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The changes of mitochondrial function are closely related to diabetes and its
complications. Here we describe the effects of mitochondrial-derived peptides (MDPs),
short peptides formed by transcription and translation of the open reading frame site in
human mitochondrial DNA (mtDNA), on diabetes and its complications. We mainly focus
on MDPs that have been discovered so far, such as Humanin (HN), mitochondrial open
reading frame of the 12S rRNA-c (MOTS-c) and Small humanin-like peptides (SHLP 1-6),
and elucidated the role of MDPs in diabetes and its major complications stroke and
myocardial infarction by improving insulin resistance, inhibiting inflammatory response and
anti-apoptosis. It provides more possibilities for the clinical application of mitochondrial
derived peptides.

Keywords: mitochondrial-derived peptides (MDPs), humanin, MOTS-c, SHLPs(1-6), stroke, myocardial
infarction, diabetes
INTRODUCTION

Mitochondria, as the integration center of key signals regulating bioenergy metabolism and
regulating the initiation and execution of oxidative balance protein apoptosis, can sense cellular
stress and help cells adapt to the challenges of microenvironment (1, 2). Mitochondria are
important organelles involved in glucose metabolism and the main source of ROS in cells, and
their functional changes are closely related to blood glucose level, which can cause oxidative stress
when hyperglycemia occurs due to excessive production of peroxide in mitochondrial electron
transport chain (3). Oxidative stress is widely believed to play a key mediating role in the
development and progression of diabetes and its complications due to the increased production
of free radicals and impaired antioxidant defense ability (4).

As a one of the world’s fastest growing disease, diabetes and its complications is a major cause of
death in diabetes. The body long carbohydrate metabolism disorder can cause multiple system
damage, lead to eyes, kidneys, nerves, heart, blood vessels and other tissues and organs of chronic
progressive lesions. Common complications of diabetes mainly include Cardiovascular
complications, Diabetic nephropathy, Diabetic foot, Diabetic retinopathy, etc. (5–7) among
which cardiovascular diseases and neurological diseases (8, 9) are the main causes of disability
and death in diabetic patients. Mitochondria are related to the occurrence and development of
diabetes and its complications (10, 11). Hyperglycemia can cause increased generation of
mitochondrial ROS (12), and then affect diabetic complications such as ischemic stroke (8)
myocardial infarction. In addition to the above mentioned regulation of diabetic hyperglycemia
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by affecting glucose metabolism, current studies have found that
open reading frame sites contained in human mitochondrial
rRNA can encode and form polypeptides called mitochondrial-
derived peptides (MDPs). MDPs (13, 14) can be used as a new
type of reverse signal molecule, the cell will retrograde pass the
signals to the nucleus during stress, the regulation of gene
transcription synthesis, thereby exert anti-inflammatory
antiapoptotic and promote the synthesis of mitochondrial
biological effect and so on, which affect the development of
diabetes and its complications. We mainly discuss MDPs and the
correlation of diabetes, we found a retrospect of the polypeptide
function and their relationship with diabetes mellitus and related
complications, especially the two more studied HN andMOTS-c.
A MITOCHONDRIAL-DERIVED PEPTIDE
TYPES AND FUNCTIONS

