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ABSTRACT

PURPOSE Outcomes for patients with newly diagnosed multiple myeloma (NDMM) are
heterogenous, with overall survival (OS) ranging from months to over 10 years.

METHODS To decipher and predict the molecular and clinical heterogeneity of NDMM, we
assembled a series of 1,933 patients with available clinical, genomic, and
therapeutic data.

RESULTS Leveraging a comprehensive catalog of genomic drivers, we identified 12
groups, expanding on previous gene expression–based molecular classifica-
tions. To build a model predicting individualized risk in NDMM (IRMMa), we
integrated clinical, genomic, and treatment variables. To correct for time-
dependent variables, including high-dose melphalan followed by autologous
stem-cell transplantation (HDM-ASCT), and maintenance therapy, a multi-
state model was designed. The IRMMa model accuracy was significantly higher
than all comparator prognostic models, with a c-index for OS of 0.726, com-
pared with International Staging System (ISS; 0.61), revised-ISS (0.572), and
R2-ISS (0.625). Integral to model accuracy was 20 genomic features, including
1q21 gain/amp, del 1p, TP53 loss, NSD2 translocations, APOBEC mutational
signatures, and copy-number signatures (reflecting the complex structural
variant chromothripsis). IRMMa accuracy and superiority compared with other
prognostic models were validated on 256 patients enrolled in the GMMG-HD6
(ClinicalTrials.gov identifier: NCT02495922) clinical trial. Individualized pa-
tient risks were significantly affected across the 12 genomic groups by different
treatment strategies (ie, treatment variance), which was used to identify pa-
tients for whom HDM-ASCT is particularly effective versus patients for whom
the impact is limited.

CONCLUSION Integrating clinical, demographic, genomic, and therapeutic data, to our
knowledge, we have developed the first individualized risk-prediction model
enabling personally tailored therapeutic decisions for patients with NDMM.

INTRODUCTION

Clinical outcomes in newly diagnosed multiple myeloma
(NDMM) have significantly improved during recent years
because of the introduction of novel therapeutic agents.1,2

However, considerable heterogeneity remains, with a subset
of patients only marginally benefitting from newer thera-
pies, reflected in persisting short survival, while others
experience decades of disease-free survival even with

limited therapy.3 Proposed fluorescence in situ hybridization
(FISH)–based updates to the International Staging System
(ISS) have aimed for a better definition of risk in NDMM.4-6

Despite some improvements, the application of thesemodels
in clinical practice has been limited by several factors, such
as (1) there remains considerable patient-to-patient vari-
ability within the defined risk groups; (2) they define the
relative risk of either progression or death for a group of
patients with similar features, but are not developed to
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predict individual patient outcomes; (3) treatment is not
included, limiting their ability to inform therapeutic deci-
sions; and (4) they largely ignore several prognostically
relevant genomic and time-dependent features.

Recent whole-genome, whole-exome, and targeted se-
quencing studies have identified a number of recurrent and
prognostic genomic features.7-11 Despite these advances,
NDMM is still clinically classified based on FISH and gene
expression profiling (GEP) models,11-13 reflecting difficulties
in developing robust clustering and classification ap-
proaches that correct for the co-occurrence of different
genomic features.8 In a disease as heterogeneous as multiple
myeloma (MM), similar large-scale data integration ap-
proaches have the potential to identify distinct groups of
patients predicted to benefit from particular treatments (eg,
high-dose melphalan followed by autologous stem-cell
transplantation [HDM-ASCT]).

In this study, we assembled a large training set (N5 1,933)
and a validation set (N 5 256) of patients with NDMM
with available clinical, demographic, genomics, and ther-
apeutic data, to develop a comprehensive genomic classi-
fication of NDMM and to develop, to our knowledge, the
first individualized prediction model able to incorporate
heterogeneous clinical and genomic information to predict
an individual MM patient’s response to given treatment
options.

