
BioMed CentralJournal of Cheminformatics

ss
Open AcceResearch article
Interpretable correlation descriptors for quantitative structure-
activity relationships
Benson M Spowage1, Craig L Bruce1,2 and Jonathan D Hirst*1

Address: 1School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK and 2AstraZeneca, Mereside, Alderley Park, 
Macclesfield, Cheshire, SK10 4TG, UK

Email: Benson M Spowage - ttxbms@nottingham.ac.uk; Craig L Bruce - craig.bruce@astrazeneca.com; 
Jonathan D Hirst* - jonathan.hirst@nottingham.ac.uk

* Corresponding author    

Abstract
Background: The topological maximum cross correlation (TMACC) descriptors are alignment-
independent 2D descriptors for the derivation of QSARs. TMACC descriptors are generated using
atomic properties determined by molecular topology. Previous validation (J Chem Inf Model 2007,
47: 626-634) of the TMACC descriptor suggests it is competitive with the current state of the art.

Results: Here, we illustrate the interpretability of the TMACC descriptors, through the analysis
of the QSARs of inhibitors of angiotensin converting enzyme (ACE) and dihydrofolate reductase
(DHFR). In the case of the ACE inhibitors, the TMACC interpretation shows features specific to
C-domain inhibition, which have not been explicitly identified in previous QSAR studies.

Conclusions: The TMACC interpretation can provide new insight into the structure-activity
relationships studied. Freely available, open source software for generating the TMACC
descriptors can be downloaded from http://comp.chem.nottingham.ac.uk.

Background
Quantitative structure-activity relationship (QSAR) mod-
els correlate molecular chemical structure to biological
activity. The underlying principle for QSAR modelling is
the similar property principle: molecules with similar
chemical structures will exhibit similar biological proper-
ties [1]. This principle can be explained by changes in
chemical structure altering the electron distribution
within a molecule, which is directly responsible for the
activity of the molecule. QSARs can be used to elucidate a
quantitative description of changes in biological activity
arising from the exchange of the functional groups within
a molecule. In general, QSAR modelling requires three
main features: a data set of molecules, appropriate
descriptors and an efficient statistical method for captur-

ing correlation. Descriptors are characteristic properties of
molecules, often represented as numerical values, which
facilitate the analysis of chemical structure. A wide variety
of molecular descriptors are available and descriptor
selection is an integral process in QSAR modelling [2].

2D QSAR models are generated using descriptors derived
from the two-dimensional graph representation of a mol-
ecule. In contrast, 3D QSAR models correlate activity with
descriptors based on spatially localised features. Although
3D descriptors may allow more detailed descriptions of
the molecular binding interactions between ligands and
receptors, 3D methods are more time-consuming, due to
the requirement of precise conformational detail on the
molecule and exact alignment [3]. In some cases, 2D
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QSAR methods can classify the biological activity mole-
cules more efficiently than some more complex 3D QSAR
methods [4]. In many instances, the biologically active
conformation of a molecule is unknown and 2D descrip-
tors are useful, as they are not dependent upon spatial
conformation.

Classic QSAR methods, developed by Hansch [5], pro-
vided a foundation on which numerous QSAR methods
are now based: the correlation of physicochemical proper-
ties to activity using multivariable regression. Regression
analysis models the activities of molecules through an
equation constructed using a linear combination of phys-
icochemical properties. The coefficient for each variable in
the equation can, consequently, be examined to deter-
mine the extent to which each property contributes
towards the activity of the molecule. Regression is central
to many contemporary QSAR methods, although nowa-
days often the technique of partial least squares (PLS) [6]
is used to cope with large numbers of descriptors. One of
the appeals of regression is the relative ease with which
models can be interpreted and this extends to approaches
based on PLS [7]. Sometimes an interpretable model
might be favoured over a more accurate, but less transpar-
ent, QSAR [8].