Humanin
Humanin was first isolated and discovered by Japanese
researcher Hashimoto (15) in the context of the protective
factor of Alzheimer’s disease. It is composed of 24 amino acids
encoded in the 16S rRNA region of mtDNA and transcribed by
the mitochondrial multi-cistron gene MT-RNR2. Replacing Ser
at position 14 with Gly produces a potent form of HN-derived
S14G-humanin (HNG), which is more than 1000 times more
active than naturally sourced HN (16). The mRNA of HN
peptide contains 21 amino acids for mitochondrial translation
and 24 amino acids for cytoplasmic translation (17), both of
which have similar biological functions and share the same
essential functional domains in HN secretion and cell
protection. HN exists not only in circulating body fluids, such
as blood and cerebrospinal fluid, but also in metabolically active
organs and tissues, such as heart, liver, and kidney, as well as
neurons and skeletal muscles (16, 18, 19). The HN has three
regions, including the negatively charged C-terminal (PVKRRA),
the positively charged N-terminal (MAPR), and a central
hydrophobic region (GFSCLLLLTSEIDL) (20) that can bind
hydrophobic pockets of proteins to form alpha helix (21). HN
acts by activating formyl peptide-like receptors such as (FPRL)
(22) and heterotrimeric humanin receptor (23, 24) composed of
gp130, ciliary neurotrophic factor receptors (CNTFR), and
WSX-1. HN binding to extracellular formylpeptide receptor-
like 1/2 (FPRL1/2) induces increased Ca2+ flux and cascading
activation of extracellular signal-regulated kinases (ERK 1/2) and
downstream signals, resulting in anti-apoptotic effects, and thus
improved cell survival. HN binds to Gp130 WSX-1 and CNTFR
receptors, and trimerization of the receptors induces activation
of Janus kinases (JAK1 and JAK2), which in turn activate signal
transduction factors and transcriptional activator 3 (STAT3).
Dimerized STATS translocations to the nucleus to regulate target
gene transcription and play a protective role in cells (25). HN
also co acts with insulin-like growth factor binding protein 3
(IGFBP-3) (26) to inhibit IGFBP-3-induced apoptosis (27).
Currently, HN is mainly derived from exogenous sources. In
retinal pigment epithelium (RPE) cells, the exogenous HN is
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located in mitochondria and can promote the secretion of
endogenous HN (28). The current study has found that HN, as
a retroactive signal peptide molecule produced by mitochondria,
has certain anti-inflammatory (29), and anti-apoptotic (30, 31),
effects, promotes mitochondrial biosynthesis, enhances signal
molecules in insulin-mediated Akt signaling pathway and fatty
acid metabolism signaling pathway, and regulates metabolism
related to aging (Figure 1).

MOTS-c
MOTS-c sequences, which were discovered by Lee J et al. (14), are
highly conserved, especially for the first 11 residues, and are the
first clear example of a reverse signal peptide molecule that can
enter the nucleus and affect the stress transcriptional response.
Studies have found that MOTS-c, as a reverse signal transgenic
molecule-regulating gene transcription, translocates into the
nucleus and binds to DNA under stress, and works with other
transcription factors such as ARE to regulate the transcription of
stress response genes, enhance cellular resistance and maintain
homeostasis in vivo (32–35). MOTS-c is mainly extranuclear and
co-localized in mitochondria under resting conditions (14, 32).
However, during metabolic or oxidative stress, MOTS-c can be
rapidly translocated to the nucleus in an AMPK-dependent
manner within 30 min (32). MOTS-c entry into the nucleus
requires a hydrophobic core, and in the nucleus, MOTS-c is able
to bind chromatin through its hydrophobic and positive regions,
as well as adaptive stress response transcription factors, including
NFE2L2,Nrf2 and activating transcription factor 1 (ATF1) (32).
MOTS-c is expressed in various organs and tissues of rodents and
human skeletal muscle, myocardial kidney, and circulating
plasma. MOTS-c has been shown to inhibit de novo purine
synthesis, activate AMPK, and regulate fatty acid metabolism in
vivo (14). MOTS-c also prevents coronary endothelial
dysfunction by inhibiting NF-kB and reducing the release of
pro-inflammatory cytokines and adhesion molecules. MOTS-c
also has a regulatory effect on aging, insulin resistance caused by
glucose metabolism disorders, and other aspects (Figure 1).

SHLP (1-6)
SHLPs are 20-38 amino acid long peptide sequences encoded by
mitochondrial 16S rRNA, which are divided into six types,
SHLP1-SHLP6.Of these SHLP2 and SHLP3 are widely studied
and have similar protective effects to Humanin. SHLP2 is mainly
found in liver. The expression of SHLP3 is high in the kidneys and
muscles, while SHLP3 is mainly high in the brain and spleen (36).
Studies have shown that SHLP2 can increase the signal of the
insulin-mediated Akt pathway and fatty acid metabolism signaling
pathway, thus maintaining the homeostasis of glucose metabolism
and fatty acid metabolism. SHLP2 can also increase the number of
pancreatic cells, improve mitochondrial bioenergy, and participate
in a chaperon-like effect (36, 37). It also reduces apoptosis by
downregulating the effect of caspase family on age-related macular
degeneration cells (31). With the increase in age, SHLP2 level in
blood circulation gradually decreases, suggesting that it is related
to the progression of age-related diseases (36). SHLP3 can inhibit
ROS production, mediate ERK signal transduction, and promote
adipose cell differentiation. In addition, SHLP2/SHLP3 can play an
February 2022 | Volume 12 | Article 808120
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insulin sensitization role in vitro, enhance the ability of insulin to
inhibit glucose production in the liver, promote the peripheral
disposal of glucose, and play a role in regulating glucose
metabolism homeostasis. SHLP2 and SHLP3 can also enhance
cell viability and reduce cell apoptosis, while SHLP6 can do the
opposite (36). In addition, SHLP2 and SHLP3 can block
mitochondrial membrane damage induced by staurosporine
(STS) and activation of caspase-3, thus playing a protective role
(38) (Figure 1).
MITOCHONDRIAL-DERIVED PEPTIDES
AND DISEASE