METHODS

Key clinical and genomic features of both the training and
the validation set are summarized in the Data Supplement

(Table S1 and Fig S1, online only).11,14,15 The full analytical
workflow and codes for the genomic classification and the
prediction model for individualized risk in NDMM (IRMMa)
are available in the Data Supplement (Methods and Data S1
and S2), and GitHub.16

RESULTS

MM Genomic Driver Landscape

Across 1,727 (89.3%) NDMMwith available single nucleotide
variants and indel calls, we identified 90 putative driver
genes significantly enriched for nonsynonymous mutations,
10 of which have not been previously reported (Fig 1A; Data
Supplement, Tables S2 and S3).17-20 In line with previous
evidence,8,11 the most frequently mutated driver genes were
KRAS (24.3%), NRAS (20.1%), DIS3 (9.4%), TENT5C (8.6%),
BRAF (7.8%), and TRAF3 (6.6%). Seventy-nine percent of
patients had at least one nonsynonymous mutation in at
least one of the 90 driver genes.8,11,21,22 Interrogating the copy
number variant (CNV) landscape, we found 88 loci recurrently
involved by CNV: 34 focal deletions, five large deletions, 30
focal gains, and 19 large gains (Fig 1B; Data Supplement,
Tables S2 and S4). Overall, at least one recurrent aneuploidy
was observed in 77.8% of cases. Fifty-three percent of the
patients had at least two large chromosomal gains on odd-
numbered chromosomes and were defined as hyperdiploid
(HRD).23

CNV analysis and clustering in MM has been historically
difficult because large CNVs often affect multiple driver
genes and Genomic Identification of Significant Targets in
Cancer (GISTIC) peaks, making it harder to identify the

CONTEXT

Key Objective
Is it possible to use genomics to expand biological classification and develop individualized prognostication in multiple
myeloma (MM)?

Knowledge Generated
Leveraging an extensive repository of genomic drivers in a series of 1,933 patients with newly diagnosed MM, we expanded
previous fluorescence in situ hybridization and gene expression–basedmodels identifying 12 distinct biological groups. By
integrating clinical, genomic, and treatment data and validating with the GMMG-HD6 trial, we created a predictive model for
individualized risk in newly diagnosed MM (IRMMa) that demonstrated superior accuracy compared with existing prog-
nostic methods (eg, International Staging System [ISS], revised [R]-ISS, and R2-ISS).

Relevance (S. Lentzsch)
By integrating 20 highly relevant genomic features, IRMMa allows better identification of primary refractory and early
progressive myeloma patients compared to current staging systems such as R-ISS and R2-ISS. IRMMa subsequently
boosts overall survival prediction accuracy and could guide clinicians in adjusting for treatment and consolidation
strategies.*
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relevant driver gene and the independence of minimally
deleted/gained chromosomal regions.3,8,11,24-26 To define and
correct for dependencies between different CNVs within the
same chromosomes and avoid duplicates, we investigated
for each GISTIC peak the impact of the CNV size and number
of copies (ie, >three copies, here defined as amplification),
the relationship with other GISTIC peaks, the impact on
GEP, and clinical outcomes (Fig 1C; Data Supplement, Tables
S4-S6, Figs S2 and S3, and Data S1). Large (>5 Mb) and focal
(<5 Mb) CNV events involving multiple GISTIC peaks on 1q,
HRD chromosomes, 8p, 16q, and 13q did not show anymajor
differences compared with the focal, and therefore, different
focal GISTIC peaks within each of those chromosomes were
aggregated. Among the chromosomal amp, only 1q showed
evidence of cumulative CNV effect on GEP.11,22,27 Overall, 32
tumor suppressor genes (TSG) had biallelic inactivation in
509 (32.8%) patients. Those most recurrently involved by

biallelic events were TRAF3 (7.9%), CYLD (4.7%), TP53
(3.7%),RB1 (4.1%),MAX (3.8%), TENT5C (3.3%), and CDKN2C
(2.3%). Defining TSG involved by monoallelic and biallelic
loss is relevant not only from a cell biology but also from the
prognostic standpoint.3,28,29 In fact, among these events,
biallelic loss of RB1, TP53, and DNMT3A were associated with
a significantly shorter event-free survival (EFS) and overall
survival (OS) when compared with monoallelic events (Data
Supplement, Table S6 and Figs S2 and S3).

