolved by
wet chemical etching in 5% wt. orthophosphoric acid at room temperature for 3 h (sample
Ox), also resulting in a noticeable increase in pore size from the starting average pore
diameter of 35 nm to around 48 nm.

ALD SiO2 coating was carried out in a thermal ALD reactor (Savannah 100, Cambridge
Nanotech, Waltham, MA, USA), operated in exposure mode. The precursors employed for
SiO2 deposition were APTES (100 ◦C), water (60 ◦C) and ozone (20 ◦C) for SiO2, whereas
the reaction chamber was kept at 180 ◦C throughout the ALD processes. A constant
flow of 50 sccm of high purity argon gas was employed as both, purge and carrier gas.
Additional details of the ALD deposition sequence can be found elsewhere [7,12]. A total
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of 80 deposition cycles were performed, being the ALD process stopped after an additional
APTES pulse (sample Ox+SiO2/APTES) or after an APTES/H2O/O3 pulse sequence
(sample Ox+SiO2/APTES/O3).

2.2. SEM Characterization

The morphology of the nanoporous alumina membranes, including top, bottom and
cross-sections views, was studied by scanning electron microscopy (SEM) in a JEOL-5600
Scanning Microscope (Akishima, Tokyo, Japan). Prior to SEM observation, the membranes
were coated with a thin gold layer deposited by sputtering (Polaron SC7620, Quorum Tech-
nologies, Laughton, UK), in order to improve their electrical conductivity. The geometrical
parameters (nanopore size and interpore distance) were measured by computer assisted
image analysis using ImageJ (v 1.51j8) [30].

2.3. Chemical Surface Characterization

X-ray photoelectron spectroscopy (XPS), a non-destructive surface sensitive technique,
was used to determine the quantity and chemical state of elements present in the surface (or
near the surface, around 2–8 nm depth) of the studied samples. XPS spectra were obtained
with a Physical Electronics Spectrometer VersaProbe II (Physical Electronics, Chigasaki,
Japan) using monochromatic Al-Kα radiation (49.1 W, 15 kV and 1486.6 eV) considering
a circular area of 200 µm in diameter, using a hemispherical multichannel detector. The
residual pressure in the analysis chamber was maintained below 5 × 10−7 Pa during data
acquisition. Spectra were recorded with a constant pass energy value at 29.35 eV, at a
take-off angle of 45 ◦C, and each spectral region was scanned several times to reduce the
noise ratio. Binding energies (B.E. accurate ± 0.1 eV) were determined with respect to the
position of the adventitious C 1s peak at 285.0 eV. PHI ACCESS ESCA-V8.0 F software
package was used for data acquisition and analysis [31].

2.4. Electrochemical Impedance Spectroscopy Measurements

Electrochemical Impedance Spectroscopy (EIS) is an alternating current (a.c.) tech-
nique commonly used for electrical characterization of both homogeneous (solid and
liquids) or heterogeneous systems commonly used for electrical characterization of both
homogeneous (solid and liquid) or heterogeneous systems [32,33]. EIS measurements
were carried out in an electrochemical test-cell as that described in previous papers [33,34],
which basically consists of two glass compartments filled with an electrolyte solution of the
same concentration, separated by two silicone-rings where the sample (or membrane) was
sandwiched, and two electrodes, one into each compartment, connected to a Frequency Re-
sponse Analyzer (FRA, Solartron 1260, Farnborough, UK). Measurements were performed
with NaCl solutions in the system: electrode/NaCl solution (C)//sample//NaCl/solution
(C)/electrode, for three different concentration values: C = 2 × 10−3 M, 6 × 10−3 M and
1 × 10−2 M. 100 different data points for frequency ranging between 1 Hz and 107 Hz,
at maximum voltage of 0.01 V, were recorded. ZView 2 data analysis program (Scribner,
Southern Pines, NC, USA) was used for electrical parameters determination.