Mitochondrial-Derived Peptides
and Diabetes
Diabetes mellitus (DM) (39, 40) is mainly divided into type 1
diabetes mellitus with absolute insulin deficiency caused by the
destruction of pancreatic beta cells, type 2 diabetes mellitus with
insulin resistance (41), and other special types of diabetes mellitus,
according to clinicalmanifestations, pathophysiology, and etiology.
Current treatments for diabetes include hyperglycemic drugs such
as oral hypoglycemic agents, insulin, exercise therapy, and surgery.
In metabolic tissues with insulin resistance (42), abnormal
mitochondrial morphology is often found, the number of
mitochondria and their oxidase is reduced, and the production of
ATP is reduced. The accumulation of high circulating free fatty
acids in these tissues also reduces glucose processing in response to
insulin stimulation.

Present studies have demonstrated that, by targeting skeletal
muscle, MDPs have a mitigating effect on insulin resistance and
induce glucose uptake into the pentose phosphate pathway to avoid
hepatotoxicity caused by drugs such as metformin (43) or
Frontiers in Endocrinology | www.frontiersin.org 3
methotrexate. Among them, Humanin has the ability to bind
insulin-like growth factor binding protein 3 (26). Humanin’s
entry into the ventricle leads to increased insulin sensitivity in the
liver and muscle, resulting in reduced glucose production in the
liver and increased insulin mediated Akt signaling and fatty acid
metabolism signaling. Humanin also enhances peripheral glucose
uptake and inhibits liver glucose production (44, 45). Han et al.
showed that HNG may improve insulin resistance by reducing
Ser636 phosphorylation of insulin receptor substrate 1 (IRS1) in the
hippocampus. In addition, SHLP2 and SHLP3 can also improve
insulin response, enhance the ability of insulin to inhibit glucose
production in the liver, and promote peripheral glucose processing.
In 2016, Cobb LJ et al. (36) found the insulin sensitization effect of
SHLP2 and SHLP3 in vitro and in vivo. In response to insulin,
SHLP2 and SHLP3 both accelerated the differentiation of 3T3-L1
cells in mouse pre-adipose cell lines and enhanced insulin
sensitivity. Compared with SHLP3, SHLP2 improved insulin
responsiveness, enhanced insulin’s ability to inhibit hepatic
glucose generation (HGP), and promoted glucose access to
peripheral tissues. MOTS-c targets skeletal muscle, and thus can
enhance systemic insulin sensitivity, improve glucose processing
rate, and promote AMPK activation and GLUT4 expression
through muscle. In 2015, Lee et al. found that MOTS-c can
promote AMPK activation and GLUT4 expression under high-fat
diet (HFD), enhance systemic insulin sensitivity through muscle,
and increase the glucose processing rate of insulin stimulation (14).
Lu et al. demonstrated for thefirst time thatMOTS-c treatment can
prevent ovariectomy-induced insulin resistance, fat deposition and
inflammatory response inmice (46). After oophorectomy, estrogen
deficiency increases fat load and disrupts normal fat function, thus
forcing insulin resistance. MOTS-c regulates fat metabolism by
increasing energy consumption and inhibiting fat bulge, thus
alleviating diabetes caused by insulin resistance. In addition, Zhai
et al. observed that in mice infected with methicillin-resistant
FIGURE 1 | Role of mitochondria derived peptides in cells and their regulation of related diseases. HN acts by activating formylpeptide-like receptors
(FPRL) and heterotrimeranthroinin receptors composed of GP130 ciliated neurotrophic factor receptor (CNTFR) and WSX-1. In addition, HN promotes
phosphorylated STAT3 dimer entry into the nucleus to regulate gene transcription and activates the FPRL1/2-ERK1/2 pathway to play a protective role in
cell. MOTS-c translocates to the nucleus in a 5’ -adenosine monophosphat-activated protein kinase (AMPK) -dependent manner after metabolic stress.
MOTS-c regulates a wide range of genes in response to glucose restriction, including genes with antioxidant response elements (ARE), and interacts with
stress response transcription factors that regulate ARE, such as the nuclear factor erythrocyte 2-associated factor 2 (NFE2L2/NRF2), to enhance
mitochondrial function and thus maintain cellular homeostasis. SHLPs can enhance insulin sensitivity, promote adipocyte 3T3-L1 differentiation, inhibit the
expression of caspase and ROS, and play a cellular protective role.
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Staphylococcus aureus (MRSA), MOTS-c enhanced phagocytosis
and bactericidal capacity of macrophages by inhibiting MAPK,
enhancing expression of negative regulator of inflammation AHR
and phosphorylation of STAT3. At the same time, the levels of pro-
inflammatory cytokines TNF-a, IL-6, and IL-1b decreased, and the
levels of anti-inflammatory cytokine IL-10 increased (47, 48). Thus,
MDPs provides a new direction for the treatment of insulin
resistance associated with inflammation.