Chromothripsis is a complex structural variant strongly
associated with poor outcome in NDMM.10 To capture this
important feature, we used CNV signatures, described to
accurately predict the presence of chromothripsis from both
whole exome sequencing (WES) and targeted sequencing
data.7,30 CNV signatures previously associated with chro-
mothripsis were detected in 26.4% of cases and associated
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FIG 1. Genomic driver landscape in newly diagnosed multiple myeloma. (A) Driver genes significantly involved by single-nucleotide
variants and indels using four different driver discovery tools (Fishhook, Oncodriver, MutSigCV, and dNdScv). X-axis label colors represent
the COSMIC census annotation for each driver gene: red5 oncogenes; blue5 TSG; black5 unknown. (B) Significant broad and focal copy-
number changes detected by GISTIC: red 5 gain, blue 5 loss. (C-E) Kaplan-Meier curves for OS according to (C) RB1 allelic status, (D)
presence of chromothripsis-CNV.Sig, and (E) APOBEC activity. CNV.Sig, CNV signature; GISTIC, Genomic Identification of Significant
Targets in Cancer; OS, overall survival; TSG, tumor-suppressor genes; WT, wild type.
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with both shorter EFS and OS (Fig 1D and Data Supplement
Fig S2).

To complete our NDMM genomic profiling, we estimated
APOBEC mutational signature contribution across patients
with WES data (n 5 1,526; 79%).9,31,32 Overall, 598 (39%)
patients had clear evidence of APOBEC activity (SBS2 and
SBS13), with the top 10th percentile (ie, >11%) defined here
as hyper-APOBEC (n5 154; 10%). Patientswith highAPOBEC
had a significantly worse outcome compared with those
without (Fig 1E and Data Supplement Fig S2).3,22

MM Genomic Classification

Although multiple genomic events and patterns of driver
co-occurrence have been reported,3,8,11,24-26 MM molecular
classification has not significantly changed over the
past 15 years and still relies on FISH and GEP data (ie, the
FISH-translocations and cyclin D [TC] and University of
Arkansas forMedical Sciences [UAMS] classifications).12,13,33-35

This has been mostly driven by the difficulties in integrating
different MM genomic drivers into clustering methods that
correct for the multiple patterns of co-occurrences known to
be common in MM. To address this historical issue, we in-
terrogated 1,434 (74%) patients with available data on all the
genomic drivers described and integrated above, imple-
menting three different approaches: (1) pairwise analysis
between each single genomic event; (2) higher-level inter-
actions (ie, hierarchicalDirichlet process) combining genomic
events with strong patterns of co-occurrence in the pairwise
approach; and (3) reportingTSG aswild type,monoallelic, and
biallelic loss. Overall, independently of established immu-
noglobulin translocations and HRD, two additional genomic
patterns were observed (Fig 2; Data Supplement, Methods,
Figs S4 and S5, and Tables S7 and S8). The first was char-
acterized by the presence of RAS pathway mutations (NRAS,
KRAS, and BRAF) and low prevalence/absence of recurrent
aneuploidies and biallelic events; the second was mutually
exclusive of thefirst and had a significantly higher prevalence
of genomic complexity co-occurring with multiple large
deletions, biallelic events, chromothripsis-CNV signatures
(CNV.Sig), high APOBEC, and 1q gain/amp. In line with its
complex genomic profile, the second group had a shortened
OS compared with the first (P 5 .002; Data Supplement, Fig
S6A). Integrating these findings into the FISH-TC classifi-
cation, we were able to divide NDMM into 12 main MM ge-
nomic clusters (Fig 2; Data Supplement, Figs S6 and S7, Data
S1, and Methods).12,35 HRD cases without Ig translocations
(previously assigned to the D1 and D2 TC groups) were
subdivided in three genomic groups. The first, named
HRD_RAS (9%) was characterized by HRD, RASmutations,
and a simple genome lacking multiple aneuploidies. By con-
trast, the second cluster (HRD_Complex; 32%) was enriched
for aneuploidy and chromothripsis-CNV.Sig. The third group
(HRD_Gains; 4.6%) contained simple genomes, with an
absence of RAS mutations and the presence of large gains on
chromosomes 2, 4q, 6p, 8q, and 17q. The previous TC1 group,
harboring t(11;14), was divided in two: CCND1_Complex