EIS measurements give quantitative/qualitative information related to charge move-
ment/adsorption from experimental data using equivalent circuits as models [33–35] and,
under certain conditions, the analysis of EIS diagrams allows us the estimation of dif-
ferent membrane system contributions (membrane, electrolyte and membrane/solution
interface). The impedance (Z = Zreal + j Zimg) is a complex number, with real (Zreal) and
imaginary (Zimg) parts, which can be expressed for homogeneous systems (a unique relax-
ation process) as functions of electrical resistance (R) and capacitance (C) of the analysed
sample:

Zreal = R/[1 + (ωRC)2] (1)

Zimg =−ωR2 C/[1 + (ωRC)2] (2)
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where ω = 2πf is the angular frequency. The analysis of the impedance data is usually
performed in the complex plane by analysing the Nyquist plot (−Zimg versus Zreal), where
a parallel association of a resistance and a capacitance (RC circuit) corresponds to a semi-
circle which intercepts the Zreal axis at R∞ (ω→∞) and Ro (ω→0), being R = 0.5(Ro −R∞)
the electrical resistance of the system, while the maximum of the semi-circle occurs at a
frequency such thatωRC = 1 [32]. In the case of non-homogeneous systems Nyquist plot
exhibits a depressed semicircle (two or more different relaxation times), and an equivalent
capacitance is then considered [32].

2.5. Optical Characterizations

Optical characterization was performed by analysing transmittance, photolumines-
cence (PL) and spectroscopic ellipsometry (SE) curves.

Light transmission spectra were recorded for wavelengths ranging between 250 nm
and 2000 nm, with a Varian Cary 5000 spectrophotometer (Agilent Technologies, Santa
Clara, CA, USA) provided with an integrating sphere of Spectralon. Measurements
were performed covering samples surface with a mask which exhibits an open area of
0.5 cm × 0.5 cm.

Samples photoluminescence (PL) was measured with a Photoluminiscence Microscope
from HORIBA Scientific (LabRam PL Microscope, Horiba Jobin Yvon, Kyoto, Japan), using
a 325 nm laser as excitation light source with a beam power of 0.28 mW in the range from
325 to 900 nm.

Spectroscopic ellipsometry (SE) measurements were carried out with a spectroscopic
ellipsometer (Sopra-Semilab GES-5E, Budapest, Hungary) at an incident angle of 70◦

and wavelength ranging between 250 nm and 1700 nm, covering a wide range of visible
and near infrared (NIR) regions. Measurements were directly performed on the samples
without employing any other substrate.

3. Results and Discussion
3.1. SEM Characterization

NPAS samples synthesized by the two-step anodization method display a highly
ordered pore arrangement with hexagonal symmetry at both, top and bottom sides, as
it is evidenced by SEM images shown in Figure 2. Figure 2a,c correspond respectively
to the upper and lower surfaces of the as-produced nanoporous alumina sample (Ox),
being the corresponding cross-section presented in the inset, whereas images in Figure 2b–f
were taken after: Figure 2b,c the ALD deposition of 80 cycles of SiO2 (Ox+SiO2 sample),
Figure 2e plus an additional APTES exposure (Ox+SiO2/APTES) and, finally, Figure 2f
plus an additional O3 pulse (Ox+SiO2/APTES/O3).

The reduction in the average pore diameter as a result of the SiO2 coating layer be-
comes evident from the analysis of the pore diameter distribution displayed in Figure 3, by
comparison of samples Ox and Ox+SiO2. The average pore diameter was reduced from
48 ± 6 nm down to 40 ± 6 nm as a result of the ALD SiO2 coating, which indicates a thick-
ness of 4 nm for the SiO2 layer. At the same time, SEM images evidence that differences in
the average pore diameter among Ox+SiO2, Ox+SiO2/APTES and Ox+SiO2/APTES/O3
samples are practically negligible and, consequently similar pore size/porosity is assumed
for these three samples. The interpore distance, which remains unaffected by the ALD
coating, takes a value of 105 nm for all the indicated samples. Membranes thickness, evalu-
ated from SEM cross section images (see inset in Figure 2a, takes a value of approximately
60 microns for all the samples.
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Figure 3. Pore diameter distribution obtained by image analysis of nanoporous alumina mem-
branes before (Ox) and after SiO2 (Ox+SiO2), SiO2/APTES (OX+ SiO2/APTES) and SiO2 (OX+
SiO2)/APTES/O3 ALD deposition.

