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1Grupo de Inmunologı́a Celular e Inmunogenética, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA),
Calle 70 No. 52-21, Medellı́n, Colombia
2Grupo de Fı́sica del Estado Sólido, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellı́n, Colombia
3Unidad de Citometrı́a de Flujo, Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UDEA), Medellı́n, Colombia
*Author for correspondence: mauricio.rojas@udea.edu.co

Aim: To establish the effect of poly(acrylic acid)-coated iron oxide nanoparticles (PAC-IONs) and later expo-
sure to a magnetic field on the differentiation of mononuclear phagocytes into macrophages. Methods:
By flow cytometry, cell death was evaluated with DIOC6 and PI, Poly (ADP-ribose) Polymerases (PARP)
fragmentation, H2AX phosphorylation and TUNEL assay. Cytokines by Cytokine bead array and the intra-
cellular amount of iron by atomic absorption spectrometry. Results: PAC-IONs did not induce apoptosis,
modify the cell membrane integrity or alter the mitochondrial membrane potential. They did not affect
the cell morphology, the pattern of cytokine accumulation or the activating role of differentiation of
mononuclear phagocytes into macrophages on the proliferation of autologous T cells. Conclusion: This
evidence indicates that the PAC-IONs are safe and biocompatible. Moreover, the selectivity of the PAC-IONs
for mononuclear phagocytes, as well as their increased uptake by non-classical monocytes, warrant future
research with a view to their use as a contrast agent, a useful tool for in vivo tracking of tissue-infiltrating
mononuclear phagocytes.

Lay abstract: In the search for materials that allow the study of inflammatory processes when biopsies are
not feasible, magnetic nanoparticles have become an alternative tool for use in MRI. This article examined
whether supermagnetic iron nanoparticles can affect the basic function of phagocytic cells, with a view
to their use in clinical imaging applications.
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Graphical abstract:
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The mononuclear phagocyte (MP) system plays essential roles in the maintenance of tissue homeostasis during the
steady state, in the orchestration and genesis of the adaptive immune response, as well as in inflammation and its
resolution [1–4]. Circulating monocytes represent a versatile and dynamic cell population [5,6]. In humans, the mono-
cyte subpopulations were conventionally defined based on the surface expression of CD14 and CD16 [7]; classical
(CD14+CD16-) monocytes constitute around 85% of the circulating pool of monocytes, while the remaining 15%
consist of intermediate (CD14+CD16+) and nonclassical (CD14+CD16++) monocytes [8,9]. Classical monocytes
are rapidly recruited to sites of infection and inflammation [10–12], where they exhibit considerable functional
plasticity [13]. Over time, classical monocytes become nonclassical ones, and some of them can differentiate into
dendritic cells [14–16]. However, during those pathological conditions, tissue damage is only evident at very late
phases of the process, when medical intervention is fundamentally palliative. The early detection of monocytes in
the tissues could favor the prognosis and intervention of patients in a targeted manner.

Our group has studied monocyte subsets in tuberculosis [17,18] and systemic lupus erythematous [19], includ-
ing their presence in renal lesions [20]. Altered monocyte counts and functions are observed in several chronic
inflammatory processes including childhood obesity [21], diabetes [22,23], atherosclerosis [24–26], cardiovascular dis-
eases [27], infection with HIV [28], Crohn’s disease [29] and aging [30], highlighting the diverse roles of monocytes in
physiological conditions.

At the early stages of many of these diseases, when the type of tissue damage is not evident, it is difficult to make
a prognosis, and any selective intervention on monocytes is not feasible. In many cases, biopsies or bronchoalveolar
lavages are required to access the compromised organ; these procedures are invasive and cannot be repeated because
of the health risks for patients [31]. Besides, in some cases, the tissue seems to be inaccessible, or it is not possible to
detect monocytes due to the systemic compromise. These are the reasons why new tools for tracking monocytes,
and even for distinguishing monocyte subsets, are required.