(9.4%) and CCND1_Simple (8.9%). In the first, CCND1
translocation co-occurred with several deletions, 1q gain/
amp, and chromothripsis-CNV.Sig, reflecting a complex
genomic profile. By contrast, CCND1_Simple had either
mutation in the RAS pathway genes, IRF4, or a concurrent
HRD profile, without features associated with genomic
complexity. Interestingly, patients in CCND1_Simple had
better survival compared with those in CCND1_complex
(P 5 .028; Data Supplement, Fig S6B), providing increased
resolution of t(11;14) biology, currently considered uniformly
low- or intermediate-risk. The previous TC4 group har-
boring t(4;14) was divided into three: in NSD2_1q_13q
(5.9%), t(4;14) co-occurring with del13q, 1q gain/amp, and
nonhotspot mutations in DIS3 (ie, D479, D488, and R780),36

NSD2_13q (4.3%) had t(4;14) with del13q, but not 1q
gain/amp, while in NSD2_Simple (1.2%), t(4;14) was not
associated with either 1q gain/amp or del13q, had large
chromosomal gains, but a low-complexity genome. As the
co-occurrence of del13q and 1q gain/amp was a high prev-
alence in the data set and was independent from the simple
and complex genomic patterns, an additional genomic
cluster was created including patients carrying these two
genomic drivers without NSD2 translocations (1q_13q;
3.6%). Interestingly, while genomically distinct, the out-
comes of these four clusters did not differ (Data Supplement,
Fig S6C). The previous TC5 group harboring MAF/MAFB
translocations showed a complex genomic profile associated
with high APOBEC. These patients were combined with
high APOBEC patients without MAF/MAFB translocations,
considering the similarities in their overall genomic
profile and clinical outcomes (MAF_APOBEC; 8.7%; Data
Supplement, Fig S6D). Finally, the remaining cases pre-
viously classified as either D1 and D2 without HRD and Ig
translocations were divided into two further clusters: one
with multiple aneuploidies and chromothripsis-CNV.Sig
(Multiple_Losses; 8.3%) and one with a low complexity
genome (Simple; 3.6%). Changes were also correlated with
the UAMS GEP-based classification (Data Supplement, Data
S1),13 with the high-risk proliferation (PR) group distributed
across two complex groups: HRD_Complex (54%) and
Multiple_Losses (14%;Data Supplement, Fig S7). Overall, this
new genomic classification allowed us to better decipher the
clinical and biological heterogeneity seen in comparison with
both the TC and UAMS groups.

