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Abstract

Modern approaches to biomedical research and diagnostics targeted towards precision medicine are generating ‘big data’
across a range of high-throughput experimental and analytical platforms. Integrative analysis of this rich clinical, pathological,
molecular and imaging data represents one of the greatest bottlenecks in biomarker discovery research in cancer and other
diseases. Following on from the publication of our successful framework for multimodal data amalgamation and integrative
analysis, Pathology Integromics in Cancer (PICan), this article will explore the essential elements of assembling an integromics
framework from a more detailed perspective. PICan, built around a relational database storing curated multimodal data, is the
research tool sitting at the heart of our interdisciplinary efforts to streamline biomarker discovery and validation. While recog-
nizing that every institution has a unique set of priorities and challenges, we will use our experiences with PICan as a case
study and starting point, rationalizing the design choices we made within the context of our local infrastructure and specific
needs, but also highlighting alternative approaches that may better suit other programmes of research and discovery. Along
the way, we stress that integromics is not just a set of tools, but rather a cohesive paradigm for how modern bioinformatics
can be enhanced. Successful implementation of an integromics framework is a collaborative team effort that is built with an
eye to the future and greatly accelerates the processes of biomarker discovery, validation and translation into clinical practice.
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Introduction

Modern basic scientific research approaches and clinical studies
of disease are now demanding the requirement to store, man-
age and interrogate enormous amounts of information. Hidden
among these large, complex, multivariate data are the patterns
and clues needed to understand disease processes and drive
new methods for diagnosis, prognosis, therapeutics and preci-
sion or personalized medicine. Commercial and in-house solu-
tions [1–14] have been developed in an attempt to make the
most of this data deluge. Describing this age of big data-driven
biomarker research, Weinstein defined integromics as the
‘melding of . . . diverse types of data from different experimental
platforms’ [15, 16], while the American Society for Clinical
Oncology uses the term ‘panomics’ to describe similar needs
[17].

Given the centrality of pathology to solid tumour analysis,
we previously published on our own framework for multimodal
data amalgamation and integrative analysis, called Pathology
Integromics in Cancer (PICan) [18]. Since then, we have been ap-
proached by researchers who want to establish similar systems
at their own institutions. This led us to reflect on the process of
building PICan and the appropriateness of packaging and dis-
tributing PICan as source code. However, the diversity of clin-
ical, experimental and research setups means that an optimal
integromics strategy for each institution might be vastly differ-
ent from the next. Hence, we present here a more detailed dis-
cussion on the technical considerations underpinning the
formation of an integromics environment to accelerate tissue
biomarker research, with a focus on cancer. Key framework de-
cisions were shaped by our local environment, but this article
will also discuss some alternative solutions that may better suit
other research groups, organizations and multi-institutional
collaborations. This perspective is structured around several
themes, with reference back to PICan as a case study: integro-
mics overview, database structure, data exchange, multimodal
analysis, interdisciplinary collaboration and data control. We
conclude with a discussion on the central role integromics will
play in the modern era of large-scale multicentre trials and glo-
bal research consortia [19–21]. We hope that the concepts raised
will provide valuable insights from a more detailed technical
perspective for institutions and research groups wishing to de-
velop their own integromics framework.

Precision medicine and integromics for biomarker
discovery in cancer

The modern precision medicine approach aims to stratify pa-
tients based on specific biomarkers that will inform the most ef-
fective treatment for each patient, cutting costs and reducing
harm from ineffective treatments [22]. Novel therapeutics target
specific cancer-causing mechanisms, inducing fewer side ef-
fects but requiring companion biomarker diagnostics, with
quick turnaround times, to identify the patients who will bene-
fit most. As multiple patient and tumour characteristics can
contribute to a treatment’s effectiveness, this drive towards pre-
cision medicine is inevitably spurring an increasing demand for
unbiased, automated data collection and analysis across a
multitude of high-throughput analytical platforms. The current
pace of data generation is far outstripping the ability to analyse
these data. Efforts by journals and grant-funding agencies to in-
crease data transparency and encourage data sharing have re-
sulted in large repositories of publicly available data, such as
ArrayExpress [23] and the European Nucleotide Archive [24].

The ability to access these databases has increased the interest
in integromics or panomics, the integrative analysis of multiple
big data types. This is especially true in molecular analyses [7–9,
11, 19, 25–28], where tools such as Partek Genomics Suite
(Partek Inc, St Louis, MO, USA), GeneSpring (Agilent
Technologies, Santa Clara, CA, USA), tools that harness The
Cancer Genome Atlas (TCGA) [25, 26] data portal (e.g. cBioPortal
for Cancer Genomics [developed and maintained by the Center
for Molecular Oncology and the Computational Biology Center
at Memorial Sloan-Kettering Cancer Center] [29, 30], COSMIC
[31] and the Broad Institute TCGA GDAC Firehose [32]) and
others [33, 34] can facilitate statistical analysis and biological
contextualization of omics data. However, in the push towards
development of precision medicine, there remains an urgent
need for an integromics platform that takes into account non-
molecular data. Currently, most of these data types are still held
in separate or loosely bound silos, with the onus resting with re-
search groups around the world to seek out these disparate silos
and attempt to harmonize the data. Even then, different data
types derived from different patient cohorts make it challenging
to integrate the data at the patient level. This limits analysis be-
tween data types to comparisons of cohort-level summaries,
potentially obscuring correlations within the data that may
have been apparent if studied at the patient level.