Iron oxide nanoparticles (IONs) have been broadly studied in nanomedicine because of their high biocompat-
ibility [32]. Sugar-coated IONs have been clinically used as contrast agents for MRI in Japan and Europe [33,34].
Human monocytes have been studied with positive contrast agents and superparamagnetic nanoparticles by MRI in
noninvasive studies of pathological mechanisms [35–37]. Ex vivo-labeled human cells can be successfully reintroduced
into patients and tracked by MRI [38]. In the case of some chronic inflammatory diseases, when taking a sample
requires an invasive procedure, specific in vivo tracking of monocytes will be useful to characterize different patterns
of mononuclear infiltrates. In vivo studies in 8-week-old male CD-1 mice showed that after intravenous injection,
poly(acrylic acid)-coated iron oxide nanoparticles (PAC-IONs) accumulated mainly in the liver and spleen, and at
a lower extent in the lungs, without causing severe organ damage [39].

We hypothesized that the PAC-IONs can interact selectively with MPs without affecting their differentiation
into mature macrophages (MDMs) and that the subsequent exposure of these cells to a magnetic field (MF) would
not induce cell damage or compromise their function as antigen-presenting cells, in terms of cytokine synthesis
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and induction of activation and proliferation of T cells in response to a mitogen or a conventional antigen. To this
purpose, we determined the effects of the PAC-IONs on the differentiation of MPs into macrophages; also, we
evaluated the effects of an MF on the ability of those MDMs for activating T cells in response to phytohemagglutinin
(PHA) and tetanus toxoid (TT). We also evaluated whether nonclassical and classical monocytes differed in their
ability to uptake the PAC-IONs.

Materials & methods
Materials
FeCl2.4H2O, FeCl3.6H2O, sodium polyacrylate, Histopaque R©-1077 (1.077 g/ml) and phytohemagglutinin M
(PHA-M) were purchased from Sigma-Aldrich (MO, USA). RPMI1640 + GlutaMAX™, penicillin and strepto-
mycin, fetal calf serum and phosphate-buffered saline (PBS) were obtained from GIBCO (Life Technologies, NY,
USA). Tetanus toxoid (TT) from Clostridium tetani was acquired from Aventis Pasteur (Lyon, France). Molecular-
weight cutoff (100 kDa MWCO) cellulose membranes were purchased from Synder Filtration (CA, USA). The
cytometric bead array (CBA) for human inflammatory and Th1/Th2 Cytokine Kits, the Apoptosis, DNA Damage
and Cell Proliferation Kit, DAPI solution, mouse anti-BrdU-PerCP-Cy™ 5.5 (Clone: 3D4) monoclonal anti-
body (mAb) and the following mouse antihuman fluorochrome-conjugated mAbs: CD45-PE-Cy7 (Clone: HI30),
CD3-PE (Clone: OKT3), CD19-Alexa Fluor R© 488 (Clone: HIB19), CD16-BV421 (Clone: 3G8), CD56-BV510
(Clone: NCAM16.2), HLA-DR-FITC (Clone: G46-6), cleaved PARP (Asp214)-FITC (Clone: F21-852), H2AX
(pS139)-Alexa Fluor 488 (Clone: N1-431) were purchased from BD Pharmingen™ (CA, USA). Opty Lyse Buffer,
and mouse anti-human CD14-PE and CD14-FITC (Clone: 322A-1 [MY4]) mAbs were from Beckman Coulter
Inc. (CA, USA). The RosetteSep™ Human Monocyte, T- and B-cell Enrichment Cocktail Kits were obtained from
STEMCELL Technologies (Vancouver, Canada), and Polymorphprep™ from Abbott Diagnostics Technologies AS
(Oslo, Norway). Carboxyfluorescein diacetate succinimidyl ester (CFSE), DIOC6, 7-AAD and propidium iodide
(PI) were purchased from Thermo Invitrogen (MA, USA), and Bicinchoninic Acid Assay from Merck KGaA
(Darmstadt, Germany).

