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ABSTRACT
Burying beetles (genus Nicrophorus) are relatively rare among insects in providing
sophisticated parental care. Consequently, they have become model species in research
analysing social evolution, the evolution of parental care and mating systems. We
used the recently published N. vespilloides genome and transcriptome to develop
microsatellite markers. Specifically, we developed 14 polymorphic markers with five
to 13 alleles per locus and used them to investigate levels of genetic differentiation
in four south Cambridgeshire (UK) populations of N. vespilloides, separated by 21
km at most. The markers revealed significant genetic structuring among populations
(global FST = 0.023) with all but one of the pairwise comparisons among populations
being significant. The single exception was the comparison between the two closest
populations, which are approximately 2.5 km apart. In general, the microsatellite
markers showed lower observed heterozygosity than expected. We infer that there is
limited dispersal betweenpopulations andpotentially also some inbreedingwithin them
and suggest that this may be due to habitat fragmentation. We discuss these results in
the context of recent laboratory experiments on inbreeding and beetle flight.

Subjects Animal Behavior, Ecology, Genetics, Zoology
Keywords Nicrophorus vespilloides, Microsatellites, Population genetics, Genetic differentiation,
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INTRODUCTION
Burying beetles (genus Nicrophorus) are relatively unusual among insects in providing
elaborate parental care for their developing larvae. Reproduction centres on the fresh
carcass of a small vertebrate (like a songbird or mouse), which adults locate by flight. If
more than one adult of the same sex finds the carcass, they will commonly fight to determine
ownership (e.g., Otronen, 1988; Scott, 1994). Defeated subordinates may stay nearby: males
may sneak matings with the dominant female, while females might become intraspecific
brood parasites (e.g., Müller, Eggert & Dressel, 1990; Hopwood et al., 2015). The dominant
individuals of each sex then pair up and together prepare the carcass for reproduction
(although mated females can singlehandedly raise young:Müller et al., 2007). They remove
the fur or feathers, roll the flesh into a ball and bury it below ground in a shallow grave.
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During this time, parents defend their carcass breeding resource from attack by conspecifics,
congenerics and other carrion-feeding insects (Robertson, 1993; Trumbo, 1990). Eggs are
laid in the soil near the carcass. Newly hatched larvae crawl into a crater on the brood ball
and there they solicit attention from their parents, who also stay to protect them from attack
(Trumbo, 2007). About a week after the larvae hatch, the carcass is entirely consumed. The
beetle parents then fly off to search for new mating opportunities or fresh carrion and the
larvae disperse into the soil to pupate (Scott, 1998).

Burying beetles thus play a key ecological role as nutrient recyclers (e.g., Royle, Hopwood
& Head, 2013). Furthermore, their relatively unusual natural history, and the ease with
which they can be bred in the lab, means that several have become popular study species in
experimental analyses of social evolution, the evolution of parental care andmating systems
(e.g.,Royle, Hopwood & Head, 2013; Scott, 1998). Nevertheless, despite their widespread use
in the lab, relatively little work has focused on the burying beetles’ ecology in nature. This is
because it is difficult to trackmarked burying beetles through their life course to understand
patterns of dispersal (e.g., Attisano & Kilner, 2015), the likely extent of competition for
limited carrion resources (e.g., Kilner et al., 2015), the degree of connectivity between
populations and therefore the potential for inbreeding (e.g., Pilakouta et al., 2015). Yet this
knowledge is key for interpreting the results of experiments carried out in the laboratory
(e.g., Kilner et al., 2015; Attisano & Kilner, 2015; Pilakouta et al., 2015).

Furthermore, habitat fragmentation has recently been suggested to influence population
structure in beetles (Keller & Largiader, 2003; Suzuki & Yao, 2014). Habitat fragmentation
by deforestation has specifically been hypothesised to influence dispersal of N. americanus
in the USA (Creighton et al., 2009) and N. quadripunctatus populations in Japan (Suzuki
& Yao, 2014). Yet behavioural work on flight performance shows that burying beetles are
capable of sustained flight over tens of kilometres (Attisano & Kilner, 2015). Therefore, a key
aim of this study was to determine the extent to which burying beetles disperse in nature
over relatively short distances, using genetic techniques (cf Houston et al., 2015).