IRMMa

After a median follow-up of 43 months, 1,041 (53.8%) pa-
tients relapsed, 285 (14.7%) of which occurred during in-
duction (phase I). Overall, 646 (33%) patients died, 483
(24%) of which due to MM. Integrating clinical, demo-
graphic, genomic, and treatment data, we developed IRMMa
to predict individualized risk for OS and EFS (c-index 0.726
and 0.687, respectively; Figs 3A and 3B; Data Supplement,
Methods and Data S2).37 IRMMa’s accuracy was significantly
higher than all existing prognostic models: ISS (EFS, 0.563;
OS, 0.61), revised (R)-ISS (EFS, 0.539; OS, 0.572), andR2-ISS
(EFS, 0.563; OS, 0.625; Figs 3C and 3D; Data Supplement, Fig
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S8). Among all 132 genomic features tested, we found 20 to
improve model accuracy significantly, including 1q21 gain/
amp, TP53 loss, t(4;14; NSD2;IGH), chromothripsis-CNV.Sig,
hyper-APOBEC, and deletions on 1p (Fig 4A; Data Supple-
ment, Fig S9 and Table S9). Genomics emerged as important
in predicting patients who progressed during the induction
(ie, refractory NDMM) and significantly boosted accuracy for
OS. Among the different clinical features tested, age and ISS
were themost important for themodel accuracy. By contrast,
the impact of sex, Eastern Cooperative Oncology Group,
race, and lactate dehydrogenase (LDH) was limited. The
first-line treatment choice emerged as a key determinant
of risk, suggesting that effective therapies may modify the
risk associated with clinical and genomic variables andmay
thus have a different impact in the context of individual
patients (Data Supplement, Fig S9). Importantly, because
IRMMa was built as a multistate model, we could integrate
and quantify the impact of time-dependent features such
as HDM-ASCT and maintenance/continuous treatment.
This is a key methodologic improvement compared with
previous models,4,5 allowing to correct and quantify the
clinical impact of these two postinduction treatments. In

line with the most recent literature,38-42 HDM-ASCT and
maintenance/continuous treatment had a major impact on
EFS in phase II and a smaller one on OS in phase II (Fig 4A;
Data Supplement, Figs S9, S10A and S10B). Overall, these
data demonstrate the importance of including genomic and
treatment features in predicting NDMM patients’ OS and
EFS, respectively. As a representative example, a patient
with a low-risk genomic profile may experience short EFS
because of a lack of exposure to effective therapy for their
particular disease subset. OS for the same patient may,
however, not be affected because of the impact of varying
and potentially more effective subsequent therapies. By
contrast, a patient with a high-risk genomic profile was
generally resistant to most therapies, reflecting both short
EFS and OS.

Although the inclusion of each feature improved the
model, IRMMa has been developed as a flexible tool able
to predict outcomes with incomplete data. Specifically,
because genomic profiling is only rarely performed in
the current clinical practice for NDMM, IRMMa per-
formances were tested without genomic data. Despite
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this, IRMMa still outperformed ISS, R-ISS, and R2-ISS
with OS and EFS (Fig 3C; Data Supplement, Figs S10C
and S10D).

Finally, the IRMMa model performance was validated on
the 256 patients enrolled in the GMMG-HD6 trial with
available genomic data. Overall, IRMMa showed a higher
accuracy for EFS and OS compared with ISS, R-ISS, and
R2-ISS in predicting clinical outcomes (Data Supplement,
Data S2). Furthermore, to validate the model accuracy,
we leveraged IRMMa as a knowledge bank43 to predict
outcomes in the GMMG-HD6 cohort, observing high
concordance between predicted risks and observed out-
comes (OS and EFS c-index 0.65 and 0.58, respectively;
Figs 4B and 4C).

Treatment Variance in NDMM

As a key innovation compared with other prognostic models
for NDMM,4,6,41 IRMMa also allows prediction of the risk for
each state according to which therapy is administered, after
correction for key genomic and clinical features. Specifically,
we identified eight induction strategies in our series, on the
basis of immunomodularity agents (IMIDs), proteosome
inhibitors (PIs), and chemotherapy (eg, cyclophosphamide,
low-dose melphalan, platinum-based regimens), and four
possible postinduction strategies: observation, HDM-ASCT,
HDM-ASCT 1 maintenance/continuous treatment, and
maintenance/continuous treatment without HDM-ASCT,
for a total of 32 possible treatment courses. The risk of
not having progressed and/or being dead at 5 years
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(progression-free survival [PFS]) was predicted for each
patient in each possible treatment course. The PFS difference
between courses within the same patient was defined as
treatment variance. To evaluate meaningful patterns in the
context of the current therapeutic landscape, we explored
the impact of HDM-ASCT and maintenance/continuous
treatment after induction with bortezomib, lenalido-
mide, and dexamethasone (VRd; Fig 5A; Data Supplement,
Table S10).42 Integrating predicted outcomes and treat-
ment variance for all four possible treatment combina-
tions (ie, VRd 6 HDM-ASCT 6 maintenance/continuous
treatment), we identified six main clusters. In cluster 1
(n 5 554), the intensive combination of HDM-ASCT