Synthesis of nanoparticles
PAC-IONs were prepared by the coprecipitation method, according to Lin et al. [40] in the ‘Grupo de Estado Sólido of
the Instituto de Fı́sica at Universidad de Antioquia.’ Briefly, magnetic magnetite–maghemite particles were obtained
by coprecipitation from an aqueous alkaline solution of FeCl2.4H2O and FeCl3.6H2O (1:2 stoichiometric ratio) in
the presence of 0.4% (w/w) sodium polyacrylate as a stabilizing agent. The pH was adjusted to 12 by the automatic
addition of 1 M NaOH, using a 907 Titrando (Herisau, Switzerland). Previous to the synthesis procedure, solutions
were passed under an N2 (g) flow. During the synthesis, the N2 (g) flow was kept constant to avoid oxidation
of the oxide particles after their formation. The precipitate obtained was dialyzed with a Spectra/Por R© cellulose
membrane (100 kDa MWCO) against type II deionized water, until the conductivity of the washing water was
similar to that of the deionized water. An aliquot of the particle suspension was stored at room temperature for in
vitro analyses, and another one was vacuum dried at room temperature and stored under N2 atmosphere for further
analysis.

Nanoparticle characterization
Morphological, physical and chemical characteristics of the PAC-IONs were evaluated by different methods. The
hydrodynamic particle diameter, size distribution and zeta potential were measured by dynamic light scattering
with Zetasizer equipment (Malvern Panalytical, Almelo, The Netherlands) at room temperature. To this purpose,
dried PAC-IONs were resuspended (1 mg/10 ml) in a 50:50 (v/v) ethanol–water mixture for triplicate-run analysis
of size distribution. Another aliquot of dried PAC-IONs was resuspended in water (0.5 mg/10 ml) to evaluate the
zeta potential using the Smoluchowski equation. Additionally, the ethanol–water suspension was also utilized for
analyzing the particle morphology by transmission electron microscopy, using a JEOL 100-CX II microscope (Jeol
Ltd, Tokyo, Japan).

The magnetization of the PAC-IONs was determined in a sample of dried particles under an applied MF with
a Physical Property Measurement System (Quantum Design, CA, USA), using a Vibrating Sample Magnetometer
and -0.5 to 0.5 T scan at room temperature (300◦K). A summary of the physical properties of the PAC-IONs is
included in Table 1.
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Table 1. Physical parameters of magnetite/maghemite nanoparticle – size, zeta potential, saturation magnetization and
coercive field.
Size (nm) ZP (mV) MS (emu/g) HC (Oe)

12.4 -49.2 68 12

Isolation of peripheral blood mononuclear cells
Mononuclear cells were obtained from peripheral blood of healthy volunteers aged 20–30 years. Most of them
worked in the Sede de Investigación Universitaria at Universidad de Antioquia and signed a written informed
consent approved by the ethics committee of the Institute of Medical Research of the Faculty of Medicine at the
University of Antioquia. They declared that they were not taking any medication and that they had neither an
autoimmune nor active infectious disease.

EDTA-anticoagulated (4 ml) or defibrinated (60 ml) peripheral blood samples were used to isolate peripheral
blood mononuclear cells (PBMCs) for in vitro cultures and monocytes by plastic adherence, respectively.

PBMCs were isolated by density gradient centrifugation on Histopaque R©-1077 (1.077 g/ml) at 900 × g for
33 min. Cells were suspended in RPMI supplemented with 50 μg/ml penicillin, 50 μg/ml streptomycin and 10%
inactivated (56◦C for 30 min) serum; inactivated fetal calf serum (iFCS) was used for PBMC cultures (MCa) and
inactivated autologous serum for monocyte cultures (MCb). Before culturing, the PBMC viability was determined
by trypan blue dye exclusion; it was always higher than 95%.