Recently, molecular resources have been developed for N. vespilloides, including a
genome, epigenome (Cunningham et al., 2015) and transcriptomes (e.g., Parker et al., 2015;
Palmer et al., 2016). We took advantage of these newly available molecular tools to develop
microsatellite markers. We used the markers to determine the extent of genetic differenti-
ation between natural populations of N. vespilloides, deliberately choosing sites on a local
scale, no more than 21 km apart (Fig. 1) to test the power of the markers we developed.
These four populations were all in southCambridgeshire and at:WaresleyWoods (Latitude:
52.17487◦; Longitude: −0.17354◦), Gamlingay Woods (Latitude: 52.15555◦; Longitude:
−0.19286◦), Byron’s Pool (Latitude: 52.17305◦; Longitude: 0.10196◦) and Madingley
Woods (Latitude: 52.22658◦; Longitude: 0.04303◦). These four populations inhabit patches
of woodland that are islands in a landscape dominated by arable farmland and urban devel-
opment. Their close proximity enabled us to determine whether habitat fragmentation or
beetle flight performance could better explain population structure on a local scale.
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Figure 1 Sampling location in south Cambridgeshire and genetic differentiation in pairwise com-
parisons between populations. P values for pairwise FST estimates across all loci are indicated below the
diagonal, after Bonferroni correction (α = 0.008333). Values in brackets represent the pairwise FST val-
ues using only the 9 markers in HWE; the significance levels were identical in both runs. W, Waresley; G,
Gamlingay; BP, Byron’s Pool; MD, Madingley. Distances are ‘‘as the crow flies’’ distances calculated using
online tools. The map and population’s spatial representation (using the sites geographical coordinates)
were produced in R.

MATERIAL AND METHODS
Beetles
Adult beetles from the four southCambridgeshire populations (Fig. 1): Gamlingay (n= 40),
Waresley (n= 40), Byron’s Pool (n= 33) and Madingley (n= 26) were collected during
May–October 2016 using Japanese beetle traps. Male and female beetles, sampled in equal
numbers, were brought back to the laboratory alive and preserved in absolute ethanol for
genetic analysis. In order to avoid collecting related individuals, periodical sampling was
performed and only adult beetles (not larvae) were analysed. These were males and females
attracted at random to the mouse carcasses provided in the beetle traps.

In an earlier pilot study, we tested microsatellite markers from N. quadripunctatus
(Suzuki & Yao, 2014), in N. vespilloides, but these failed to amplify reliably (M Schrader,
pers. comm., 2015). We therefore developed new markers specifically for N. vespilloides.

DNA extraction, microsatellite amplification and analysis
Total genomic DNA (n= 139) was extracted individually from beetle heads using the
DNeasy Tissue Kit (Qiagen, Hilden, Germany). Molecular markers were developed
with the program msatcommander (Faircloth, 2008), using the publicly available N.
vespilloides genome (NCBI Bioproject number PRJNA284849; Cunningham et al., 2015)
and transcriptome (NCBI Bioproject PRJNA285436; Parker et al., 2015). Twenty potential
microsatellites were tested and optimised. From these, 14 polymorphic microsatellite
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markers were amplified using three primer mixes with the Qiagen Multiplex PCR kit,
following the manufacturer’s instructions, to a final volume of 10 µL. The fluorescent M13
tail single-reaction nested PCR method (Schuelke, 2000) using four tails (Tysklind, 2009)
was used to amplify the loci. An initial denaturation step of 15 min at 95 ◦C was followed
by 13 cycles at 94 ◦C for 30 s, 62 ◦C for 90 s, and 72 ◦C for 60 s. In order to attach the
dye tails to the PCR product, an extra 31 cycles at 94 ◦C of 30 s, 50 ◦C for 90 s and 72 ◦C
for 60 s were performed and followed by a final extension at 60 ◦C for 30 min. Extension
products were resolved on an ABI 3730 instrument at the Edinburgh Genomics Institute
Sanger Sequencing Centre with GeneScan 500 LIZ (Applied Biosystems, Foster City, CA,
USA) as internal size standard. Alleles were scored and checked using Peak Scanner v.1.0
(Applied Biosystems).