Integration of tissue phenotype through digital
pathology and image analytics

Most molecular analyses on their own seldom consider the
histological distribution of biomarkers. This leads to blind spots
in our ability to interpret and understand molecular analyses,
such as the potential implications of tumour heterogeneity and
whether it might correlate with any specific genetic or epigen-
etic changes. Computer-aided image analysis applied to cancer
diagnostics and investigative biomarker research has been in
use for several decades [35]. However, the combination of digital
pathology with whole slide imaging has truly catapulted the
field into the era of big data. Entire stained tissue and tissue
microarray (TMA) sections, each potentially comprising hun-
dreds of samples across hundreds of patients, can now be digi-
tized, archived and disseminated without the need to store and
distribute the original glass slides [36–38]. Digital image acquisi-
tion is now commonplace with multiple established companies,
such as Aperio (Leica Biosystems, Nussloch, Germany),
Hamamatsu Photonics (Hamamatsu City, Japan), Carl Zeiss
(Oberkochen, Germany) and 3D Histech (Budapest, Hungary),
offering scanning hardware capable of producing high-
resolution digital slide images. Aside from greater ease of col-
laboration, whole slide imaging unlocks the analytical potential
of digital image analysis. Algorithms can be trained to identify
tumour regions, delineate margins, classify cellular staining
and quantify the results for a wide range of histological pheno-
types and cellular markers [39]. Many software packages,
including commercial (e.g. PathXL TissueMark, Belfast, UK;
Definiens TissueStudio, Munich, Germany; Aperio Genie and
Visiopharm Visiomorph, Hoersholm, Denmark), in-house
(QuPath, Queen’s University Belfast) and community-driven
(e.g. ImageJ [40], Fiji [41], Icy [42] and Ilastik [43]) offerings, now
offer access to such algorithms. Computerized image interpret-
ation reduces the subjectivity of manual interpretation [44] and,
once properly trained, can batch process a large number of slide
images at once. Applied to TMAs, high-throughput tissue inter-
pretation can greatly accelerate tissue biomarker discovery
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pipelines, especially when coupled with the wealth of molecular
data currently becoming increasingly accessible.

In light of this, true integromics today ought to embrace
both molecular and digital pathology to uncover and validate a
more diverse and robust set of biomarkers that will be key to de-
livering on the promises of precision medicine [45]. Tissue path-
ology and histology are essential to the application of more
recent molecular methods in solid tumours, required for deter-
mining the presence and proportion of tumour cells to ensure
sample sufficiency for downstream analysis of nucleic acids
and for directing microdissection of tissue samples for molecu-
lar analysis [46]. Moreover, tissue context and cellular pheno-
type are central to understanding tumour heterogeneity and
the underlying genomic map of solid tumours. The
Immunoscore biomarker [47], for example, applies image ana-
lysis to contextualize the interpretation of immunohistochemi-
cal staining. The understanding of both how genotype drives
phenotype and how phenotypic information influences inter-
pretation of genotype are required for a holistic view of cancer
and are therefore essential elements of a modern integromics
approach.

Building large-scale digital resources: PICan
overview

Reflecting this broader view of integromics, we created PICan to
be a comprehensive framework for the collection, integration
and analysis of clinical, pathological, molecular and digital
image analysis data sets for the purposes of cancer biomarker
discovery and validation [18]. PICan sits at the heart of our bio-
marker discovery program, acting as both a central hub and
catalyst (Figure 1). PICan streamlines the process of bringing to-
gether diverse streams of multimodal data from multiple cancer
types to generate clinically and biologically relevant analyses
and reports via a bespoke access-controlled web-based inter-
face, written in ASP.NET/C# with a connection to the R statis-
tical environment [48] through statconn [49]. At its core is a
restricted-access MySQL database to house this collated patient
data. Currently, there are 3660 patients representing eight can-
cer types recorded in the system together with fully curated
data on pathological diagnosis and clinical outcome. From
these, nearly 12 000 TMA cores have been stained immunohis-
tochemically and scored for a broad range of well-established
and novel cellular biomarkers that are of interest to our basic
science, translational and clinical research collaborators. With
the ongoing rapid pace of research activity at our institution,
these numbers are set to double over the course of the next
year. Data de-identification using study-specific unique identi-
fiers protects patient privacy while authentication and author-
ization of users enables a balance to be struck between enabling
access to users and safeguarding the rights of data collectors
(clinicians, wet lab scientists and other collaborators) to publi-
cation priority and control of their own data. Only administra-
tors have direct access to the PICan database, while end user
access is provided exclusively through the access-controlled
analysis and report generation web interface. Data quality is a
key priority to ensure the integrity of downstream analyses as
any analysis is only as good as the weakest data supporting it,
so data are curated with biological and clinical input before up-
load. Meanwhile, bioinformaticians tailor their pipelines ac-
cording to the needs of the research or analysis. Consequently,
in addition to the central database, a complete integromics
pipeline must necessarily encompass data collection, data

curation and biologically driven analysis and interpretation of
this data, activities which we consider integral parts of any inte-
gromics framework.

Database design: data pre-processing, curation
and structure

Traditional single-mode data analysis pipelines take raw data
(e.g. sequencing reads, microarray spot intensities, whole slide
image files) and process it through a series of steps into a final
form that informs a particular biological narrative (e.g. list of
mutations and frequencies, gene expression values, H-scores
for immunohistochemistry (IHC), scoring [50, 51]). However, raw
data, such as raw fluorescent spot intensities from an expres-
sion microarray experiment, might not be suitable for multi-
modal and dynamic analysis without corrections for
background and batch effects [52, 53], while data aggregation
might leave fully processed data, such as a list of differentially
expressed genes, too refined to be of further use in patient-level
research analysis. A compromise is to capture data in a state
that is suitable and informative for subsequent analysis, while
tracking metadata associated with acquisition and pre-
processing. Metadata, or ‘data about data’, captures information
about the methods and conditions under which the data itself
were obtained. Such information can be used, for example, to
identify cases where an observed effect was the result of differ-
ences in the laboratory or researcher conducting the experi-
ments rather than the biological condition. Going back to
expression microarray data as an example, this could be
achieved by recording background-corrected and normalized
probe signal intensities with metadata detailing the nature and
parameters for data pre-processing steps such as normaliza-

tion, assay conditions, instrumentation used, including its set-
tings, and pre-analytical steps, e.g. how the physical samples
were obtained, handled and processed and by whom. For com-
pleteness and traceability, raw data can be stored alongside this
analysis-ready data. Additionally, multiple ‘snapshots’ from
single-mode analysis pipelines can be stored as each could po-
tentially serve as a starting point for multimodal analysis.
However, care must be taken to ensure internal consistency, so
that results are repeatable and reproducible, whether working
up raw data or the stored analysis-ready data. Consequently,
for PICan, we opted for quality and consistency by recording
only the analysis-ready data most suitable for further integro-
mic analysis. A number of quality assurance and quality control
measures can be taken to ensure data integrity, with the appro-
priate level of adoption into standard operating procedures
being dependent on the overall level of accreditation of the la-
boratory in question. Metadata is stored alongside the analysis-
ready data, but raw data and most downstream single-mode
analysis results are presently excluded from PICan. Future plans
to increase data completeness and traceability include adding a
central independent repository for raw data files. These repre-
sent files not already in existence elsewhere (e.g. public reposi-
tories). These raw data files will be read-only and bear unique
identifiers that link them to their analysis-ready counterparts
on the main database. A file path stored in the main database
will allow the raw data files to be easily retrieved when needed.
As these files will not be used for on-demand statistical ana-
lysis, they can be stored in their native formats.
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Relational database systems