Exposure of PBMCs to the PAC-IONs & the MF
One hundred and fifty thousand PBMCs per well were plated onto 96-well round-bottom plates to a final volume
of 200 μl of MCa. Cells were incubated for 12 h at 37◦C, 5% CO2, with or without 32 μg/ml of PAC-IONs, and
exposed or not to a 1.5-T MF for 10 min using an Achieva 1.5T Nova Dual MRI Scanner (Philips Medical System,
Best, The Netherlands) in the ‘Instituto de Alta Tecnologı́a Médica (IATM) at Hospital San Vicente Fundación.’
Four hours later, cell viability was assessed in terms of plasma membrane integrity and mitochondrial membrane
potential. To this purpose, cells were stained with PI (1 μg/ml final concentration) and DIOC6 (700 nM final
concentration) [41,42], incubated for 20 min at 37◦C and 5% CO2 and acquired in an LSRFortessa II™ flow
cytometer (BD Biosciences, CA, USA).

The potential toxicity of the PAC-IONs and the MF on T-cell proliferation were also evaluated using the
Apoptosis, DNA Damage and Cell Proliferation Kit (BD Pharmingen). This kit evaluates the phosphorylation of
the histone H2AX on Ser 139 (pS139)-H2AX, the cleavage of PARP1 and the BrdU incorporation as indicators of
the type of cell death, DNA damage and cell proliferation, respectively [43,44]. Briefly, PBMCs previously exposed to
the PAC-IONs and the MF were stimulated with PHA-M or TT from Clostridium tetani for 24 h and pulsed with
BrdU for 48 h. Then, cells were labeled with anti-PARP1, anti-(pS139)-H2AX, anti-BrdU antibodies and DAPI for
nuclei staining, and acquired in the flow cytometer. The compensation was set by aligning the mean fluorescence
intensities of positive and negative events from cell samples stained with every single fluorescent reagent. The
positivity for every marker was evaluated using the fluorescence minus one controls.

PAC-IONs uptake by leukocyte subpopulations
The PAC-IONs uptake by different leukocyte subpopulations was determined by flow cytometry through the
evaluation of changes in the cell granularity (Side Scatter (SSC)-A, -H, -W). Total blood (25 μl) was diluted 1:4
with MCa (final volume, 100 μl) and exposed or not to 32 μg/ml of PAC-IONs and incubated for 5.5 h at 37◦C
and 5% CO2. After incubation, cells were stained with 0.5 μl of anti-CD45-PE-Cy7. Erythrocytes were lysed
with 300 μl of Opty Lyse Buffer for 10 min and 300 μl of sterile deionized water for an additional 10 min. In
some assays, owing to the decreased surface expression of CD14 and CD16 in monocytes, the cells were mixed
with the PAC-IONs only for 1.5 h at 37◦C; then, the cells were stained with fluorochrome-conjugated mouse
antihuman CD45-PECy7, CD14-PE, CD16-BV421, HLA-DR-FITC mAbs to distinguish the monocyte subset
interacting with the PAC-IONs. The acquisition was performed in an LSR Fortessa II™ flow cytometer. In the
first set of assays, the CD45+ cells were subdivided into three regions based on their cell granularity for gating
granulocytes, monocytes and lymphocytes. In the second set of assays, monocyte subsets were defined. The cell
granularity parameters were analyzed using the Overton subtraction of histograms in FlowJo software version 7.6.2
(Tree Star Inc., OR, USA). The areas under the curves (AUCs) were compared with the Kolmogorov–Smirnov test.
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Isolation of monocytes & differentiation into macrophages
The percentages of CD14+ monocytes in the isolated PBMCs were determined by labeling 3.0 × 105 cell/μl with
5 μl of anti-CD14-PE mAb and flow cytometry. Then, 2.5 × 105 or 7.5 × 104 CD14+ cells/well were plated in
48- or 96-well dishes at a final volume of 500 and 200 μl, respectively. The cells were cultured in media containing
0.5% FCS, at 37◦C and 5% CO2, and were allowed to adhere to plastic. Four hours later, the monolayer was washed
with PBS containing 0.5% FCS at 37◦C to remove nonadherent cells, followed by checking under an inverted
microscope [17]. Then, the adherent cells were cultured for 5 days until differentiated into macrophages in the
presence or absence of 32 μg/ml of PAC-IONs. The cell purity of the monocyte-derived macrophage monolayers
(MDMMs) was determined on the 5th day of differentiation by staining with fluorochrome-conjugated mouse anti-
human CD3-PerCP, CD19-Alexa Fluor R© 488 and CD56-BV510 mAbs to identify the presence of contaminant
T-, B- and NK cells, respectively. In all cases, the cell purity of the MDMMs was higher than 95%.