GenAlEx version 6.5 (Peakall & Smouse, 2012) and FSTAT (Goudet, 1995) were used to
generate descriptive statistics (e.g., number of alleles, allelic frequencies, mean number of
alleles per locus and observed (H0) and expected heterozygosity (HE)). Tests for deviations
fromHardy-Weinberg proportions and genotypic linkage equilibriumwere estimated using
GENEPOP (Raymond & Rousset, 1995; Rousset, 2008). CERVUS v3.0.7 (Kalinowski, Taper
& Marshall, 2007) was used to test for null alleles. Estimates of FST, FIS, population pairwise
FST and their significance per population over all loci were calculated using FSTAT
(Goudet, 1995).

RESULTS
Microsatellite development
We screened the N. vespilloides genome (4,660 contigs; NCBI Bioproject number
PRJNA284849) for microsatellite markers with at least 8 repeats for di- and trinucleotides
and at least 6 repeats for tetra-, penta- and hexanucleotides, and identified 1818 sequences
containing repeats. A total of 5,547 microsatellites were present and 4515 primer pairs were
obtained using Primer3 (Rozen & Skaletsky, 2000) incorporated into msatcommander
(Faircloth, 2008). Similar searches to the transcriptome identified 263 microsatellites and
69 primer pairs were designed. To maximize the potential for amplification, we rejected
primers of low quality, and that were likely to self-anneal. To facilitate multiplexing, we
chose markers from 100–500 bp that varied in size and the number of repeat motifs. To
avoid linkage, we chose sequences with just onemarker. Twentymicrosatellites were chosen
for molecular marker optimization (16 from the genome and four from the transcriptome).
From these, a robust suite of 14 reliable microsatellites was derived for the population ge-
netic analysis (see Supplementary Information). By ‘robust’ wemean that they (i) amplified
reliably in all populations and in the majority of the samples; (ii) did not show secondary
amplification; (iii) were polymorphic in all populations; and (iv) were relatively easy to
score (e.g., did not show stuttering).

Microsatellite analysis
All of the 139 N. vespilloides collected from the four Cambridgeshire populations were
genotyped for the 14microsatellites. All 14 loci were polymorphic for the tested populations
and the number of alleles per locus ranged between five and 13, with a total number of 134
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alleles in the global sample (Table 1). The level of genetic variability was similar across loci.
The expected heterozygosity (HE) per locus ranged from 0.272 to 0.841, and the observed
heterozygosity (HO) ranged from 0.247 to 0.825 (Table 1). All individual loci but one
showed lower observed heterozygosity than expected heterozygosity (over all loci HE =

0.714 and HO= 0.652). The expected heterozygosity across all loci per population ranged
from0.696 to 0.706, while the observed heterozygosity ranged from 0.638 to 0.679 (Table 2).

Tests for concordance with Hardy-Weinberg equilibrium (HWE) revealed deviations
fromHWE in locusNvesp_D,Nvesp_F,Nvesp_I, Nvesp_G andNvesp_H (Table 1). Testing
HWE for individual populations and loci revealed that this disequilibrium remained signif-
icant within populations (Nvesp_D: significant in all populations but Waresley; Nvesp_F:
significant for Byron’s Pool only; Nvesp_I: significant in Waresley only; Nvesp_G: signifi-
cant inWaresley only; Nvesp_H: significant in Gamlingay and Byron’s Pool) (Table 2). The
frequency of null alleles was low across loci (Table 1) and, overall, close to zero (indicating
absence of null alleles). However, three of the loci exhibiting deviations from HWE
(Nvesp_D, Nvesp_I and Nvesp_H) showed some of the highest null allele frequencies
(>0.05).