Mitochondrial-Derived Peptides and Stroke
Stroke is a major complication of diabetes. As an acute
cerebrovascular disease, it is a group of diseases caused by brain
tissue damage due to sudden rupture of blood vessels in the brain or
inability of blood flow to the brain due to vascular obstruction,
including ischemic and hemorrhagic stroke (49). In ischemic
stroke, tight junction proteins of vascular endothelial cells are
degraded, and changes in BBB permeability lead to the activation
of immune cells, which then penetrate into endothelial cells and
infiltrate brain tissue, thereby triggering an inflammatory cascade
that leads to neuronal damage and cell death. Recent studies have
confirmed that HN (50) plays a protective role against ischemic
brain injury. HN can pass the blood-brain barrier (BBB) and
regulate NF-kB (25) PI3K-Akt, JAK-Stat3, and other pathways
(49), or regulate the expression of apoptotic related proteins to
inhibit neuronal apoptosis, thus playing a protective role against
ischemic brain injury. Peng et al. (49) conducted in vivo
experiments on mice with in vivo middle cerebral artery
occlusion (MACO) model and in vitro studies on Bend3 cells
treated with hypoxia and glucose deficiency, showing that HNG,
a reverse signaling molecule, can reduce inflammatory response in
vivoby inhibiting the activation ofNF-kB signalingpathway factors
IKK, and IKB, and reducing the accumulationofP65 in the nucleus.
For example, HN can inhibit the production of cytokines such as
tumor necrosis factora (TNF-a) and interleukin 1b (IL-1b), while
at the same time inhibiting vascular adhesion molecules in cortical
tissues such as VCAM-1 and ICAM-1. It was speculated that the
disorder of BBB endothelial cells in the brain ofMCAOmicemight
promote the passage of HNG through BBB. Moreover, in a 2016
study, Kim et al. (23) found that in neuronal cell lines, HNG can
activate Akt Erk1/2 and Stat3 signaling pathways through the
glycoprotein 130kDa (GP130/IL6ST) receptor complex to play a
protective role in nerve cells. HNG can inhibit oxidative stress ROS
production by activating the JAK2/STAT3 signal and the
mitochondrial pathway-related apoptosis induced by Bax and
caspase3 (25). HN inhibits BAX-mediated neuronal apoptosis
mainly through two pathways (51). First, HN prevents the
translocation of Bax from cytoplasm to mitochondria. Second,
HN interacts with the mitochondrial membrane bound to Bax to
prevent the recruitment of cytoplasmic Bax and its oligomerization
in the membrane.