3.2. Chemical Surface Characterization

Chemical surface characterization of Ox+SiO2/APTES and Ox+SiO2/APTES/O3
NPASs was performed by analysing the XPS spectra. Figure 4 shows the survey spectra
obtained for each sample, where the characteristic photoemission lines corresponding to C,
O, N, Si and Al atoms are labelled
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Figure 4. Survey XPS spectra of Ox+SiO2/APTES (green line) and Ox+SiO2/APTES/O3 (purple line)
samples.

Atomic concentration percentage (A.C. %) of each element was obtained by the
corresponding areas, and their values are indicated in Table 1, where the percentages of
Si and Al (element associated to the nano-support structure) are also showed; in fact, the
relatively low value of this latter element is an indication of adequate coating process. For
both samples, carbon core level signal (black solid line in Figure 5a for Ox+SiO2/APTES
sample and in Figure 5b for Ox+SiO2/APTES/O3 one) shows a clear peak at 285.0 eV B.E.
associated to aliphatic carbon, but other small shoulders at higher binding energy values
corresponding to other carbon links are also detected [36], which will be discussed in the
next paragraph as well as the slight differences in oxygen core level signal obtained for both
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samples (black solid line in Figure 5c,d for Ox+SiO2/APTES and Ox+SiO2/APTES/O3,
respectively) are also indicative of other contributions different from the high intensity
peak at B.E. of 532.6 eV associated to Si–O/SiO2 links [36]. On the other hand, a clear peak
at a B.E. of 399.5 eV can be observed in the nitrogen core level spectra (Figure 5e) for the
Ox+SiO2/APTES sample but, as expected, the Ox+SiO2/APTES/O3 one does not show
any nitrogen contribution, which demonstrates the total elimination of amino groups by
O3 treatment; in the case of silicon core level spectra (Figure 5f) both samples show similar
curves, with a peak at the B.E. of 103.4 eV.
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Figure 5. Carbon core level spectra (black solid line) and its deconvolution for: (a) Ox+SiO2/APTES:
CA, dashed red line; CB, dashed blue line; Cc, dashed green line; (b) Ox+SiO2/APTES/O3: CA,
dashed red line; CB, dashed blue line; Cc, dashed green line; CD, dashed magenta line. Oxygen core
level spectra (black solid line) and its deconvolution for: (c) Ox+SiO2/APTES sample: OA, dashed
blue line; OB, dashed green line; (d) Ox+SiO2/APTES/O3 sample: OA, dashed blue line; OB, dashed
green line; Oc, dashed magenta line. Experimental values: red solid line; fitted values: dashed
red line. (e) Nitrogen and (f) Silicon core level spectra for Ox+SiO2/APTES (green solid line) and
Ox+SiO2/APTES/O3 (purple solid line) samples.
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Table 1. Atomic concentration percentages of the elements found on samples surfaces *.

Sample C (%) O (%) N (%) Si (%) Al (%)

Ox+SiO2/APTES 12.8 55.3 0.7 26.9 4.0
Ox+SiO2/APTES/O3 8.3 59.3 - 28.1 3.9

* Elements associated to impurities with A.C. % < 0.3 are not indicated.

As it was shown above, the asymmetry of carbon core level spectra is an indica-
tion of different carbon links, and three different contributions (represented by dashed
lines) are pointed out in Figure 5a for Ox+SiO2/APTES sample but four in Figure 5b for
Ox+SiO2/APTES/O3 one: the peak CA (at 285.0 eV B.E.) of higher intensity is associated
to C–C or C–H links, while the small shoulders CB (at 286.6 eV B.E.) and CC (at 288.9 eV
B.E.) are associated to CO/CN/CSi and C–O bonds, respectively [36]; moreover, another
shoulder CD (at 289.4 eV B.E.) associated to the O–C=O bond was also determined in the
case of the Ox+SiO2/APTES/O3 sample. The corresponding area percentage and atomic
concentration percentage determined for each sample as well as the binding energy values
and links are collected in Table 2A.

Table 2. Binding energy (B.E.) of the different links, area percentages (cursive) and A.C. % after carbon
(A) and oxygen (B) signals deconvolution.