plus maintenance/continuous treatment was effective
in converting unfavorable outcomes into favorable ones
(Fig 5B). In cluster 2 (n 5 476), patients had a high
treatment variance with significant benefit from receiving
HDM-ASCT and a relatively small advantage in receiving
maintenance/continuous treatment (Fig 5C). In cluster 3
(n 5 717), patients were usually age younger than 65 years
with low ISS and low genomic complexity. In line with
this presentation, any consolidation strategy provided
an advantage, with no significant difference between
HDM-ASCT and other maintenance/continuous treatments
(Fig 5D). The other three groups included a smaller number
of patients, with cluster 4 (n 5 13) associated with favorable
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outcomes independent of the postinduction strategy. Cluster
5 (n5 155) was enriched for patients with high-risk genomic
and clinical features, and poor outcomes, partially improved
by HDM-ASCT. Clusters 6 (n 5 18) included a small number
of patients with aggressive clinical and genomic features and
limited treatment variance. Patients enrolled in the GMMG-
HD6 were mostly assigned to clusters 1 and 3, suggesting
that a fraction of patients might have had favorable outcome
even without HDM-ASCT (Data Supplement, Fig S11).

There were significant differences in treatment variance
among the 12 genomic groups, with each having predictable
sensitivity to different therapies (Fig 2; Data Supplement,
Figs S12 and S13 and Table S11). Specifically, groups with less
complex genomes (HRD_RAS, HRD_Gains, CCND1_Simple,
and Simple) tended to be grouped in cluster 3, suggesting

high sensitivity to VRd with and without HDM-ASCT.
CCND1_Complex, HRD_Complex, and Complex weremostly
divided between cluster 1 and cluster 3. NSD2_HRD,
MAF_APOBEC, and 1q_13q were divided across cluster 1 and
cluster 2. Finally, NSD2_1q_del13q, and NSD2_13q were
mostly in cluster 2 and cluster 5, suggesting potential
sensitivity to intensification with HDM-ASCT.

IRMMa is available for estimating individualized risk and
treatment variance of NDMM as an online tool for the re-
search community (IRMMa Risk Calculator44).

DISCUSSION

In this study, we leveraged a large and diverse data set of
patients with NDMM to identify key genomic drivers and
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propose a more comprehensive genomic classification able to
better capture heterogeneity among defined molecular sub-
groups creating opportunities to better decipher clinical het-
erogeneity and treatment sensitivity.12,13,34,35 Compared with
recent efforts,3,8,11,24-26 our study has three key advantages: (1)
the larger sample size; (2) the analytical workflow that takes
into account more genomic drivers, multiple confounders, and
patterns of co-occurrence, which were partially overlooked in
previous works; and (3) unlike previous efforts that primarily
focus on individual driver events, our new classification system
emphasizes the examination of genomic patterns of co-
occurrence (eg, complex v simple).