Evidence of linkage disequilibrium was observed in pairwise loci Nvesp_Q/Nvesp_E and
Nvesp_E/ Nvesp_G in the global population test. Global FIS value was 0.085, suggesting
some heterozygous deficiency. A pattern of genetic differentiation (global FST = 0.023)
was observed in the sampling area, with all but one significant population-pairwise FST
after Bonferroni correction (α= 0.008333). In order to assess whether there were potential
biases in the markers that exhibit deviations from HWE or the presence of potential null
alleles, the analyses were run with and without these markers. We found that the two runs
rendered similar results (Fig. 1).

DISCUSSION
We developed microsatellite markers to infer details of the burying beetle’s ecology that
cannot be deduced through simple observation, but which are becoming increasingly
important for the interpretation of experiments on this species in the laboratory. The
process of microsatellite development was greatly facilitated by the existing N. vespilloides
genome (Cunningham et al., 2015) and transcriptome (Parker et al., 2015). The available
genomic tools, however, are still poorly annotated and so further detailed characterisation
of the sequences containing the markers is still limited (see Supplementary Information).
Nevertheless, our analyses suggest that the markers are predominantly unlinked. We
rapidly developed a set of 14 (out of 20) reliable polymorphic markers for the species: i.e.,
70% were successful. This proportion of successful markers is similar to that obtained for
N. quadripunctatus (Suzuki & Yao, 2014), although these authors used enriched genomic
libraries for marker development.

Our genetic analyses revealed significant deviations from Hardy-Weinberg equilibrium
at five loci. This is most likely due to an excess of homozygotes at these loci but could
also be due to the presence of null alleles in three of these markers. The only other marker
with a putatively high null allele frequency (>0.05) was Nvesp_E. However, the high
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Table 1 Main genetic variability measures by locus ofN. vespilloides from Cambridgeshire. T (◦C), annealing temperature; bp, base pairs; G, genome; T, transcrip-
tome; Na, number of alleles found per locus; HE, expected heterozygosity; HO, observed heterozygosity; FIS, standardized genetic variance within populations at each lo-
cus; FST, standardized genetic variance among populations at each locus; Null, frequency of null alleles per locus; HW, Hardy-Weinberg P values.

Locus Primer sequence
5′–3′

Product
size (bp)

Repeat
motif

T
(◦C)

PCR Source Na HE HO FST FIS Null HW

Nvesp_A F: Fam-CTACGGCGTGCAGAATTACC 138 (AAC)9 62 Mix1 G 13 0.757 0.770 0.002 −0.026 −0.0114 0.459

R: AACTCTCTGGTGTCGACGTC

Nvesp_D F: Pet-TACGTGCGGTAATGAGGCG 201 (AAC)11 62 Mix1 G 8 0.829 0.585 0.016 0.287 0.1701 P < 0.001

R: ACGCCCTGCTCCCTATTTAG

Nvesp_J F: Vic-TGTGTGTAGAGTGGACGGG 303 (AAAG)7 62 Mix1 G 9 0.657 0.631 0.035 0.010 0.0131 0.554

R: TGGACGAGTTGAAGACGAGG

Nvesp_M F: Ned-CCAGCAACCCACAAAGAAGC 373 (AG)10 62 Mix1 G 11 0.841 0.825 0.019 0.039 0.0244 0.058

R: ATACCACAAGTCCCGACCTG

Nvesp_Q F: Fam-ATGCGGCTTTGATATCCAGG 428 (AAT)8 62 Mix1 G 8 0.516 0.494 0.005 0.075 0.0560 0.140

R: TCAGATTCCGCTCTCCTTCC

Nvesp_B F: Fam-GTTGTTTCCGGTTGTTTGCG 158 (AC)8 62 Mix2 G 10 0.723 0.701 0.021 0.035 0.0266 0.496