(A) - - - -

Sample CA (%) CB (%) CC (%) CD (%)

B.E. (eV) 285.0 286.6 288.9 289.4
- CC/CH CO/CN/CSi C=O O–C=O

Ox+SiO2/APTES
Area % 81.3 16.43 2.2 -
A.C. % 10.4 2.1 0.3 -

Ox+SiO2/APTES/O3
Area % 81.7 13.1 0.7 4.5
A.C. % 6.8 1.1 0.06 0.37

(B) - - - -

Sample OA (%) OB (%) OC (%)

B.E. (eV) 531.6 532.6 533.9

- Al–O Si–O/SiO2/O–
C=O* O*–C=O

Ox+SiO2/APTES
Area % 10.3 89.7 -
A.C. % 5.7 49.6 -

Ox+SiO2/APTES/O3
Area % 10.5 84.5 5.0
A.C. % 6.2 50.1 3.0

The O 1s core level spectra for the studied samples shown in Figure 5c,d exhibits
a very intense peak at a B.E. of 532.6 eV (OA), associated to Si–O/SiO2 links, but also
a small shoulder at 531.6 eV (OB) which corresponds to Al–O bond [36]; however, the
Ox+SiO2/APTES/O3 sample also shows another shoulder at a B.E. of 533.9 eV associated
to C–O link [36]. Comparison of experimental (black solid line) and fitted (dashed red
line) oxygen values are also drawn in Figure 5c,d while area percentage and atomic con-
centration percentage of the different contributions determined for each sample are also
indicated in Table 2B, as well as the corresponding binding energy values and links. In
this context, it should be indicated the good concordance existing between the aluminum
atomic concentration % directly obtained from Al core level area for Ox+SiO2/APTES
and Ox+SiO2/APTES/O3 samples indicated in Table 1 (4.0 and 3.9%), and those deter-
mined from oxygen A.C. % for Al–O link shown in Table 2B, taking into account, Al2O3
stoichiometry.
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3.3. Electrochemical Impedance Spectroscopy Measurements

Once the chemical differences on the surface of Ox–SiO2/APTES and Ox–SiO2/APTES/
O3 samples were established by XPS analysis, information on the effect of surface mod-
ification on diverse physicochemical parameters of interest for different sample applica-
tions (membrane, biochemical sensors, optical sensors, . . . ) was determined. Informa-
tion on electrochemical parameters involved in the transport of charged species (ions
or macromolecules) across membranes is usually obtained by electrochemical measure-
ments [7,24,37–39]. In particular, electrochemical impedance spectroscopy (EIS) is a tech-
nique commonly used in the electrical characterization of membranes in “working condi-
tions”, that is, in contact and/or filled with electrolyte solutions, since it provides quan-
titative and qualitative information by the fitting of the impedance data using equiva-
lent circuits as models or comparing the impedance diagrams determined for different
systems [33–35]. Figure 6a shows the Nyquist plot (−Zimg vs. Zreal) obtained for Ox–
SiO2/APTES and Ox–SiO2/APTES/O3 membranes in contact with a 0.002 M NaCl solution,
where two different relaxation processes can be observed: (i) one relaxation is associated to
the membrane (with the nanopores filled with the electrolyte solution) plus the electrolyte
solution placed between the membrane surface and the electrodes (denominated e&m), and
(ii) the other relaxation corresponds to the electrolyte/membrane interface (if) [34,35,40,41].
As it can be observed, the e&m contribution is practically coincident for both membranes,
which is an indication of their geometrical similarity and the very low electrical effect
caused by APTES or APTES/O3 modifications in the bulk membrane, but clear changes
exist in the electrolyte/membrane interfacial region in agreement with superficial changes
proposed in the scheme indicated in Figure 1 and obtained by XPS analysis. These two
aspects can also be observed in the Bode plots shown in Figure 6b (Zreal vs. frequency) and
Figure 6c (−Zimg vs. frequency).

The effect of electrolyte solution concentration on EIS data is clearly shown in Figure 7,
where a comparison of Nyquist plots obtained for both membranes at the three NaCl
concentrations studied (2 × 10−3 M, 6 × 10−3 M and 1 × 10−2 M) is presented. As it can
be observed, the membrane plus electrolyte e&m contribution, which corresponds to a
slightly depressed semicircle as a result of juxtaposition of two relaxation process (one
associated to the membrane and other to the electrolyte) is significantly dependent on
solution concentration and, logically it decreases with the increase of charges (ions) in
solution, but solution concentration also seems to affect the interfacial part.