Over the last decade, advances in computational technol-
ogy combined with contemporary methodologies have
led to a vast array of new descriptors [2]. Topological max-
imum cross correlation (TMACC) descriptors were created
[9] with the intention of developing an interpretable 2D
descriptor for QSAR modelling. The TMACC descriptors
are based on concepts derived from the grid-independent
descriptors (GRIND) [10]. GRIND are alignment-inde-
pendent 3D molecular descriptors which represent a mol-
ecule using a grid on which the product of pairs of force
field interactions is plotted against the distances between
the pairs [10]. This method is analogous to the autocorre-
lation descriptor, which represents atom pairs as a
weighted histogram [11]. GRIND are interpretable, as
only one value is stored for each distance range: the max-
imum product of the two force field interactions. This
method was termed maximum auto- and cross-correla-
tion (MACC) [10]. In a similar method, the TMACC
descriptors use the topological bond distances and physi-
cochemical properties of a molecule. Only the maximum
value calculated as the product of pair combinations of
physicochemical properties for each distance is used to
generate the TMACC descriptors.

Previous validation of the TMACC descriptors was prom-
ising, with leave-one-out (LOO) cross-validated correla-
tion coefficients comparable to those achieved by the
state-of-the-art 2D QSAR method, hologram QSAR [9].
An external test set is often used to estimate predictive

accuracy [12]. However, the external test set must be large
to give results as reliable as cross validation [13-15]. We
have previously shown [9], on the datasets in this study,
that using a training/test set partition gives estimates of
predictive accuracy that are qualitatively similar to those
from cross validation. Thus, here we use cross validation
only, as it makes more use of the data for model building.
Whilst statistical validation is key, the interpretation and
chemical significance of the structure-activity relation-
ships generated are also important [2,12]. To assess the
interpretive ability of a QSAR model it is necessary to
apply scientific rationale to the resultant interpretation
[16]. Interpretation of the TMACC descriptors is achieved
through analysis of the regression model generated by
PLS. The predicted activity of a molecule can be attributed
to specific atoms that contribute towards the TMACC
descriptors. Visualization of the resultant atom activity
contributions is accomplished by atomic colour coding
based on sign and magnitude of partial activity.

The present study aims to evaluate the ability to identify
known structure-activity relationships using the TMACC
descriptors. To exemplify the TMACC descriptors, we
investigate two datasets, which were previously used in a
comprehensive comparison of modern QSAR approaches
[17]. Models derived from the angiotensin converting
enzyme (ACE) and dihydrofolate reductase (DHFR)
inhibitor data sets were assessed to elucidate the encoded
structure-activity relationships with the help of informa-
tion in the literature and to evaluate the interpretive abil-
ity of TMACC models.

Experimental
The data sets used in this study, 114 inhibitors of angi-
otensin converting enzyme [18] and 397 inhibitors of
DHFR [17], have been widely used to investigate many
QSAR methods [17]. Each data set contained experimen-
tally determined activity (pIC50) values for each molecule.
TMACC descriptors were generated using the topological
data of each molecule. All nonpolar hydrogen atoms were
removed and their atomic value added to the heavy atom
to which they were bonded. Polar hydrogen atoms were
considered explicitly. Physicochemical properties were
then assigned to each atom. Four parameters were used to
represent these properties: Gasteiger partial charges [19],
logS parameters [20], Crippen-Wildman molar refractiv-
ity parameters [21] and Crippen-Wildman partition coef-
ficient (logP) parameters [21]. Gasteiger partial charges
were calculated using the method of partial equalization
of orbital electronegativity [19]. This procedure calculates
atomic charges in σ-bonded and non-conjugated π-sys-
tems using only the topology of a molecule. LogS param-
eters were used to describe atomic contributions to
aqueous solubility [20]. Crippen-Wildman molar refrac-
tivity (MR) was used as a measure of the steric effect,
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which is determined through classification of atoms based
on neighbouring atoms [21]. Crippen-Wildman partition
coefficients (logP) are assigned to each atom as a measure
of atomic lipophilicity, determined in the same way as
Crippen-Wildman molar refractivity.

Property types which produce positive and negative values
were considered as two separate properties (Table 1). This
was the case for all property types, except molar refractiv-
ity, as all atomic values for this property are positive. To
account for the different scales used by each atomic
parameter, each contribution was rescaled by the largest
absolute value, resulting in all values being confined
within the range of +1 and -1.