Although recently proposed prognostic models, such as
R-ISS and R2-ISS, can identify a subgroup of high-risk
patients,4,41 they are not corrected for different treatment
approaches and are not designed to predict patient-level
individual risk. Integrating key features defined in our ge-
nomic classification together with clinical, demographic,
and treatment data, we leveraged deep neural networks to
develop, to our knowledge, the first prediction model for
individualized risk in NDMM patient outcomes (ie, IRMMa).
Compared with previous prognostic models, IRMMa has
several key advantages. First, IRMMa integrates genomic
features selected according to their prognostic relevance
when corrected for clinical, demographic, and treatment
features. The inclusion of 20 highly relevant genomic
features significantly improves the IRMMa ability to iden-
tify primary refractory and early progressive patients and
boosts accuracy for OS, confirming the need for expanded

genomic characterization in NDMM prognostication. Sec-
ond, IRMMa allows the estimation of the risk of progression
or death for an individual patient with NDMM, adjusting for
treatment and consolidation strategies. HDM-ASCT and
maintenance/continuous treatment have been shown to
significantly improve EFS,38,40-42 but because of their time-
dependent nature, they have never been considered in the
development of previous prognostic models (R-ISS and R2-
ISS). The IRMMa multistate design allowed the inclusion of
these features, improving the overall accuracy for EFS.
Furthermore, the ability to capture each patient’s specific
treatment variance represents a critical tool that can help to
select the most effective therapy and to avoid overtreatment
where it adds little to no benefit. Of relevance, IRMMa can be
relevant for identifying patients who do, or do not, benefit
from HDM-ASCT. Several randomized phase III trials have
explored the advantage of HDM-ASCT as a consolidation
strategy after IMIDs and/or PIs.38,40,42,45,46 In most studies,
HDM-ASCT has been associated with an advantage in PFS
overall, but not in OS. These observations raise clinically
important questions onhow to counsel patientswithNDMM,
particularly in the future era of novel effective immuno-
therapies. Finally, the implementation of IRMMa necessi-
tates the inclusion of ISS, age, and treatment as mandatory
features. Thus, even with a reduced concordance rate,
IRMMa has the capability to generate estimates even in the
absence of genomic data, surpassing the predictive accuracy
of R2-ISS, R-ISS, and ISS, presenting an opportunity to
improve predictions without the availability of compre-
hensive genomics.

IRMMa

Treatment 
history

Genomic 
data

Clinical 
data

Patient with newly diagnosed 

multiple myeloma
Treatment selection

A B C D

Individualized 

treatment

Knowledge bank data set

Treatment options

E

Cl
in

ic
al

 O
ut

co
m

es

Treatment

variance

Treatment

A B C D E

Pr
ed

ic
te

d 
Ri

sk
s

Time (years)

Individualized

clinical outcomes

10 2 3 4 5

0.2

0.4

0.6

0.8

1.0

FIG 6. Figure summarizing IRMMa potential integration into clinical applications. The figure was generated using BioRender. IRMMa,
individualized prediction model for newly diagnosed multiple myeloma.

Journal of Clinical Oncology ascopubs.org/journal/jco | Volume 42, Issue 11 | 1237

Multiple Myeloma Individualized Prognosis

http://ascopubs.org/journal/jco


Overall, IRMMa has some limitations: (1) the sample size
used in the training set was smaller than the one used to
develop R-ISS and R2-ISS; (2) IRMMa was built using
genomic data from a single bone marrow site and does
not consider the potential impact of genomic drivers at
different anatomic sites (ie, spatial heterogeneity).47,48

Future integration of bone marrow and liquid biopsy
approaches might further improve IRMMa’s perfor-
mances and resolution. (3) Finally, the current IRMMa
model cannot provide estimates for new agents (eg, anti-
CD38 antibodies) and distinct time-dependent features
(eg, minimal residual disease), as these data are not

available for sufficiently large cohorts yet. However, in
contrast to other models, such as the R-ISS, IRMMA has
been built as a flexible and knowledge-driven model that
can be grown over time by integrating additional genomic
drivers, novel treatments, and their effect on treatment
variance (Fig 6).

In conclusion, IRMMa represents an innovative opportunity
to better investigate the heterogeneity of patients with
NDMM, which is currently oversimplified, to improve our
understanding of outcomes in both previous and future
clinical trials.
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