EIS data for the two membranes plus electrolyte e&m contribution were fitted to a
series combination of two contributions: (a) a parallel association of a resistance and a
capacitor for the electrolyte solution (equivalent circuit: ReCe); (b) a parallel association of
a resistance and a constant phase element or equivalent capacitor (CPE: Q(ω) = Yo(ω)n,
for the membrane contribution (equivalent circuit: RmQm)) [32,42]. Figure 8 shows the
concentration dependence of Rm obtained for the Ox+SiO2/APTES and the Ox+SiO2/O3
membranes, where slight differences (around 15%) between both samples can be observed.
Assuming similarity in pore-size/porosity of both alumina supports, in agreement with
SEM results, Rm differences might be associated to the particular electrical surface charac-
teristic related to the different modifying layer of each membrane.



Materials 2021, 14, 5052 11 of 19Materials 2021, 14, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 6. Comparison of impedance plots for Ox–SiO2/APTES (●) and Ox–SiO2/APTES/O3 (■) sam-
ples measured with 0.002 M NaCl solution. (a) Nyquist plot (−Zimg vs. Zreal); (b) Bode plot (Zreal vs. 
frequency) and (c) Bode plot (−Zimg vs. frequency). 

 
Figure 7. Comparison of Nyquist plots obtained for three different NaCl solution concentrations. (a) Ox–SiO2/APTES 
membrane system: (●) 0.002 M NaCl solution, (Δ) 0.006 M NaCl solution and (o) 0.01 M NaCl solution. (b) Ox–
SiO2/APTES/O3 membrane system: (■) 0.002 M NaCl solution, (▽) 0.006 M NaCl solution and (□) 0.01 M NaCl solution. 

0 5 10 15 20
0

5

10

15

20

12.5 15.0 17.5 20.0
0.0

2.5

5.0

7.5

- Z
im

g 
(k

Ω
)

Zreal (kΩ)
12.5 15.0 17.5 20.0

0.0

2.5

5.0

7.5

- Z
im

g 
(k

Ω
)

Zreal (kΩ)

− 
Z im

g 
(k

Ω
)

Zreal (kΩ)

e&m

ω

(a)

if

100 102 104 106
0

10

20

Z re
al

 (k
Ω

)

f (Hz)

(b)

100 102 104 106
0

2

4

6

− 
Z im

g 
(k

Ω
)

f (Hz)

(c)

if e&m

0 10,000 20,000
0

10,000

20,000
(a)

− 
Z im

g (Ω
)

Zreal (Ω)

(i) e&m

(ii) if

ω

0 10,000 20,000
0

10,000

20,000

− 
Z im

g (Ω
)

Zreal (Ω)

(i) e&M

(ii) if

(b)

ω
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and Ox–SiO2/APTES/O3 (∆) membranes.

3.4. Optical Characterization

Optical techniques are of great interest in the characterization of materials due to
their non-invasive and non-destructive character. In particular, spectroscopic ellipsometry
has already demonstrated their suitability for characterization of nanoporous alumina
membranes with different pore size, porosity or structure [43], but also for biosensors
characterization [44], while light transmission spectra allows estimation of differences
in both geometrical parameters (pore-size/porosity) and surface material of analyzed
samples [8,12]. Moreover, a particular property of nanoporous alumina structures (NPASs)
obtained by the two-step anodization method such as their potoluminescence (PL) char-
acter, which is associated to the ionized oxygen vacancies and the carboxylate from the
electrolyte solution incorporated into the NPAS during the fabrication process has also
been reported [45–47].