The TMACC descriptor was derived from the autocorrela-
tion descriptor [11]. The standard equation for calculating
an autocorrelation descriptor, Xac, (Equation 1), considers
a property, p, and the topological distance, d, between
atoms i and j:

TMACC descriptors are calculated as the product of the
physicochemical properties as determined for every atom
pair within a given molecule. Only the maximum value
determined for any bond distance is used in the genera-
tion of the TMACC descriptors. All other values are
neglected. As the TMACC descriptor incorporates both
autocorrelation and cross-correlation, all possible combi-
nations of physicochemical properties are considered. The
equation for calculating a TMACC descriptor (XTMACC)
(Equation 2) summarises this approach, involving two

properties, p and q, for two atoms, i and j, separated by the
topological distance, d:

Interpretation of the TMACC descriptors was accom-
plished by rescaling the coefficients from the non-cross-
validated model. For every unscaled descriptor, xi, we
define the partial activity as βixi, using the unscaled regres-
sion coefficient, βi. This provided a method for identifica-
tion of the atoms which contribute towards each
descriptor for a particular molecule. Each atom contribut-
ing to a descriptor was given an equal share of the partial
activity. The atom contribution values were subsequently
summed for each atom. For a given dataset, the total atom
contributions were separated into five activity bands,
ranging from 'very negative' to 'very positive' (Table 2),
each containing an equal number of atoms. By colour-
coding each atom according to its activity band, it was
possible to visualize the activity of each atom.

All calculations were performed using Nottingham Chem-
informatics Workbench (NCW), a package which pro-
vides the function of generating the TMACC descriptors
and the TMACC interpretation. NCW is a Java-based
application, which is suitable for all major operating sys-
tems. It builds upon the original TMACC code (available
from our website http://comp.chem.nottingham.ac.uk/
download/tmacc). The original software only generates
TMACC descriptors; there is no facility to interpret your
model. NCW allows the user to start with a set of mole-
cules and perform a full analysis upon them. The popular
machine-learning workbench Weka is included to provide
PLS modeling, as well as an in-house implementation.
The in-house PLS algorithm was written before Weka
included one. The results of the PLS analysis are used to
determine the atomic contribution of each atom. The
interpretation is visualized by a colour scheme depicting
activity contribution by atom. The user is able to view
molecules individually or tabulated. NCW will be availa-
ble as open source software for download from our web-
site, http://comp.chem.nottingham.ac.uk/download/
ncw. NCW utilizes Marvin for drawing and manipulating

X p d p pac i j( , ) = Σ

X p q d max p q q pTMACC i j i j( , , ) ( , )=

Table 1: Properties used in generation of TMACC descriptors

Physicochemical property Separate property

Gasteiger partial charge
(Electrostatics)

Positive charge

Negative charge

logS
(Solubility and solvation phenomena)

Positive logS

Negative logS

Crippen-Wildman logP (Hydrophobicity) Positive logP

Negative logP

Crippen-Wildman Molar Refractivity
(Sterics and polarizability)

Molar refractivity

Table 2: The activity bands used for TMACC descriptor 
interpretation

Activity Threshold Colour

ACE DHFR

Very Positive 0.27 0.61 Blue
Positive 0.074 0.072 Yellow
Neutral 0.030 0.024 Green
Negative 0.0078 -0.00012 Orange
Very Negative -0.0033 -0.0089 Red
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chemical structures: Marvin 5.2.2, 2009 http://
www.chemaxon.com. All molecular graphics were created
using YASARA ("Yet Another Scientific Artificial Reality
Application," http://www.yasara.com).

Results and Discussion
Angiotensin converting enzyme (ACE) inhibition
LOO cross-validation of the PLS models generated for the
ACE and DHFR data sets gave q2 values of 0.70 and 0.53,
respectively, consistent with those previously reported [9].
TMACC descriptors were generated for the ACE data set of
114 inhibitor molecules, previously used to assess the
ability of a 3D QSAR method, comparative molecular
field analysis (CoMFA) [18]. The data set contained a
diverse range of structures and activities selected from lit-
erature [18]. ACE is a zinc metallopeptidase, which func-
tions as a dipeptidyl carboxypeptidase, hydrolysing a
range of oligopeptide substrates [22]. It acts to induce
hypertension and is, consequently, a widely investigated
target for antihypertensive drugs [23]. Several methods
used to determine the ACE inhibitory activities (IC50 val-
ues) involved the use of the substrate hippuryl-histidyl-
leucine (HHL) [24,25]. An early method for determining
ACE inhibitor activity was to measure the rate of hippuric
acid production from HHL catalyzed by ACE [26]. How-
ever, it was subsequently discovered that HHL is a C-ter-
minal domain specific substrate of ACE [27,28].
Consequently, the structure-activity relationship shown
by this data set is likely to reflect that of C-terminal
domain specific ACE inhibition, rather than general ACE
inhibition.