R: TTCGAAGTTAAACGGCCGTG

Nvesp_F F: Pet-TAAAGGGTTGGGAGGTTGGC 216 (AC)10 62 Mix2 G 10 0.802 0.723 0.023 0.075 0.0458 0.004

R: CACGATCCATACACGTGCAC

Nvesp_I F: Vic-CTGATCACCGGAACCCTCTC 286 (AG)8 62 Mix2 T 6 0.569 0.498 0.006 0.135 0.0793 0.036

R: GAATTCCCGGGTTTATGCCG

Nvesp_P F: Fam-TGGTGATGCAATTGTGAGGC 410 (ATC)8 62 Mix2 G 9 0.809 0.741 0.028 0.082 0.0498 0.189

R: CGGTTGGCAGACGATGTAAC

Nvesp_E F: Pet-ATGGATGGATGGAGAGTGGC 201 (AC)8 60 Mix3 T 11 0.787 0.680 0.092 0.139 0.1109 0.182

R: TTGATGGTTTCGAAAGGGCG

Nvesp_G F: Fam-CGTGTGCGTGTTTCTACCTC 224 (AT)8 60 Mix3 T 12 0.834 0.776 0.013 0.064 0.0351 0.009

R: ATGGGCACGTATCCATACCC

Nvesp_H F: Vic-TCGTAGATGTCTCGTGCCTG 283 (AG)9 60 Mix3 G 12 0.840 0.737 0.013 0.120 0.0669 P < 0.001

R: CAGTTTGAAGGTGGTGGCTG

Nvesp_K F: Ned-GCTCTCATTCTCCCAAACGC 334 (AGG)8 60 Mix3 G 5 0.272 0.247 −0.002 0.085 0.0328 0.260

GTGGACGCGCATAAGTTGTC

Nvesp_O F: Fam-ATGCCAATTAACGCGTCGAG 395 (AAG)8 60 Mix3 G 10 0.760 0.718 0.013 0.054 0.0387 0.085

CATCGTTACCTGTGCGACTG

All 134 0.714 0.652 0.023 0.085
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Table 2 Main genetic variability measures for Cambridgeshire populations.W,Waresley; G, Gamlingay; BP, Byron’s Pool; MD, Madingley; N , mean number of sam-
ples per locus; N -all, mean number of alleles per locus; HE, expected heterozygosity; HO, observed heterozygosity; A–O refers to Nvesp_A-Nvesp_O.

Hardy-Weinberg P values

Pop N (±SD) N -all (±SD) HE (±SD) HO (±SD) A D J M Q B F I P E G H K O

W 38.143 (0.619) 7.571 (0.453) 0.699 (0.047) 0.679 (0.046) 0.255 0.141 0.632 0.228 0.529 0.180 1.000 0.009 0.834 0.328 0.004 0.297 1.000 0.544

G 37.214 (0.639) 7.714 (0.474) 0.706 (0.043) 0.638 (0.045) 0.665 0.000 0.969 0.115 0.036 0.267 0.535 0.282 0.164 0.221 0.351 0.000 0.064 0.028

BP 29.714 (0.485) 7.429 (0.581) 0.702 (0.043) 0.664 (0.049) 0.428 0.016 0.908 0.022 0.191 0.855 0.000 0.206 0.256 0.083 0.136 0.017 0.436 0.904