Figure 9 shows a comparison of the PL spectra obtained for the Ox+SiO2/APTES and
Ox+SiO2/APTES/O3 membranes, where the similarity of the curves obtained for both
samples, which is associated to alumina support bulk phase as it was indicated above,
is very significant. In fact, the PL spectra of nanoporous alumina structures seems to be
related to the incorporation of impurities to the structure of anodic alumina, which is
strongly dependent on the fabrication parameters (anodization voltage, electrolyte, thermal
treatment, . . . ) [48,49]. In particular, an increase in the intensity of the PL curve as well as
a shift of the wavelength value associated to the maximum of the curve with the increase
of pore size have already been reported for membranes fabricated using oxalic acid as
electrolyte [50]. Consequently, the likeness of both PL curves can be considered as a
confirmation of alumina support similarity.
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Figure 9. Photoluminescence spectra for Ox–SiO2/APTES sample (green line) and Ox-
SiO2/APTES/O3 sample (purple line).

A comparison of transmission spectra for both types of NPASs, Ox–SiO2/APTES
and Ox–SiO2/APTES/O3 samples, is shown in Figure 10, where two main aspects, the
slight difference between both curves for the whole range of wavelength and the high
transparency of both analyzed samples, can be observed. With respect to this latter point,
a comparison between the transmittance spectra for diverse alumina-based structures
obtained after surface coverage by ALD technique with different metal oxides, and con-
sequently with different material surface but similar geometrical parameters, has been
already reported in previous works [8,12] and it is shown as Supplementary Information
(Figure S1). These results demonstrate the significant effect of sample material on light
transmittance, showing values of around 90% even for samples/membranes with reduced
free volume (10–13 nm pore size and 4–6% porosity). This higher influence observed in
the case of those nanoporous membranes is due to the peculiar optical properties exhib-
ited by anodic alumina together with these coming from the different ALD layers further
deposited on it, which become them in outstanding materials for optical and photonic
applications [51].

In the case of uncoated NPASs, noticeable changes in transmittance spectra have been
reported among samples synthesized under modulated anodic electrochemical conditions,
i.e., temperature, anodic voltage, etc., but these modifications are related to the formation of
Distributed Bragg reflectors (DBR) due to periodic modulation of the synthesis conditions,
which in turn results in periodic variations in the morphological parameter of alumina,
namely pore size and porosity [52,53].

With respect to the differences exhibited by the transmittance curves of the analyzed
samples, the following transparency percentage values at three given wavelengths, 400 nm,
800 nm and 2000 nm, were obtained: 81.7%, 92.4% and 92.7% for Ox–SiO2/APTES mem-
brane, but 86.1%, 93.4 and 93.6% for Ox–SiO2/APTES/O3 one. These results indicate a
difference between both samples for both extremes of the visible region of around 5% and
1%, respectively, but a practically constant difference of 1% for the near infrared region
(800–2000 nm), which seems to indicate that transmission difference is more probably
related to membrane material change due to APTES or APTES/O3 modification than to
geometrical effects. On the other hand, band gap value for Ox–SiO2/APTES and Ox–
SiO2/APTES/O3 samples hardy differ one from the other (298 nm and 286, respectively),
and they are similar to that determined for a SiO2-covered nanoporous alumina structure
obtained also using 0.3 M oxalic acid solution and the same anodization voltage in the
two-step process (288 nm [8,12]); although these values are higher than that referred for
pure SiO2 (120–155 nm, [54]) due to the presence of other modifying elements and/or
impurities on samples surfaces, according to XPS results.
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Figure 10. Transmission spectra for Ox–SiO2/APTES sample (green line) and Ox–SiO2/APTES/O3

sample (purple line).

Spectroscopic ellipsometry (SE) is an optical technique used for the characterization
of thin films and membranes able to determine changes associated to bulk phase or surface
modifications [8,12,55,56]. SE measures changes in light polarization due to its reflec-
tion/transmission across a solid structure by considering two characteristic parameters,
angles Ψ and ∆, which are related with differential changes in amplitude and phase be-
tween light waves through the Fresnel reflection coefficients ratio, rs and rp, of polarized
light (s for perpendicular and p for parallel) by [57]:

tan(Ψ)ei∆ = rp/rs (3)