For each molecule, a TMACC interpretation was gener-
ated, as described in the Methods section, leading to the
labelling of each atom according to an activity banding
(i.e., its contribution to activity). Some examples are
shown in Figure 1. Based on the literature, several poten-
tially important features (in the form of functional

groups) were identified (Figure 2). Using the TMACC
interpretation the extent of activity associated with each
feature was accumulated for the entire ACE data set to
allow determination of the structure-activity relationship
modelled (Table 3).

An essential feature of any ACE inhibitor is a zinc coordi-
nating group. The catalytic zinc ion is coordinated by
three highly conserved residues present in both somatic
ACE (sACE) domains [29]. The important functional role
of the zinc ion in the active site domains of ACE has led to
the development of peptide based inhibitors, such as
enalaprilat, with additional zinc-binding functional
groups, including thiol, carboxylate and phosphinate
groups. The importance of zinc binding functional groups
in ACE inhibition has been demonstrated in crystal struc-
ture and structure-activity studies [22,30,31].

Zinc binding groups were frequently recognized by the
TMACC interpretation as positive for activity. All sulfhy-
dryl sulfur atoms located in the optimal position for zinc-
binding were identified as positive for activity. Analysis of
phosphinate zinc binding groups showed all phosphorus
atoms were identified as positive for activity. However,
phosphinyl oxygen atoms were mostly shown as negative
for activity. In contrast, the interpretation most frequently
identified both carboxylate zinc binding group oxygen
atoms to be positive for activity. Although the results do
not fully capture the correlation between the type of zinc-
ligand and inhibitor activity observed in structure-activity
studies, (phosphinate > carboxylate > sulfhydryl) [18],
perhaps the negative activity attributed to the phosphi-
nate oxygen atoms reflects its weak zinc-binding ability in
comparison to the other zinc binding groups.

The central carbonyl group is a feature found in most ACE
inhibitors. It forms two hydrogen bonds within both
domains of ACE [22,29]. Docking studies suggest this

Table 3: Frequency of activity of ACE inhibitor features as determined by the TMACC interpretation.

Activity

ACE inhibitor feature Negative Neutral Positive

C-terminal carboxylate carbonyl 5 0 105
C-terminal carboxylate hydroxyl 0 5 105
Central carbonyl 13 3 96
Zinc binding carboxylate - carbonyl 3 3 22
Zinc binding carboxylate - hydroxyl 0 4 24
Zinc binding sulfhydryl sulfur 0 0 33
Zinc binding phosphinate phosphorus 0 0 22
Zinc binding phosphinate carbonyl 20 0 2
Zinc binding phosphinate hydroxyl 20 0 2
P1' methyl 4 2 27
P1' lysyl nitrogen 0 0 20
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interaction is frequently present in ACE-inhibitor binding
[32] and it has been identified in many ACE-inhibitor
crystal structure complexes (Figure 3) [33]. Mutation of
513His to alanine causes a 120,000-fold decrease in the
binding of lisinopril to the C-domain of sACE [34]. This
suggests the interaction of the conserved histidine resi-
dues with the carbonyl group of an inhibitor is important
for ACE inhibition. The TMACC interpretation identified
the central carbonyl as favourably contributing towards
the activity (Table 3). The high frequency of positive activ-
ity shown for this feature by the TMACC interpretation is
consistent with the aforementioned literature.

The crystal structures of testicular ACE (tACE) in complex
with various inhibitors (Figure 3) show the intermolecu-
lar interactions responsible for ACE inhibition in tACE
and correspondingly the C-terminal domain of sACE
[22,30,33]. In contrast to most zinc protease inhibitors,
which primarily rely on the strength of their zinc binding
groups for activity, domain-specific ACE inhibitors utilize
weak zinc binding groups and exploit both primed and
unprimed sides of the active site in order to mimic peptide
substrates, thereby achieving domain selective inhibition
[35]. Domain-specific inhibition of ACE is important, as
each domain possesses individual functions [36]. This dis-
covery has developed the number of applications of ACE
inhibitors, extending from treating hypertension to pro-
tecting stem cells during chemotherapy [37]. A recent
study has also suggested ACE may be involved in many
physiological processes other than blood pressure regula-
tion [38].