Integromics software infrastructure can be built around one of
many database management systems available, each with its
own strengths and weaknesses. As we envisioned PICan to in-
corporate a semi-automated analysis engine [18], we prioritized
data quality, which maximizes the validity and reproducibility
of our results, and preservation of data structure, which stream-
lines the automated retrieval and processing of big data sets, ra-
ther than attempting to blindly maximize data throughput.
Reflecting these design priorities, PICan was built around a rela-
tional database (MySQL), consisting of interrelated data tables
that reflect the process of constructing and harnessing TMAs,
which are central to much of the biomarker discovery work con-
ducted at our institution, the Northern Ireland Molecular
Pathology Laboratory and through the Northern Ireland Biobank
(NIB) (Figure 2). Every row of every table has a system-generated
primary key and these are used as foreign keys to form relation-
ships between tables. The database centres on the Patient and
Block tables (table names will be italicized), reflecting our core vi-
sion for PICan to drive holistic, multimodal integromic analysis
at a patient level. One-to-many relationships link the Patient
table to tables containing the clinicopathological and treatment
data, capturing cancer-type-specific fields from templates de-
veloped in collaboration with our clinical expert partners. These
templates also define permissible data inputs for each field (e.g.
age is a number, sex is ‘M’ or ‘F’), which are then encoded into
the database schema. A patient may have had multiple tissue
specimens collected as tissue blocks, each represented by a

separate linked entry in the Block table. Linked via the Block table
are tables representing molecular assays (SangerSequence,
DNAMicroarrayChip, ExpressionLevel), whole face tissue sections
(TissueSlide), TMA construction (Cylinder, RecipientBlock, TMASlide,
TMACore), IHC scoring (TissueScore, BiomarkerScore) and digital
pathology (TissueVirtualSlide, TMAVirtualSlide, VirtualCore,
DIAScore), all of which reflect primary activities within our insti-
tution’s biomarker discovery program. Metadata is stored in the
table corresponding to the relevant physical entity, and so
imaging parameters for a whole face tissue slide, for example,
would go in the TissueVirtualSlide table. While this database
structure is well suited to our needs, laboratories collecting
non-tissue specimens such as blood, sputum or urine may find
it inappropriate for their needs. A Blood table might sit at the
heart of a haematological laboratory’s database, for example,
while other institutions may need a cluster of tables to repre-
sent different specimen types, each linked to tables for various
biochemical assays.

PICan uses a modular internal structure to support various
data types. Each table represents a physical entity and conse-
quently a data type. This allows the addition of new tables to
represent data types from emerging technologies as they ma-
ture. As maximizing utility of new tables will require updates to
the end-user web interface and setting the appropriate foreign
keys will require knowledge of the internal structure of the
PICan database, only the system administrator can add new
tables.

Another consideration for relational database design is nor-
malization. This procedure simplifies the data structure by

Figure 1: PICan sits at the heart of an integrated multidisciplinary biomarker discovery and validation pipeline. Multiple curated data sources feed into PICan, which

accelerates downstream analysis and report generation.
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removing duplication of data, ensuring that the table is resilient
against inconsistencies arising from incomplete addition, dele-
tion or modification of data. As described in [54], this is
achieved by identifying groups of related or dependent data
fields and splitting them off into a separate table, using foreign
keys to record relationships between tables. For most practical
applications, the third normal form balances a robust architec-
ture without overly cluttering the schema with an untenable
number of tables. Normalization approaches can also be used to
optimize database speed and performance.

A consequence of our decision to use a relational database is
that free-form data needs to be harmonized with the data struc-
ture presented by PICan before data entry. The requisite cur-
ation steps prioritize data integrity and prevent poor-quality
data that might impede proper and meaningful analysis from
entering the database (garbage-in-garbage-out). Clinical and
pathological data collection and storage are guided by tem-
plates, collections of well-defined data fields that have been de-
veloped through our close working relationships with the NIB,
Northern Ireland Cancer Registry, Northern Ireland Health and
Social Care Trusts and clinicians. These collaborators share the
desire to drive data integration and provide expertise, context
and data access to harmonize data templates around common
vocabulary and permissible data values, ensuring maximal clin-
ical relevance of PICan. In addition to the harmonized common

fields like age and sex, PICan also supports cancer-type-specific
fields for maximum flexibility.

Non-relational database structures

While a structured relational database has served PICan well,
there are alternative models that might better suit other re-
search integromics environments. MongoDB, for example, is a
non-relational (or ‘NoSQL’) database architecture that uses a
document model, where each entity (a tissue block, for ex-
ample) is represented by a ‘document’ that might contain hun-
dreds of attributes as key-value pairs. This model works with a
flexible schema, allowing data fields to be added or omitted on
a case-by-case basis, while harmonization of terminology and
data fields occurs at data retrieval. In a research environment,
especially at the beginning of a study when pipelines and meta-
data are likely to change, it is easier to update the data model
than to redesign the fixed schema of a relational database.
However, with less urgency to curate data before upload, data
integrity may be variable, with errors remaining unnoticed and
confounding analyses performed on the data. Fuzzy matching
algorithms [55–57] can mitigate the impact of typographical and
some clerical errors, but these approaches must still be rigor-
ously validated. In some cases, it might be impossible even for a
human expert to deduce the original intention. Data must then