Mitochondrial-Derived Peptides
and Myocardial Infarction
Another major complication of diabetes, myocardial infarction
(52), refers to acute myocardial ischemic necrosis, mostly on the
basis of coronary artery lesions, the coronary artery blood supply
Frontiers in Endocrinology | www.frontiersin.org 4
is sharply reduced or interrupted, resulting in severe and lasting
acute ischemia of the corresponding myocardium. Current
treatments include drug therapy, interventional medicine and
surgery. Nevertheless, the traditional method of treatment has
been unable to meet the needs of clinical patients. Therefore, it is
necessary to seek efficient and reliable treatment. Current studies
have found that as an important peptide for regulating and
maintaining mitochondrial function, MDPs (53) can be involved
in the pathological changes in cardiovascular disease (CVD)
through different mechanisms. The heart is an organ with high
internal oxygen consumption, and ROS are mainly produced by
cardiac mitochondria. To be specific, the complex of the electron
transport chain (ETC) is the main source of ROS produced by
cardiac mitochondria (54). ROS are multipotent, and in
relatively high concentrations (pathology) cause oxidative
stress, but at a lower level (physical) act as a signal molecules.
The increase of ROS will lead to changes in mitochondrial
membrane potential and ATP level of cardiomyocytes. At the
same time, oxidative stress can trigger mitochondria and
endoplasmic reticulum stress mediated apoptosis pathways,
causing cell damage.HN can protect cells and mitochondria
through antioxidant stress and endoplasmic reticulum stress.
Savitree and his colleagues demonstrated that HNG can reduce
mitochondrial damage caused by complex I and reduce oxidative
stress caused by H2O2 and ROS production (55). Moreover,
HNG was more effective than cyclosporine A (CsA, MPTP
inhibitor) in reducing mitochondrial ROS and increasing ATP
production. It has been found in a series of studies (56) that high
dose HNG (252 ug/kg) can increase the HN level of damaged
myocardium and reduce arrhythmias, area of myocardial injury
and mitochondrial dysfunction. In addition, Laura E. Klein et al.
(57) also found that the reduction of intracellular ROS after
HNG-treatment was dependent on the activation of a pair of
non-receptor tyrosine kinases C-ABL and arginine. Their results
provide mechanistic insights into the observed HNG-mediated
cardiac protection in vivo (58). Glutathione (GSH) is an
important component of mitochondrial antioxidant defense
system. Matsunaga et al. (59) showed that HN can restore
mitochondrial GSH synthesis by increasing the catalytic
subunit of rate-limiting glutamylcysteine ligase and inhibiting
the production of superoxide, thus protecting against various ER
stress-induced apoptosis. In addition, Muzumdar RH et al. (60)
found that HNG may activate AMPK-eNOS -mediated
(endothelial nitric oxide synthase) signal transduction during
myocardial ischemia-reperfusion injury (MI-R model) in mice.
Activating AMPK, increasing the phosphorylation level of eNOS,
and decreasing the expression of the apoptotic factor Bax can
help reduce the myocardial infarction area, enhance cardiac
function, improve the survival rate of myocardial cells, and
play a cardiac protective role in a dose-dependent manner
(HNG,2 mg/kg is the best) in the MI-R mouse model. Yuan
et al. (61) investigated the effects of MOTS-c on cardiac
function and structure of rats during chronic aerobic exercise
by intraperitoneal injection of MOTS-C, and detected
echocardiography by HEMO dynamics with HE staining. After
analyzing cardiac function, it was found that MOTS-c could
February 2022 | Volume 12 | Article 808120
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improve cardiac mechanical efficiency, enhance cardiac systolic
function, and have a tendency to improve diastolic function, thus
improving cardiac function.
CONCLUSION

Mitochondria are the energy metabolism center in the body,
while brain and heart are the most metabolically active organs in
the body. Therefore, changes in mitochondrial function will
affect the process of diabetes and its complications in the heart
and brain tissues (62). ROS produced by mitochondria in the
process of metabolism is considered to be the main cause of
diabetic microangiopaxia caused by mitochondrial mutation
damage to aging tissues. MDPs encoded by mitochondrial
genes can regulate diabetes and its cardiovascular and
cerebrovascular complications through anti-inflammatory and
anti-apoptosis promotion of mitochondrial biosynthesis, etc.
(Figure 2). HN (23) can reduce ROS interference with BAX
translocation and recruitment through activation of PI3K-AKT,
JAK2-STAT3, NF-kB, AMPK-eNOS and other pathways.
MOTS-c (58) can regulate glucose and lipid metabolism by
targeting specific activation of AMPK in skeletal muscle,
regulate coronary endothelial function, enhance cardiac systolic
function, improve coronary artery microvascular disorders, etc.
SHLP2 and SHLP3 can also improve insulin sensitivity and
Frontiers in Endocrinology | www.frontiersin.org 5
glucose metabolism in vivo and in vitro, thus contributing to
the efficacy of diabetes and its complications.

Mitochondrial derived peptides mainly play a role in the
regulation of diabetic nervous system complications by HN,
while other MDPs have not been fully reflected in the study of
neuroprotection. In addition, most of the mitochondria derived
peptides used in the current research are exogenous. As protein
polypeptides, they can be quickly cleared by tissues in the body,
so how to make them play a role in the body for a long time is
also one of the problems that need to be solved.
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