The two domains of sACE contain many conserved resi-
dues, which are vital for substrate and inhibitor binding
(Table 4). The identification of conserved residues within

TMACC interpretation of ACE inhibitorsFigure 1
TMACC interpretation of ACE inhibitors. TMACC activity colour scheme: red for very negative activity; orange for neg-
ative activity; green for neutral activity; yellow for positive activity and blue for very positive activity. A) molecule 87, captopril; 
the sulfhydryl zinc binding group, P1' methyl group, central carbonyl and the C-terminal carboxylate are all shown in blue, indi-
cating that they provide a positive contribution to the activity of the molecule. B) molecule 64, enalaprilat; the carboxylate zinc 
binding group, P1' methyl group, central carbonyl and the C-terminal carboxylate are all shown to provide a positive contribu-
tion to the activity of the molecule. C) molecule 65, lisinopril; the carboxylate zinc binding group, P1' lysyl group, central carb-
onyl and the C-terminal carboxylate all provide a positive contribution to the activity of the molecule.

ACE inhibitor features investigatedFigure 2
ACE inhibitor features investigated. Position of features 
shown in 2D relation to one another. Blue circles surround 
atoms studied for activity.
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ACE and their role in inhibitor binding has highlighted
several important features required for ACE inhibition,
providing a rationale for the structure-activity relationship
of ACE inhibitors.

A C-terminal carboxylate is found in many ACE inhibi-
tors. This feature interacts with several conserved residues
in both domains of sACE, hydrogen bonding with tyro-
sine and glutamine residues, and also forms an electro-
static interaction with a lysine residue (Figure 3) [32].
Both C-terminal carboxylate oxygen atoms were identified
as positive by the TMACC interpretation (Table 3).

Despite the high level of conserved residues present in
both domains of sACE, variation between the domains
confers different substrate and inhibitor preferences. The
presence of hydrophobic residues 379Val and 380Val in the
S1' sub-site of the C-domain of sACE provides hydropho-
bic interactions between the sub-site and the P1' residue

of inhibitor molecules, such as the P1' methyl group of
captopril and enalaprilat [29]. The corresponding residues
found in the N-terminal domain, 357Ser and 358Thr, pro-
vide a polar environment and, therefore, do not form sim-
ilar hydrophobic interactions with the P1' residue of
inhibitors [29,33]. In the C-terminal domain the lysyl
chain of lisinopril extends into the S1' sub-site and forms
an electrostatic interaction with 162Glu and a water-medi-
ated interaction with 377Asp [22]. However, in the N-ter-
minal domain the S1' sub-site makes fewer contacts with
the lysyl chain of lisinopril (Figure 4). For example, 162Glu
(C-domain) is replaced by 140Asp (N-domain), and due to
the larger distance between the lysyl chain and this resi-
due, no electrostatic interaction is observed at this loca-
tion in the N-domain [29]. Additionally, 377Asp (C-
domain) is replaced by 355Gln (N-domain), thereby abol-
ishing the water-mediated interaction shown between the
lysyl residue of lisinopril and the C-domain [29]. This evi-
dence suggests that methyl and lysyl groups located in the

Conserved ACE residues that interact with lisinoprilFigure 3
Conserved ACE residues that interact with lisinopril. A) tACE active site (green) [22]. B) The N-domain active site of 
sACE (purple) [29]. Zinc ion shown in magenta; atoms are coloured as follows: red for oxygen, blue for nitrogen, cyan for car-
bon and grey for hydrogen.

Table 4: Conserved ACE residues important for inhibitor interactions

Functional interaction C-domain residue N-domain residue

Zinc-binding 383His 361His
Zinc-binding 387His 365His
Zinc-binding 411Glu 389Glu
Inhibitor carbonyl hydrogen bonding 513His 491His
Inhibitor carbonyl hydrogen bonding 353His 331His
Inhibitor carboxy terminal carboxylic ionic bonding 511Lys 489Lys
Inhibitor carboxy terminal carboxylic hydrogen bonding 281Gln 259Gln
Inhibitor carboxy terminal carboxylic hydrogen bonding 520Tyr 498Tyr

(Table formulated using information from [29,30,32])
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P1' position of ACE inhibitors can form favourable inter-
actions with the S1' sub-site of the C-terminal domain of
sACE.