Figure 2: Schematic of the internal table structure of PICan’s relational database, reflecting the core activities and workflows that comprise the biomarker discovery

and validation program at our institution. Most tables represent physical or digital entities within these workflows. Where table names may be unclear, a brief descrip-

tion has been included, along with some example data fields (in parentheses). A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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be discarded from analysis, potentially reducing the statistical
power. Manual curation at the outset might identify such cases
when there is still an opportunity to seek clarification from the
original data collector. Ideally, ambiguous annotations and bor-
derline cases should be resolved in consultation with a suitably
qualified medical professional before they enter the database
rather than leaving them open to interpretation by downstream
informaticians. Likewise, missing or contradictory data points
are preferably identified and, where possible, corrected before
entry into the database. However, a major advantage of an un-
structured database model is the ability to more faithfully cap-
ture the complexities of the patient’s clinical, pathological and
other data parameters, including free-form text fields such as
clinical notes. The ability to capture patient data in its native
form also improves the traceability and scalability of data entry
into a non-structured database solution by eliminating the la-
bour and documentation associated with data curation and
enabling automated bulk data upload. Despite the tools we
have developed to semi-automate data upload, this will remain
a relative drawback of manual curation in the short term, espe-
cially for clinical and pathological data fields. In the longer
term, scalability may be improved with increased adoption of
electronic medical records, wherein many of these data fields
could be completed by the attending physician when encoun-
tering the patient.

Balancing the data curation afforded by the structured rela-
tional database with the high-throughput flexibility of unstruc-
tured models are various hybrid options. For example, PICan
offers flexibility to the structured database model by including
freeform text fields to capture unstructured notes (in our experi-
ence, these are typically for clinical notes) in several of the data
tables. As these fields are not referenced directly by the auto-
mated online analysis component, which requires well-defined
parameters, they are hidden from analysis but can be retrieved
by users wishing to conduct further data refinement or offline
analysis. In practice, however, it is more likely that any fields
not used in analysis by the system will simply be ignored and
neglected. Another hybrid solution we are actively exploring to
increase data throughput is to allow the importation of non-
curated data sets for end-user analysis. In this model, curated
‘public’ data sets would be available to all users (with necessary
approvals and access restrictions in place), while each end user
will be able to upload ‘private’ data sets to be analysed along-
side or integrated with the curated data. The user, then, is re-
sponsible for ensuring the quality of his/her own data.
Extending the hybrid model concept further are heterogeneous
databases, in which only the most important, unchanging and
sensitive data are typically stored in a relational database.
Meanwhile, the bulk of the data, in terms of size, will be stored
in non-relational databases or as raw data, with links stored in
the main database to ensure ease of access and retrieval.

Image analysis data storage and management

Current work is focussing on improving the support of digital
image analysis data, an emerging area of research in which our
group has significant expertise. Imaging data presents some
unique challenges for database storage design. The images
themselves can be large. One of our typical tissue slides
scanned at 40�objective magnification (0.25 lm per pixel) can
have 2–10 billion pixels. Imaging in RGB at 8 bits per channel
gives uncompressed file sizes of up to 30 GB. Additional colour
channels (such as for fluorescence imaging), z-stacks and data
redundancy in the form of image pyramids for improved image

loading performance would all greatly increase file sizes.
Compression, typically JPEG or JPEG2000 for whole slide images,
can significantly reduce file size without drastically impairing
visual assessment, although suitability for image analysis is
more variable [39]. Hence, it is vital to store the original slide
image to allow a pathologist to go back and verify that image
analysis results are consistent with his/her expectations. This is
currently achieved by hosting the slide images on remote ser-
vers maintained by PathXL. A link is stored in the PICan data-
base that allows the web-based interface to retrieve the image
data on user request via an application programming interface
(API) supplied by PathXL. Pan, zoom and overlay functionalities
in the PICan web interface are powered by OpenSeadragon [58].
As the samples are drawn from NIB collections, NIB maintains
control of access and security using the PathXL software.

In addition to the raw image pixels, image analysis data
might include markups, annotations and calculated metrics
(such as integrated optical densities, nuclear areas or immuno-
histochemical H-scores [50, 51]). Metrics can be at a cellular
level or summarized across a region of interest (ROI), a slide or
even a set of slides. Much of these data may be hierarchically
structured, with each slide potentially containing multiple ROIs,
each ROI containing many cells and each cell being associated
with values for numerous metrics. However, the efficiency of
storing image analysis data in a structured database is uncer-
tain when a single image can contain thousands of annotations.
For now, PICan stores only summary scores and metrics (e.g. H-
score [50, 51], Allred Score [59], percentage positive cells), while
users wishing to interrogate the image data on a more granular
level will need to rely on external specialist tools. The challenge
of storing and transferring image analysis data between sys-
tems is an ongoing one with several potential approaches hav-
ing been proposed, including DICOM [60], OME-TIFF [61], various
HDF5-based formats [62, 63] and proprietary vendor formats,
but without a clear front-runner. DICOM and OME-TIFF are pri-
marily image formats with flexible metadata support, optimized
for image viewing rather than storage of image analysis results
with large numbers of image objects. In contrast, HDF5 captures
object hierarchy relationships well, but on its own it is not a na-
tive image format. Meanwhile, proprietary formats are poten-
tially encumbered by patenting and intellectual property
concerns.

Integromics data management is patient-centric

Regardless of the database management system being used, a
critical characteristic of integromics analysis is patient-
centricity. The ultimate objective in bringing together data from
multiple experimental platforms is to build a more holistic pic-
ture of the interplay between genotype and phenotype in the
patients under study. As interest in amalgamating multiple
data types has grown, many platforms originally designed to
host one data type have been expanded to accommodate add-
itional types of data. Many biobank management software sys-
tems allow addition of clinicopathological notes and
experimental assay results on top of sample tracking data.
Meanwhile, digital slide hosting platforms like OMERO [64],
PathXL Xplore, Cytomine [65] and DigitalScope (Aptia Systems,
Houston, TX; used by the College of American Pathologists) [66]
are beginning to support the addition of associated clinicopa-
thological data as metadata. Others, like TCGA [25, 26], origi-
nated as molecular data repositories but have begun adding
whole slide imaging. There is a clear trend towards convergence
of database models encompassing more and more data types,
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but their impact will be limited if these extra data are simply
stored and forgotten. Integromics is an active process not just of
bringing data together, but more importantly, of creative com-
parisons and contrasts to expose underlying interactions under-
pinning the cancer phenotype. Many public repositories and big
databases, such as TCGA, draw from an assortment of patient
cohorts, so associations between different data types measured
on different cohorts are limited to cohort summaries, poten-
tially obscuring trends between data types that are only appar-
ent at the individual patient level.