Exposure of the MDMMs to the MF
After overnight incubation at 37◦C and CO2, the MDMMs differentiated in the presence or absence of 32 μg/ml
of PAC-IONs were exposed or not to a 1.5-T MF for 10 min with the following parameters: TR = 4200 ms,
TE = 102 ms, flip angle of 90◦, echo train length of 10, 5-cm field of view, 2-mm section thickness, 0.2-mm
intersection gap and 256 × 160 matrix. Then, MDMMs were incubated for 5 days at 37◦C and CO2. On the 5th
day, the supernatants were collected and stored at -20◦C for measuring the levels of TNF-α and IL-8, IL-1β, IL-6,
IL-10 and IL-12p70. The MDMMs were used for cocultures with autologous CD3+ T cells as described below.

Isolation of CD3+ T cells by cell sorting
Autologous PBMCs were isolated from the corresponding donors of the monocytes used to generate the MDMMs.
PBMCs were labeled with anti-CD3-PerCP mAb to separate total CD3+ T cells using the MoFlo™ XDP Cell
Sorter (Beckman Coulter Inc.). The purity and efficiency of sorting were higher than 95 and 90%, respectively.
Sorted CD3+ T cells were washed once and resuspended in 12 ml of PBS, and stained with CFSE at a final
concentration of 0.2 μM. The cell suspension was mixed by inversion and incubated for 20 min at 37◦C and
5% CO2. Subsequently, 1 ml of iFCS was added to quench the unbound CFSE and cells were incubated for
an additional 40 min at 37◦C and 5% CO2 to allow the diffusion of the unbound CFSE. Afterward, the cells
were washed twice with PBS at 1000× g for 10 min, the supernatant was discarded and the CFSE+ T cells were
resuspended in media supplemented with 10% iFCS.

Cocultures of MDMs & CD3+ T cells
As previously described, the MDMs, differentiated in the presence or absence of 32 μg/ml of PAC-IONs and
exposed or not to a 1.5-T MF for 10 min, were cocultured with autologous CFSE-labeled CD3+ T cells (1:2 ratio;
MDMs:T cells) and then stimulated with 2 μg/ml of PHA-M or 50 μg/ml TT. PHA-M was used as a positive
control of polyclonal T-cell proliferation and TT for stimulating the proliferation of memory T cells. The cocultures
were incubated in darkness for 120 h at 37◦C and 5% CO2. Then, T cells were resuspended, harvested, labeled
with 7-AAD (to exclude dying cells), anti-CD4-PE and anti-CD8-eFluor mAbs, and acquired in an LSRFortessa
II™ flow cytometer. Proliferation index, division rates and percentages of dividing CD4+ and CD8+ T cells were
determined using the FlowJo software version 7.6.2. Supernatant aliquots were collected before removing T cells
from the cocultures and stored at -20◦C for measurement of IL-10, IL-4, IL-2, IL-6, TNF-α and IFN-γ levels
using the CBA Human Th1/Th2 Cytokine Kit (BD Pharmingen).

Cytokine determination
Human inflammatory (IL-8, IL-1β, IL-6, IL-10, TNF-α and IL-12p70) and Th1/Th2 cytokines (IL-10, IL-4,
IL-2, IL-6, TNF-α and IFN-γ) were measured using the CBA Human Inflammatory and Th1/Th2 Cytokine Kits
(BD Pharmingen), following the manufacturer’s instructions.