Interestingly, the TMACC interpretation identified all
inhibitor P1' lysyl nitrogen atoms as favourably contribut-
ing towards activity (Table 3). The interpretation also
identified inhibitor P1' methyl groups as positive for
activity. Thus, the TMACC interpretation identified P1'
groups important for C-domain specific ACE inhibition,
as illustrated in Figure 1. This C-domain specific bias in
the data set, reflected by the TMACC interpretation, has
not been shown in previous QSAR investigations using
this data set [17,18].

Dihydrofoloate reductase (DHFR) inhibition
Due to the vital cellular function and ubiquitous expres-
sion of DHFR, inhibitors of this enzyme have been used
clinically in the treatment of a range of diseases [39]. A
variety of antifolates, which inhibit specific DHFR
enzymes, have clinical application against cancer, malaria
and many infectious diseases caused by bacteria, fungi
and protozoa [40]. Natural folates contain a pteridine ring
system, a p-aminobenzoic acid and a glutamate moiety
(Figure 5). Classical antifolates are analogous to natural
folates, possessing a glutamate residue, which allows pol-
yglutamylation catalyzed by folylpolyglutamate syn-
thetase [41]. Methotrexate (MTX) is a classical antifolate,
which has been used clinically as an anticancer drug for
over 50 years [42]. MTX is a potent inhibitor of DHFR
from many species. However, it is restricted to anti-
tumour applications, as a consequence of the dependence
of classical antifolates on folate carrier-mediated trans-
port, which is found only in mammalian cells [43]. Trime-

trexate (TMQ) is a potent non-classical antifolate DHFR
inhibitor, which is used in the treatment of Pneumocystis
infections common in AIDS patients [44].

TMACC descriptors were generated for the DHFR data set
of 397 molecules, previously studied [17]. The inhibitor
activity values for the DHFR data set represent inhibitor
potency against rat liver DHFR. Rat liver DHFR shows a
high level of conservation of both primary sequence and
active site residues and, therefore, is used as a mammalian
standard for DHFR inhibition [45]. Following the strategy
adopted for the ACE inhibitors, TMACC interpretations
were developed for the DHFR inhibitors (Figure 6). Based
on the literature, several DHFR inhibitor features were

Comparison of the S1' sub-site residues which bind the lysyl group of lisinoprilFigure 4
Comparison of the S1' sub-site residues which bind 
the lysyl group of lisinopril. A) tACE (green) [22] and B) 
the N-terminal domain of sACE (purple) [29]. Colour 
scheme is identical to Figure 1.

Chemical structures of folates and antifolatesFigure 5
Chemical structures of folates and antifolates. A) folic 
acid (DHFR substrate). B) methotrexate (classical antifolate 
DHFR inhibitor). C) trimetrexate (non-classical antifolate 
DHFR inhibitor).
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identified (Figure 7) and the association of each feature
with activity was extracted from the TMACC interpreta-
tion and accumulated for the entire data set (Table 5).

Crystal structures of DHFR-inhibitor complexes for many
species have revealed conserved binding residues and
have provided a basis for the design of selective DHFR
inhibitors [46]. Many DHFR inhibitors have been synthe-
sized by modification of the structural components of
folate. For example, MTX differs by replacement of the 4-
oxo with a 4-amino group and an additional N10 methyl
group. There are several conserved residues within the
DHFR active site [46-48] that facilitate the binding of
DHFR inhibitors (Table 6).

An important feature for DHFR inhibition is a 2,4-
diamino-substituted pyrimidine ring [49]. The 2-amino
and 4-amino groups form hydrogen bonds with highly
conserved residues, which orientate the pteridine ring of
the inhibitor accordingly. The orientation of inhibitor
binding differs from natural folate binding. Although
both involve 30Glu, the orientation of the inhibitor allows
extensive hydrogen bonding with other DHFR residues,
which is not possible in the folate binding orientation.
Binding of inhibitors containing 2,4-diaminopyrimidine
shows the 2-amino group forms a hydrogen bond with
30Glu [50]. Additionally, the 4-amino group of the inhib-
itor forms strong hydrogen bonds with the carbonyl
groups of 7Ile and 115Val [46,50]. The protonated form of
N1 forms an electrostatic interaction with 30Glu [47,51].