Interacting with external resources—data
exchange between systems

With the current rapid expansion of big data analytics in bio-
medicine, integromics frameworks must remain flexible
enough to incorporate emerging and future technologies.
Structured architecture and design of the overall integromics
database framework can facilitate this. However, large data sets
like next-generation sequencing (and upcoming third-gener-
ation sequencing [67–70]) can be unwieldy in a MySQL database,
with typical whole exome or RNA sequencing runs comprising
10–100 billion base pairs for a single sample, so future integro-
mics systems may house these types of data in databases that
are structured specifically for this purpose. Instead of a single
database housing multiple data types, a future integromics
database will undoubtedly be structured as a fully distributed
federated database [71–74], with a central database storing iden-
tifiers that interface with a cluster of highly specialized data-
bases each housing a specific type of data in its native format.
Arguably, PICan already uses a version of this model by out-
sourcing digital slide image storage to remote servers. Future
developments may include enabling PICan to tap into publicly
available data sources and allowing users to analyse these pub-
lic data sets in tandem with PICan data, such as accessing Gene
Expression Omnibus data through GEO2R [75].

One of the challenges when working with a federated data-
base model is how to exchange data faithfully and efficiently
between the various components. Each constituent database
will need an interface to interact seamlessly with the central
database and control system. Some of these will be available
off-the-shelf or rely on published APIs, while others such as
those interacting with in-house software may need significant
developer time and effort to implement. Ultimately, there are
no shortcuts to establishing these interfaces, and so institutions
should aim to reduce the number of distinct interfaces by
standardizing data around a small set of formats. For example,
when working with whole slide images, a single institution
could strive to use only a single file format. The various avail-
able formats each have their own strengths and weaknesses,
but the natural option will likely be the native format of the
scanner used at the institution or a vendor-neutral format like
DICOM [60] or OME-TIFF [61]. Fortunately, many tools for work-
ing with whole slide images support multiple file formats, such
as DigitalScope [66] for remote, web-based viewing of various
imaging formats. Meanwhile, projects like Bio-Formats (Open
Microscopy Environment consortium) [61] and OpenSlide [76]
further facilitate the viewing and exploitation of various imag-
ing formats in other programming and analysis languages like
C, Cþþ, Python and Java. Additionally, it is important to stand-
ardize the data transfer protocol whether this is through
Internet standards like hypertext transfer protocol, physical
means like hard disks or some other agreed protocol. Perhaps

establishing an institutional integromics strategy will encour-
age adoption of standardized data formats by creating an ex-
pectation among data generators that data should be portable
and compatible with other data types for analysis.

Data flow within an integromics environment can often be
multidirectional. Even with only a single central data repository,
there will be instances when it is beneficial to export some of
these data to a separate third-party platform, whether for speci-
alized analysis, report generation or some other purpose. As
PICan’s web-based user interface is designed to be user friendly,
it supports only a limited number of types of analyses and re-
port generation options. Analyses not hard-coded into the inter-
face, for example, would need to be performed ‘offline’. In fact,
this is how new analyses are tested before being incorporated
into PICan. Similar to data import and storage, data export from
an integromics system is complicated by the wide range of data
types that demand different formats to accommodate their in-
herently different natures. Efforts have been made in some
fields to standardize and integrate data models, such as those
of the Global Alliance for Genomics and Health for genomic
data [20]. Hence, where widely recognized data exchange for-
mats exist, such as FASTA/FASTQ files for nucleotide or amino
acid sequences [77] or the TMA data exchange standard [78],
they should be prioritized for integromics support. For other
data types like digital image analysis, however, there remains a
need for a well-defined and widely accepted standard for data
exchange. Whether it is possible or feasible to define a single,
unifying integromic data exchange format that would encapsu-
late multiple data types attached to individuals within a cohort
of patient subjects remains an open question.

Standardization of data vocabulary

Any data exchange standard needs to address both how data
are encoded (structure) as well as a common vocabulary for
commonly encountered fields. CSV, JSON, XML and derivatives
of these are popular formats that lend themselves well to struc-
tured data. Certainly, CSV export is our default, as although it
does not fully represent the relational structure underpinning
PICan’s database, it mimics the basic tabular structure and can
be easily viewed by other researchers in common spreadsheet
or statistical packages. Non-tabular data like digital slide images
(which are stored as links in the database) are exported as sep-
arate files. The greater challenge might be agreeing on a com-
mon vocabulary. Data field names need to be mapped from
PICan’s internal vocabulary to that of the target external plat-
form. This is not a trivial task, as even professionals within the
same institution may use different names for the same metric.
Some clinicians may be more precise in how certain metrics are
measured and recorded, such as when some distinguish be-
tween lymphatic and vascular invasion while others group
them together as lymphovascular invasion. Harmonizing be-
tween cancer types can also be challenging, hence the use of
cancer-type-specific tables in PICan for certain clinicopathologi-
cal metrics. Additionally, even where a data exchange specifica-
tion exists, like the one for TMA reporting [78], there may be
allowance for custom fields, posing an extra challenge for align-
ing under a common vocabulary. Attempts have been made to
standardize terminology in some disciplines. The US National
Library of Medicine maintains a collection of controlled vocabu-
laries known as the Unified Medical Language System [79],
which incorporates SNOMED CT, MeSH and OMIM, among
many other ontologies. Another compendium is caCORE,
including the Enterprise Vocabulary Services and Cancer Data
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Standards Repository of common data elements [80, 81].
Additionally, some groups have devised cancer-type-specific
lists, such as for breast [82], mesothelioma [83] and prostate
[84]. In the absence of clear community-supported data stand-
ards, institutions are advised to agree on and use a minimal set
of data export formats.