A comparison of wavelength dependence of both experimental parameters for Ox–
SiO2/APTES and Ox–SiO2/APTES/O3 samples is shown in Figure 11, where the interfer-
ence fringes in tanψ exhibited by both samples at high wavelength values are an indication
of high sample transparency [58], in agreement with transmittance results already indicated.
On the other hand, the oscillatory character of cos(∆) has already been reported in the
literature for anodized nanoporous alumina structures or membranes and it is related with
sample pore size, surface impurities and roughness [58–60], while the effect of material
surface on tan(Ψ) values for ALD modified NPASs has already been reported [8,12].
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From experimental Ψ and ∆ values, using a Cauchy dispersion model relation [61] to
describe the dependence of the refractive index on the wavelength, different optical charac-
teristic parameters such as the refractive index (n) or the dielectric constant (ε) (ε = (n + i·k)2,
where k represents the extinction coefficient) can be determined [57]). Figure 12 shows a
comparison of wavelength dependence for the refractive index (Figure 12a) and the real
part of the dielectric constant (Figure 12b) for Ox–SiO2/APTES and Ox–SiO2/APTES/O3
samples, where differences depending on surface modification and optical regions are
obtained. In fact, curves shape in visible region are rather similar, with higher variation in
the near infrared region.
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Average values of refraction index and dielectric constant for the whole range of
wavelength as well as for visible and near infrared regions were determined for comparison
reason, and these results are indicated in Table 3. A comparison of the <n> value shown in
Table 3 with that referred for APTES indicates a reduction of 10% (nAPTES = 1.423 [62]), or
12% in the case of SiO2 thin film (nSiO2 = 1.46) [63]. On the other hand, ratio of refraction
index and dielectric constant average values determined for both samples are practically
independent of wavelength interval, being <n>Ox+SiO2/APTES/<n>Ox+SiO2/APTES/O3 ~ 0.9
and <εr>Ox+SiO2/APTES/<εr>Ox+SiO2/APTES/O3 ~ 0.8, proving evidence of surface effect
difference associated to samples modification. Furthermore, the possibility of performing
in-situ SE measurements during ALD deposition in both, custom-made and commercial
devices, provides not only an accurate monitoring of the deposited film thickness and
growth mechanisms, but also a powerful tool to determine film optical properties, including
the possibility to tune at will some physical parameters of the samples such as the refraction
index [64–66].
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Table 3. Average values of the refraction index, <n>, and the real part of dielectric constant, <εr>, for
different wavelength intervals.

Sample Ox+SiO2/APTES Ox+SiO2/APTES/O3

<n> 250–1700 nm 1.28 ± 0.04 1.43 ± 0.06

<εr> 250–1700 nm 1.38 ± 0.20 1.71 ± 0.20

<n> 250–800 nm 1.25 ± 0.03 1.38 ± 0.04

<εr> 250–800 nm 1.46 ± 0.07 1.72 ± 0.10

<n> 800–1700 nm 1.31 ± 0.04 1.46 ± 0.04

<εr> 800–1700 nm 1.33 ± 0.23 1.71 ± 0.24

4. Conclusions

Deposition of SiO2 on a nanoporous alumina support by thermal ALD using a self-
catalytic reaction based on 3-aminopropyltriethoxysilane (APTES), water, and ozone as
precursors, in a three-step reaction sequence at low growth temperature, allows us to
provide to the nanoporous support different surface functional groups (Ox+SiO2/APTES
and Ox+SiO2/APTES/O3 samples), which might be of interest in different applications
such as optical or electrochemical sensors, membranes or nanofluidic. XPS analysis was
used for estimation of chemical surface modification, while spectroscopic ellipsometry
measurements indicate changes in optical properties such as refractive index and dielec-
tric constant, because of the difference in the surface functional groups, which enables
in-situ monitoring ALD growth. Surface chemical modification also seems to affect interfa-
cial effects when the studied samples are in contact with electrolyte solutions according
to electrochemical spectroscopy results. However, surface modification hardly affects to
characteristics of anodic alumina related to bulk support properties such as their photolumi-
nescence and morphological parameters (pore diameter and porosity) taking into account
the similarity exhibited by SEM micrographs and PL curves obtained for Ox+SiO2/APTES
and Ox+SiO2/APTES/O3 samples.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14175052/s1, Figure S1: Transmission spectra for different nanoporous alumina-based
structures with similar pore size (9 ± 2) nm and porosity (7 ± 2)%, but different coating layers.
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