The N8 nitrogen of the pteridine ring forms a conserved
network with a water molecule, which also hydrogen
bonds with 30Glu and 24Trp [46,52]. However, compari-
son of pyrido [2,3-d]pyrimidines and quinazolines sug-
gests that the presence of the N8 hydrogen bond in
inhibition by pyrido [2,3-d]pyrimidines may restrict the
position of any bridge substituent, such as 9 or 10 methyl

groups, preventing hydrophobic interaction of these fea-
tures with the DHFR active site [53,54]. Therefore, in gen-
eral quinazoline DHFR inhibitors are more potent than
pyrido [2,3-d] pyrimidine analogues.

The TMACC interpretation showed variable activity for
the 2-amino group, with the activity approximately evenly
distributed between negative and positive activity. How-
ever, interpretation of the 4-amino group showed a
greater frequency of positive activity. The interpretation
showed the N1 nitrogen as generally negative for activity.
This classification could possibly result from the fact that
the N1 was unprotonated within most molecules of the
data set. However, studies suggest the protonated form of
N1 forms a salt bridge with the DHFR active site [51,55].

Comparison of the activity of C8 atoms in quinazoline
inhibitors to N8 atoms in pyrido [2,3-d]pyrimidine inhib-
itors assigned by the TMACC interpretation showed the
C8 atom of quinazoline inhibitors to be identified as pos-
itive for activity, whilst the N8 of pyrido [2,3-d]pyrimi-
dines was most frequently negative for activity. This
interpretation reflects experimental evidence, which indi-
cates the presence of a C8 (quinazoline) is more potent
for DHFR inhibition than an N8 (pyrido [2,3-d]pyrimi-
dine) [56].

The presence of a 5-methyl group increases inhibitor
potency by forming hydrophobic interactions with 115Val
in human DHFR [53]. Methyl groups in the 9 and 10 posi-
tions of the bridge region also improve DHFR inhibitor
potency, as the environment surrounding the bridge
region is generally hydrophobic. Therefore, hydrophobic
interactions with 22Leu may be formed by these groups
[47]. The benzyl ring featured in many antifolate inhibi-
tors forms hydrophobic contacts with many residues
within the DHFR active site [46,51]. This feature is often
substituted for other aromatic rings and methoxy groups
to increase hydrophobic interactions.

The TMACC interpretation identified 5-methyl groups as
positive for activity, consistent with experimental data,
which suggests this feature is important for the inhibition
of human DHFR. The interpretation also identified
methyl groups in the 9 and 10 positions as positive for
activity. This is consistent with the known hydrophobic
interactions formed by these features within the DHFR
active site [47]. The TMACC interpretation identified the
methyl of methoxybenzyl groups substituted around the
benzoic acid moiety of inhibitor molecules as positive for
activity. This classification is supported by the hydropho-
bic interactions in which methoxy groups have been
shown to participate within the DHFR active site [46,51].
The TMACC interpretation of the DHFR data set identified
many key structural features for DHFR inhibition. The

Table 5: Analysis of the TMACC interpretation of the DHFR 
data set. 

Activity

DHFR inhibitor feature Negative Neutral Positive

2-amino nitrogen 155 81 161
4-amino nitrogen 110 61 212
N1-nitrogen 307 58 32
C8 Quinazoline 0 5 45
N8 Pyrido [2,3-d]pyrimidine 68 16 11
5-methyl 1 0 64
9-methyl 0 1 16
10-methyl 10 3 57
Benzylmethoxy - methyl 5 6 392

Table shows frequency of activity of DHFR inhibitor features as 
determined by the TMACC interpretation
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analysis suggests that the hydrophobic groups investi-
gated were more frequently identified as positive for activ-
ity than the hydrogen bonding groups investigated
(Figure 6).