Unique challenges of multimodal integrative
analysis

Collecting and storing diverse data types is only half the battle
in integromics: unlocking the value of these data will come
from analysis and interpretation. Through a connection with
the R statistical environment via statconn [49], PICan is capable
of on-demand statistical analysis, graphical output and report
generation. Besides R and statconn, other similar frameworks
and interfaces include Shiny [85], R.NET [86], Python (e.g. mat-
plotlib [87]) and D3.js [88]. While PICan is strictly a research tool,
an integromic approach will undoubtedly be essential to future
clinical decision support systems, placing integromics at the
front line of patient care delivery.

Multimodal analysis is particularly important when con-
sidering the future of digital pathology and tissue imaging.
Conventional light and fluorescence imaging provides the basis
for most studies in this field. However, the future may provide
new imaging technologies using light outside of the normal vis-
ible spectrum that may be more informative towards illuminat-
ing the underlying cancer biology and delivering sensitive and
specific biomarkers of clinical outcome. Numerous studies are
emerging that exploit technologies such as ultraviolet [89], in-
frared [90] and Raman spectroscopy [91, 92], together with a
broad range of associated multispectral technologies, to gain a
better insight into tissue and cell characterization and to visual-
ize compounds and chemistry not accessible to conventional
microscopy. Integrating these imaging modalities into a single
framework to compare, compound and deduce clinical utility,
not in isolation, but together with conventional imaging meth-
ods is essential. Similarly, there is capacity to integrate other
forms of medical imaging relevant to cancer discovery, includ-
ing positron emission tomography, magnetic resonance imag-
ing, computed tomography and X-ray. This can be used to
understand the relationship between in vivo clinical imaging
and ex vivo tissue imaging, thereby translating markers that are
currently only visible on microscopy to early in vivo detection
with clinical imaging modalities. In both settings, the real value
is likely to come from the overlay and integration of imaging
modalities, extending the capacity of tissue imaging on its own
and providing new visualization tools for both pathologists and
radiologists that are more informative and consequently im-
prove clinical decision making. The integromics initiative dis-
cussed in this article provides such a model for imaging as well
as molecular and clinical data, blurring the edges of medical
specialties and providing a unified framework for discovery.

The basic tools of integromic data analysis are generally
similar to other disciplines of bioinformatics. Mean compari-
sons, clustering, survival analyses, machine learning and linear
models, for example, can all be used, as can the various pipe-
lines that have been developed for next-generation sequencing,
gene expression microarrays and other molecular big data
omics techniques. Integration of digital image analysis data in
integromic analysis can present its own distinct risks and re-
wards. Images and their associated markups and annotations
do not lend themselves on their own to t-tests or clustering, for

example. Nevertheless, these may be useful to contextualize
other pieces of data like IHC scores. Calculated scores (e.g.
H-score) and metrics (e.g. integrated optical density, nuclear
area) can often be expressed as name/attribute pairs, so they
lend themselves more immediately to integrative analysis, al-
though data structure and hierarchy can still complicate ana-
lysis. Some metrics can be measured at a cellular level and
summarized at an ROI or whole slide level. Others, however,
might not be meaningful at a cellular level (e.g. H-score), so one
must be mindful of the meaning of each measure when incor-
porating it into a multivariate model of the data. Tumour het-
erogeneity is also an important complication. Summary scores
computed across different regions of the same tumour may dif-
fer markedly. Heterogeneity, at least in solid tumours, can be
more easily mapped in tissue sections where tissue structure
and cellular context is maintained and intact. Spatial changes
in tumour cell arrangement can be visualized microscopically
and used to sample regions for molecular analysis and the
measurement of intratumoural heterogeneity. Whole slide
imaging and digital image analysis represent powerful tools to
quantitatively map tissue phenotype and provide a sound basis
for biomarker assay development while opening up new av-
enues of inquiry. For example, one can begin to explore whether
certain morphometric phenotypes correlate with specific gen-
etic or epigenetic profiles and whether these have any signifi-
cant prognostic or therapeutic impact.

A specific challenge for integromics is the application of
statistical techniques to data from disparate sources. Care must
be taken to ensure differences observed between experimental
groups reflect the underlying biology and not simply batch ef-
fects. Differences in experimental assay platforms, such as dif-
ferent probes targeting the same gene or different antibodies for
IHC, may produce discrepancies in the data based on different
levels of sensitivity and specificity. In digital pathology, differ-
ences in imaging hardware, analysis algorithms and parameter
definitions may lead to various imaging artefacts and interpret-
ation difficulties. Even within the same software, cell counts
determined from different threshold settings are not compar-
able. Less visible confounders include study and patient vari-
ables like recruitment methodology, study admission criteria,
patient stratification/diagnostic criteria, pre-collection treat-
ments and standard of care (for prognostic biomarker studies)
that can affect the makeup of the study patient population.
Meanwhile, specimen handling variables like cold ischemic
time, fixation method, staining protocols and formulations can
have a profound effect on the data, often dominating other con-
founders, regardless of the subsequent pipeline. Ideally, then,
data harmonization begins well before data are generated: with
standardization and thorough documentation of all pre-
analytical steps including patient selection, tissue collection
and specimen handling. Where potential batch effects or con-
founding variables have been identified, a number of strategies
can be used, such as subset analysis (i.e. stratifying the subject
population on the confounding variable) or regression model-
ling [93, 94].

Mandated public release of large data sets has been helpful in
advancing transparency in science, but tracking the associated
metadata and assessing its impact on results derived from these
big data sets remains a major unresolved challenge. Even large
repositories like TCGA are composed of smaller collections from
a wide range of geographies and institutional environments. In
many cases, pooling such diverse data sets becomes an apples-
to-oranges comparison. Batch effects in TCGA and other large
high-throughput data sets are well-documented [52, 53]. Without
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control over data origins and consistency, it is essential that the
entire process be rigorously validated before interpretation of re-
sults. What local data sets lack in scale, they make up for in trace-
ability. For PICan, we require that our collaborators are able to
stand over every data point that enters our system, thereby
ensuring a higher standard of quality and confidence in our data.
Metadata recording technical and experimental details are stored
in PICan alongside the data. Regardless of how it is done, meta-
data tracking should be rigorous and thorough as differences in
experimental conditions and design must factor into the inter-
pretation of any analysis. Where appropriate, data should be cor-
rected and normalized to ensure comparisons are meaningful
like-versus-like comparisons and observed contrasts are not
merely batch or scalar effects.