MD 19.286 (0.606) 6.429 (0.343) 0.696 (0.044) 0.649 (0.045) 0.288 0.037 0.059 0.936 0.598 0.607 0.102 0.518 0.103 0.571 0.183 0.100 0.232 0.071
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number of homozygotes for this marker is unlikely to be due to null alleles because it is
in HWE (Kalinowski, Taper & Marshall, 2007). We are confident that our results are not
biased by including markers that deviated from HWE, or potential null alleles, because we
obtained similar results when we excluded these markers from our analyses. In general,
the microsatellite markers showed lower observed heterozygosity than expected and the
global FIS value (0.085) also suggested some heterozygosity deficiency. We infer from these
findings that there is limited gene flow between our study populations, and potentially some
inbreeding as well. The consequences of inbreeding in N. vespilloides have recently been
analysed experimentally in the laboratory (e.g., Mattey, Strutt & Smiseth, 2013; Pilakouta
et al., 2015; Pilakouta & Smiseth, 2016) but to our knowledge, our study provides the first
indication that N. vespilloidesmight breed with relatives in nature and it matches previous
results obtained for N. quadripunctatus (Suzuki & Yao, 2014).

Consistent with our interpretation of limited gene flow between populations, we found
significant pairwise population differentiation between all but one pair of populations
(Waresley-Gamlingay; approximately 2.5 km apart) despite the low geographical separation
between the sampling sites (maximum 20.3 km). This genetic differentiation may be the
result of neutral population differentiation, or the effects of selection acting on functional
genes correlated with the neutral markers (e.g., Rousset & Raymond, 1995). We think the
former possibility ismore likely becausewe obtained similar resultswhenwe ran the analyses
with and without markers in HWE and because a BLASTx search showed that the markers
did not generally correspond to (albeit limited) known coding genes in N. vespilloides.

Previous work on flight performance of N. vespilloides showed that these beetles have a
wide distribution of flight distances in the laboratory ranging from 68 m to 26 km. Fur-
thermore, flight durations ranged from 61 s to 6.5 h under laboratory conditions (Attisano
& Kilner, 2015). Beetles tethered in flight mills may be able to fly for greater distances than
naturally flying beetles because they bear less of their weight in flight. But even if we assume
that beetles in natural flight cover only a third of the distance that they achieved in a flight
mill, our data suggest that population differentiation within the sampling area is not solely
attributable to the flight range of the burying beetle.

We suggest instead that habitat fragmentation has driven the fine-scale population
structure we report here by imposing barriers that limit dispersal (cf Pascoal et al., 2009;
Kanno, Vokoun & Letcher, 2011; Valtonen et al., 2014). Our analyses suggest that each
‘island’ population of burying beetles is increasingly reproductively isolated with increasing
geographic distance between woodlands. Perhaps N. vespilloides is unwilling, or unable,
to undertake flights across open fields and through housing. Studies of congeneric species
(Nicrophorus marginatus, N. tomentosus, N. orbicollis and N. defodiens) found that the
size of these woodland fragments affects the abundance and reproductive success of the
resident burying beetle population (Trumbo & Bloch, 2000; Gibbs & Stanton, 2001). Our
analyses suggest that the extent of their connectivity might also be an important factor for
promoting gene flow and preventing populations from becoming smaller andmore inbred.
If our interpretation is correct, then it has important conservation implications because
it suggests that there is a threshold size of woodland required to sustain an outbreeding
burying beetle population. It also might help explain why populations of American burying
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beetles (N. americanus) have collapsed so spectacularly in recent years following substantial
deforestation, causing it to become endangered (Anderson, 1982; Creighton et al., 2009).

Although Single Nucleotide Polymorphism (SNPs) are starting to be the tool of choice
for population genetics/genomics studies, microsatellites still provide a cheaper alternative.
Nevertheless, we anticipate that the microsatellites we have developed will prove most
useful in future work for assigning parentage (S Pascoal, 2016, unpublished data) because
the large brood size typically seen inN. vespilloides still makes other techniques prohibitively
expensive.N. vespilloidesmates rampantly and promiscuously in the laboratory (e.g.,House
et al., 2009) and in natural populations (e.g.,Müller et al., 2007). Although several previous
studies have analysed strategies used by males for securing paternity (e.g., Eggert, 1992;
House et al., 2009), parentage has never before been assigned using microsatellites. The
microsatellites we have developed here thus pave the way for more detailed analyses of the
evolutionary causes and consequences of promiscuity in this species.
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