Isolation of CD14++CD16- & CD14+CD16+ monocyte subsets
A monocyte-enriched cellular suspension was prepared using the RosetteSep Human Monocyte Enrichment
Cocktail Kit (STEMCELL Technologies), according to the manufacturer’s instructions. Briefly, 50 ml of defibrinated
venous blood from healthy volunteers was mixed with 2.5 ml of tetrameric antibody complexes against CD2,
CD56, CD19, CD3, CD8, CD66b and glycophorin A, and incubated for 20 min at room temperature. Then,
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this blood-labeled sample was diluted in 50 ml of PBS containing 2% of FCS and centrifuged in a Histopaque
density (1.077 g/ml) gradient at 1200 × g for 20 min at room temperature. The cellular monocyte-enriched
interface was recovered and washed with 50 ml of PBS containing 2% iFCS. The monocyte-enriched suspension
(purity ≥85%) was labeled with anti-CD45-PE-Cy5, anti-HLA-DR-PerCP, anti-CD14-PE and anti-CD16-FITC
mAbs for sorting of the CD45+HLA-DR+CD14++CD16- and CD45+HLA-DR++CD14+CD16++ monocyte
subpopulations using a MoFlo XDP cell sorter. The isolated monocyte subsets reached purities from 93–98% and
the recovery efficiencies for CD14++CD16- and CD14+CD16++ monocytes were ≥90 and ≥70%, respectively.
These monocyte subpopulations were allowed to differentiate to MDMs in the presence of PAC-IONs as previously
described. Then, the amount of intracellular iron was determined by atomic absorption spectrometry (AAS).

Isolation of B- & T cells & granulocytes
RosetteSep Human T- and B-cell Enrichment Cocktail Kits (STEMCELL Technologies) were used according to
the manufacturer’s instructions. To isolate granulocytes, 5 ml of EDTA-anticoagulated blood was carefully layered
onto 5.0 ml of polymorphprep in a 15-ml conic tube and centrifuged at 550 × g for 30 min in a swing out rotor at
18–22◦C, and deceleration without the break. The suspension was transferred to a 15-ml tube, and the cells were
pelleted at approximately 400 g for 10 min at 22◦C. Granulocytes were resuspended in culture media for subsequent
analysis. The purity of all these cell suspensions was evaluated by flow cytometry using fluorochrome-conjugated
mouse anti-human CD3, CD56, CD19, CD14 and CD16 mAbs. Isolated T and B cells and granulocytes were
exposed to PAC-IONs as previously described. Then, the amount of intracellular iron was determined by AAS.

Quantification of iron content by AAS
Cells were washed twice with PBS at 37◦C and subjected to acid digestion with 3 ml of nitric acid and boiling before
being removed. Samples were allowed to reach room temperature; then, 2.5 μl was transferred to 25-ml volumetric
balloons, gauged with distilled water and homogenized by inversion. Afterward, the iron content in the samples
was quantified using an Atomic Absorption Spectrometer iCE 3000 Series model Flame autosampler controlled
by a Thermo Scientific SOLAAR Software (Thermo Fisher Scientific, MA, USA) in the ‘Laboratorio de Análisis
Fisicoquı́mico at Universidad de Antioquia.’ Five hundred microliters of the cell lysates derived from cultures treated
or not with PAC-IONs were neutralized with NaOH before protein quantitation with the bicinchoninic acid assay.
This measurement was carried out to verify that the differences in the iron content could not be attributable to
variations in the number of cells per well. Therefore, iron content was expressed in relation to the protein content.

Photographic records of MDMs
Photographic records were obtained in an Eclipse TS 100 inverted microscope, provided with phase-contrast
achromatic 40X objectives (Nikon, Tokyo, Japan) using a Digital Sight DS-fi1 camera with TV Lens 0.55X DS
(Nikon).