Conclusion
Analyses of the TMACC QSARs modelled for the ACE and
DHFR data sets have shown that the TMACC interpreta-
tion can identify distinctive features of a structure-activity
relationship. The TMACC interpretation provided a clear
and precise representation of the activity of specific
groups. Amalgamation of the atomic activity values deter-
mined for such groups within a data set, showed strong

correlation with experimental evidence, which shows the
TMACC interpretation can produce models which accu-
rately depict the features of a structure-activity relation-
ship.

Overall, the TMACC interpretation modelled the ACE
inhibitor structure-activity relationship highlighted
important features for C-domain selective ACE inhibition.
The TMACC interpretation provided a consistent repre-
sentation of the structure-activity relationship present in
the ACE data set. However, the insight into the structure-
activity relationship of ACE inhibitors produced by the
TMACC interpretation was limited by the size of the data
set. To obtain a more detailed analysis of components

TMACC interpretation of DHFR inhibitorsFigure 6
TMACC interpretation of DHFR inhibitors. TMACC activity colour scheme: red for very negative activity; orange for 
negative activity; green for neutral ctivity; yellow for positive activity and blue for very positive activity. A) Molecule 202; the 2-
amino group, N1 nitrogen and N8 nitrogen are shown to provide a negative contribution to the activity of the molecule. The 
4-amino group, 5 methyl, 10 methyl and the methyl group of the benzylmethoxy are all shown to provide a positive contribu-
tion to the activity of the molecule. B) molecule 22, trimetrexate; the 2-amino group and N1 nitrogen are both shown to pro-
vide a negative contribution to the activity of the molecule. The 4-amino group, 5 methyl, C8 carbon and the methyl groups of 
the benzylmethoxy groups are all shown to provide a positive contribution to the activity of the molecule. C) molecule 189; 
the 2-amino group, N1 nitrogen and N8 nitrogen are shown to contribute negatively to the activity of the molecule. The 4-
amino, 9 methyl and the methyl groups of the benzylmethoxy groups are all shown to provide a positive contribution to the 
activity of the molecule.

DHFR inhibitor features investigatedFigure 7
DHFR inhibitor features investigated. Position of fea-
tures shown in 2D relation to one another. Blue circles sur-
round atoms which were studied for activity. Methoxy 
groups located at all positions of the benzyl ring were stud-
ied.

NH2

N

N

NH2 CH3

8

9 10

CH3

CH3

O CH3

4-amino 5-methyl 9-methyl

2-amino

10-methyl

Benzylmethoxy

}

}

C8   Quinazoline

N8   Pyrido[2,3-d]pyrimidine

Table 6: Important human DHFR residues for inhibitor binding

Functional interaction DHFR residue

2-amino hydrogen bonding 30Glu
4-amino hydrogen bonding 7Ile
4-amino hydrogen bonding 115Val
N1 hydrogen bonding 30Glu
Pteridine ring hydrophobic interactions 22Leu
Pteridine ring hydrophobic interactions 31Phe
Pteridine ring hydrophobic interactions 34Phe
Benzene ring hydrophobic interactions 22Leu
Benzene ring hydrophobic interactions 31Phe
Benzene ring hydrophobic interactions 34Phe
Benzene ring hydrophobic interactions 61Pro
5-methyl hydrophobic interactions 115Val
9-methyl and 10-methyl hydrophobic interactions 22Leu

(Table formulated using information from [46-48])
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important or detrimental to the ACE inhibitor structure-
activity relationship, it would be necessary to investigate a
data set which represents a comprehensive range of func-
tional groups and structural components. Investigation of
the activity of features important for C-terminal domain
selective inhibition in comparison to features important
for N-terminal domain selective inhibition would provide
further insight into the interpretive ability of the TMACC
descriptors.

An inherent weakness, due to the 2D nature of the
TMACC descriptor, is insensitivity to chirality. However,
the use of chirality descriptors derived from topological
data may provide a solution to this limitation and may
also improve the predictive ability of the QSAR models
[57]. Investigation of alternative or additional atomic
properties used in the TMACC descriptor would provide
an insight into the properties which contribute towards
activity. The effect of implementing more sophisticated
partial charge calculations would be interesting, as a
recent study has suggested that the method used for par-
tial charge calculations can affect QSAR predictive accu-
racy [58]. Investigation of a wider range of data sets would
provide further validation of the utility of the TMACC
interpretation.
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