Interdisciplinary teamwork

Apart from robust infrastructure and software support, the heart
of any successful integromics framework is a cohesive and inter-
disciplinary team to support and champion the entire effort.
Despite the technical complexities of a system like PICan, team-
work is arguably the most important and yet most often over-
looked piece of the integromics puzzle. This is fundamentally a
collaborative endeavour, bringing with it all the challenges of
working with an interdisciplinary team of individuals and organ-
izations, each of whom have their own diverse set of goals and
priorities. Clinical team members, for example, may have respon-
sibilities to their patients that would not apply to academic re-
searchers. Nevertheless, the specialist insights afforded by an
interdisciplinary team have been indispensable to the success of
PICan. Clinicopathological data tables are built on templates cre-
ated by clinical experts specializing in each cancer type. Clinical
and translational researchers inform the choice of analysis tools
to be added, which are then developed and tested by transla-
tional bioinformaticians. Establishing and incorporating an inte-
gromics framework into the mindset of an institution will require
additional effort and workload on certain individuals. Hence, it is
imperative that team discussions include delegation and shared
responsibility over matters such as data collection and curation,
data formats and standards, system maintenance, data exchange
and access control. Differing priorities and opinions between
team members are to some extent unavoidable, but teams can
adopt measures to manage conflicts, such as having all protocols
clearly documented or maintaining a regular meeting schedule.
Regardless of how these challenges are met, we stress the im-
portance of maintaining open lines of communication and agree-
ing to clear roles and responsibilities of all team members.
Effective teamwork is a non-trivial yet integral contributor to the
success of any integromics framework.

With an ever-increasing emphasis on interdisciplinary
research, projects like PICan underscore the need for cross-
disciplinary education to instil young researchers with the
necessary mindset, understanding and skills to navigate the
challenges and opportunities in the research environment of
the future. Queen’s University Belfast, for example, offers a
Masters-level course in Bioinformatics and Computational
Genomics [95]. The course attracts students from a diverse
range of backgrounds, from medical doctors to engineers and
computer scientists to biologists from a range of life science
subject areas, and aims to equip them with a solid foundation
across a broad range of topics such as advanced bioinformatics,
database design, tissue imaging and integromics.

Interdisciplinary teamwork is vital to another pillar of any
integromics framework: access to quality data. Any analysis is

only as robust as the data that underpins it. The role of the NIB
is crucial to PICan’s success not only through access to its bio-
specimens, but also its expertise and infrastructure support for
sample preparation, processing, accessioning, tracking and
quality control. The active participation of an interdisciplinary
team also distributes the workload of data curation. One of the
great struggles of data collection is maximizing quality and
quantity with a limited resource of labour. With an increasing
focus among funders and institutions on large-scale, multi-
centre studies, scaling up an integromics framework while pre-
serving data quality will rely heavily on greater delegation of
data curation to the data collectors themselves. The onus will
be on the individual data collectors to flag data discrepancies,
so that the database administrator serves as the last line of de-
fence rather than the first.

Ethics and data governance

Like any other system handling clinical and pathological infor-
mation, an integromics framework also requires appropriate
approval for the use of patient data. Additionally, data controls
in integromics need to protect both patients and data collectors:
de-identification protects patient privacy, while access controls
and terms of use policies protect the rights of data collectors.

All studies undertaken in PICan need to be approved follow-
ing an application to NIB, where project-specific ethics and gov-
ernance are granted under the Office for Research Ethics
Committees Northern Ireland approved NIB guidelines. As a re-
search tool, PICan stores no personally identifiable information
in its database, ensuring patient anonymization and minimiz-
ing the potential impact of any data security breach. Each pa-
tient, sample and associated analytical data are labelled using a
unique independent study-specific identifier within the system.
Clinically qualified and authorized patient data collectors retain
the key that links these identifiers to hospital systems where
personal data are securely stored. Researchers using PICan are
restricted to using anonymized research data only—respecting
data protection laws and regulations. However, as important
follow-up data on patients accrues over time, these can still be
accessed by having appropriately authorized clinical staff and
data collectors use the key to identify patients on hospital sys-
tems and retrieve more up-to-date patient information.
Authorized clinical personnel can then review and retrieve per-
tinent research-relevant information from the hospital systems
and update PICan, again with only anonymized research data
using the PICan identifiers. This is equivalent to an honest bro-
ker system used elsewhere [96, 97].

Data curation of de-identified information in PICan produces
a robust, privacy-controlled snapshot of analytical data, but the
underlying data sources are themselves continually being
updated as patients are followed up and new specimens are col-
lected. While data update is possible, it is necessarily a manual
process as PICan has been walled off from the original data
sources by design, allowing it to operate with fewer privacy con-
trols than a typical clinical system, as no identifiable patient
data are stored. To maintain quality and consistency with exist-
ing data, data updates to PICan are done only periodically, with
entire cohorts of patients updated at once. Alternatively, insti-
tutions that prioritize constantly updated data will require
deeper integration between their research and clinical data sys-
tems. In such cases, additional data protection measures will be
required, such as encryption or safe havens for data storage and
transfer. Essentially, such an integrated system would need to
meet local rules and regulations for clinical data systems.
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Scaling up for large-scale epidemiological
studies

The last few decades have seen tremendous investment into all
aspects of cancer biomarker discovery research, but as of 2013,
only 18 protein cancer biomarkers had received US Food and
Drug Administration (FDA) approval [98], despite decades of re-
search and thousands of publications on novel candidate bio-
markers. Part of the reason may be a focus on early-stage
discovery activities and the relative lack of large-scale multi-
centre validation and clinical trials. Studies of such scale pre-
sent a number of data management challenges, not unlike
those we designed PICan to address. First and foremost, integro-
mics is inherently a team activity and the same principles of
teamwork apply whether it is conducted within a single centre
or across multiple research centres on different continents. In
this way, integromics research extends readily to large-scale
multicentre epidemiological studies. Data harmonization of file
formats and common vocabulary remain vitally important and
best addressed through open communication between collabor-
ators. As in the case of collaborators within an institution, team
members from different institutions should ideally agree on a
single data format for each data type and a common, agreed set
of vocabulary to describe data fields collected, depending on the
needs of the study and its participants. Analysis of multicentre
data also requires standardization of pre-analytical parameters
such as inclusion criteria, sample acquisition, sample process-
ing, assay conditions and measurements recorded. When estab-
lishing project standards and protocols, teams should consider
what community standards are already available to maximize
interoperability and avoid redundancies. Across Europe, for ex-
ample, projects like ELIXIR [99] and Euro-BioImaging [100] are al-
ready seeking to establish hubs for biomedical and bioimaging
resource sharing. Globally, similar efforts in genomics are also
underway [19–21].