Analysis of data
All experiments were done at least by triplicate. The paired data were compared with the Wilcoxon test. The effect of
the PAC-IONs and/or the MF on the cytokine levels were determined by a two-way analysis of variance (ANOVA)
with a Bonferroni post-test. p-values < 0.05 were set for statistical significance. Flow cytometric data were analyzed
with the FlowJo software version 7.6.2. Statistical analyses were performed using the Statgraphics™ Centurion R©

XVI software, version 16.1.8 (StatPoint Technologies Inc., VA, USA) and the GraphPad Prism software, version
6.0 (GraphPad Software Inc., CA, USA).

Results
PAC-IONs & MF did not affect either the plasma membrane integrity, or the mitochondrial
membrane potential of PBMCs
PBMCs were incubated with 32 μg/ml of PAC-IONs for 12 h and exposed to a 1.5-T MF for 10 min. Initially,
the cytotoxic effect of several concentrations of PAC-IONs (from 6.2 to 32 μg iron, quantified by gravimetry) was
tested; 32 μg/ml was the higher concentration of PAC-IONs in which cultured cells did not exhibit changes in
either the mitochondrial DIOC6 uptake or the plasma membrane; these results were similar to previous reports [45].
Viability was evaluated using a DIOC6/PI staining. DIOC6 detects the reduction of the mitochondrial membrane
potential, one of the earliest hallmarks of many different types of cell death; and PI detects cell membrane damage.
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Figure 1. The poly(acrylic acid)-coated iron oxide nanoparticles and the magnetic field do not affect either the cell
membrane integrity or the mitochondrial membrane potential of peripheral blood mononuclear cells. Flow
cytometer dot plots showing DIOC6 and PI staining of PBMCs that were cultured in the absence (A) or presence (B) of
the PAC-IONs. The percentages of DIOC6 high (viable), DIOC6 low (mitochondrial damage) and PI+ (with membrane
damage) cells of a representative experiment are shown. The DIOC6 MFI of the viable PBMCs was compared by
histogram overlay: PBMCs cultured with and without PAC-IONs, and exposed or not to the magnetic field (C). The
consolidated values of DIOC6 MFI were compared through an analysis of variance, ANOVA II (D); n = 4 independent
experiments.
ANOVA: Analysis of variance; MFI: Mean fluorescence intensity; PAC-ION: Poly(acrylic acid)-coated iron oxide
nanoparticle; PBMC: Peripheral blood mononuclear cell; PI: Propidium iodide.

As shown in Figure 1A & B, the exposure to PAC-IONs did not alter either the proportion of cells with cell
membrane damage (PI+) or the fraction of DIOC6

+ cells. Furthermore, the different treatments did not change
the DIOC6 mean fluorescence intensity of viable PBMCs (those with the highest DIOC6 uptake; Figure 1C & D).
It is important to note that the DIOC6 uptake per cell was higher in cultures exposed to PAC-IONs or the MF;
however, these effects were not statistically significant. There were no interactions between the PAC-IONs and the
MF, according to a two-way ANOVA.
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Figure 2. The poly(acrylic acid)-coated iron oxide nanoparticles and the magnetic field do not affect the capacity of
peripheral blood mononuclear cells to proliferate and do not induce DNA damage or caspase-3-mediated cell death.
(A) Flow cytometer dot plots show the strategy for the exclusion of cell aggregates based on DAPI-A versus DAPI-W.
(B) Definition of BrdU+ PBMCs. (pS139) H2AX+ and cleaved PARP1+ cells in PBMCs treated or not with the PAC-IONs
and exposed to the MF (C). Positive control of cell damage: PBMCs were treated with 20 nM Topotecan hydrochloride
(D). Consolidated results (E) Y1 axis, percentage of (pS139) H2AX+ and/or cleaved PARP1+ cells. Y2 axis, percentage of
BrdU+ cells. Comparisons were made with ANOVA II, n = 5 independent experiments.
ANOVA: Analysis of variance; MF: Magnetic field; PAC-ION: Poly(acrylic acid)-coated iron oxide nanoparticle; PBMC:
Peripheral blood mononuclear cell.