The process of building digital infrastructure to support a
multicentre integromics framework is similar to the case of a
single institution. All team members should meet and agree on
the structure of the framework. Depending on the extent of the
project and range of requirements, the technical, scientific and
medical team will need to grow as well. Among the team, there
is a need for at least one full-time staff member dedicated to
technical development and management of the digital infra-
structure. As the project grows, the staffing requirement will
undoubtedly increase in tandem. For this reason, modular de-
sign becomes even more crucial as it allows development tasks
to be carved up and delegated out to different team members.
There will also be additional requirements for hardware and
software licences. Software costs can be mitigated by using free
(e.g. R) or low-cost volume licenced (e.g. Microsoft Visual Studio
(Redmond, WA, USA) for ASP.NET in an academic setting) op-
tions. Nevertheless, despite minor challenges, digital solutions
generally scale well both in size and geographic distribution.
Parallels can be drawn between incorporating external data re-
sources into an integromics environment, as previously dis-
cussed, and the challenges of connecting information systems
across multiple sites. However, multicentre teams also face
some specific challenges. Teams may need to comply with vari-
ous sets of local laws and regulations surrounding research
ethics, data security and patient privacy. Network access and
security may also be further complicated in a multicentre set-
ting. PICan, for example, was built for use within a single insti-
tution, so access was limited to within the institution’s network
firewall, with all external access blocked. A system spanning

multiple institutions would need greater attention to security
while maintaining access from outside the host institution.
Teams may also need to contend with different software and
hardware infrastructures at the various centres and implement
the necessary interfaces to ensure compatibility. However, the
ultimate key to success of multicentre collaborations is a funda-
mental commitment to team science and on that front, institu-
tions that embrace integromics will have the experience to lead
the coming age of large-scale multicentre studies.

Furthermore, platforms like PICan and the integration of
image analysis data with clinicopathological and therapeutic
data will help accelerate the screening of candidate tissue bio-
markers for prognostic and predictive capacity. While this rep-
resents a powerful research and discovery tool, this is likely to
identify new tissue biomarkers (based on IHC, chromogenic in
situ hybridization (CISH), fluorescence in situ hybridization
(FISH), RNAscope, etc.) that have clear value in routine diagnos-
tics and the stratification of patients for precision therapeutics.
Further validation of these biomarkers would be necessary in
carefully controlled and standardized biomarker trials taking
into consideration sample preparation, scanner configuration,
lab-to-lab variation, comparative performance against patholo-
gist scoring and clinical outcome data. Regulatory approval of
digital diagnostic tests would require FDA clearance (USA) or
CE-IVD marking (Europe) if they were to be marketed as clinical
tests by industry, but may also be implemented as laboratory-
developed tests with documented internal validation and clin-
ical evidence, if done within an academic medical centre such
as our own setting. Integromics platforms provide the frame-
work for discovery and if designed appropriately can provide ro-
bust clinical evidence of the utility of new biomarkers for
subsequent commercial licensing, regulatory approval and clin-
ical translation into routine diagnostic/therapeutic practice.

Conclusion

Modern biomedical research generates scientific and clinical
data faster than the ability to fully interpret it, while data from
new and emerging technologies need to be integrated and
harmonized with existing analysis workflows. Efforts to resolve
the resulting bottleneck in interpretation to deliver on the
promises of precision medicine in this era of fast-track bio-
marker discovery and evaluation have led to the birth of a new
field in bioinformatics: integromics. After introducing our own
framework for streamlining integromic analyses, it became
clear that there is widespread interest in implementing integro-
mic strategies in other research institutions. In light of the pre-
sent discussion, we feel that an optimal integromics framework
must be well-supported by a dynamic and interdisciplinary
team, reflect the local needs and priorities of the institution and
be designed with an eye to the future. The team is the gateway
to high-quality data and specialist insights that inform analysis
and ultimately catalyse translation to clinical application in
support of precision medicine. Meanwhile, biomarker research
at our institution is currently centred on TMAs and we have
emphasized data quality and curation over raw throughput.
These traits are imprinted in the design and operation of PICan,
but other institutions may have other needs that demand a dif-
ferent infrastructure. Ongoing development of PICan includes
incorporating raw data storage and access for completeness
and traceability and strengthening support for digital image
analysis. As our institution adopts newer technologies, PICan
likewise will continue to evolve, facilitated by its modular de-
sign, to meet the changing needs of a busy cancer research
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environment spanning numerous programmes, technologies
and scientific objectives. Hence, integromics should be interwo-
ven into the fabric of the institution and not simply be a down-
loadable add-on.

Key Points

• Bold approaches are needed to maximize the potential
of big data in modern biomedical research and to
break down the silos in which they are currently held.

• Collating, storing, transferring and integratively analy-
sing vast amounts of heterogeneous, multimodal data
requires a comprehensive and cohesive integromics
strategy that streamlines biomarker discovery by
exposing fresh insights into the underlying factors
contributing to disease phenotypes.

• We explore the practical considerations behind imple-
menting an integromics framework, using our experi-
ences and design choices with PICan as a case study,
while recognizing that the global diversity of bio-
marker discovery research programmes will require
tailoring solutions to each research environment.

• Successful integromics frameworks are supported by
dynamic interdisciplinary teams and are inherently
adaptable to new technologies and the host institu-
tion’s evolving priorities.

• Integromics must be a central part of the institutional
culture and not just a downloadable add-on.
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