PAC-IONs &/or the MF did not alter the ability of PBMCs to proliferate, cause DNA damage or
increase the signs of cell death
To rule out possible effects of the PAC-IONs on cell proliferation, DNA integrity, or cell viability, PBMCs were
exposed to the PAC-IONs and the 1.5 T MF for 10 min; then, PBMCs were stimulated with PHA-M or TT
and pulsed with BrdU. Afterward, cells were fixed and permeabilized, labeled with anti-PARP1 (cleaved form),
anti-(pS139) H2AX, anti-BrdU mAbs, and DAPI, and acquired in a flow cytometer. The PHA-M stimulus and the
BrdU-anti BrdU system evaluate the cell fraction in S (DNA synthesis) phase. Anti-(pS139) H2AX and anti-PARP1
mAbs detect cells with DNA damage and cleavage of PARP1 (a sign of caspase-3-mediated cell death), respectively.
Figure 2 shows the strategy used to exclude cellular aggregates (Figure 2A), the definition of BrdU+ (Figure 2B),
PARP1+ and (pS139) H2AX+ (Figure 2C) cells, and the positive control for DNA damage (Figure 2D). As seen
in Figure 2E, the PAC-IONs and/or the MF did not induce significant changes in PBMCs in comparison with the
cell controls exposed only to culture media. Besides, PAC-IONs and/or the MF did not alter either the PARP1+

or the (pS139) H2AX+ cells present in the BrdU- cell fraction (data not shown).

PAC-IONs are selectively internalized by monocytes
Whole blood was exposed to 32 μg/ml of PAC-IONs and incubated for 5.5 h at 37◦C. Then, the cells were stained
with anti-CD45-PE-Cy7 mAb, and the erythrocytes were lysed. Flow cytometry was used to evaluate changes in
cell granularity (SSC), as an indicator of the PAC-ION uptake by the cells. As seen in Figure 3A and B, the SSC
versus forward scatter (FSC) dot plots showed obvious changes in the SSC of monocytes. The differences in the
PAC-ION uptake by monocytes, lymphocytes, and granulocytes (gated in defined regions) were estimated through
comparisons of the AUCs of the SSC histograms for each cell subset from cultures incubated in the presence or
absence of PAC-IONs. The Kolmogorov-Smirnov Goodness-of-Fit test showed increased medians for the AUCs
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Figure 3. The poly(acrylic acid)-coated iron oxide nanoparticles markedly increase the granularity of peripheral
blood monocytes. Whole-blood samples were treated with the PAC-IONs for 5.5 h and stained with anti-CD45-PE-Cy7.
Flow cytometer dot plots show granularity versus CD45 to define leukocyte subsets cultured in the absence (A) or
presence of PAC-IONs (B). (D–F) Comparisons of overlaid histograms through the K–S Goodness-of-Fit test in the
FlowJo program version 7.6.2. Comparison of the AUCs (left Y-axis, – C –) among the three cell populations, according
to K–S values. Comparison of the iron content in cells isolated with RosetteSep™ or Polymorphprep™ and then
exposed to PAC-IONs for 5.5 h, extensively washed with PBS, counted and lysed to quantify proteins by BCA, and iron
by AAS (right Y-axis, – C –). In both cases, one-way ANOVA and the Dunn post-test (C).
n = 10 independent experiments.
AAS: Atomic absorption spectrometry; ANOVA: Analysis of variance; AUC: Area under the curve; BCA: Bicinchoninic
acid assay; KS: Kolmogorov–Smirnov; PAC-ION: Poly(acrylic acid)-coated iron oxide nanoparticle; PBS:
Phosphate-buffered saline; SSC: Side scatter.

of the overlaid SSC histograms between cells from cultures treated with and without PAC-IONs; specifically, the
values for monocytes, granulocytes and lymphocytes were 24.55, 6.88 and 3.65%, respectively (Figure 3C).

To confirm that the amount of PAC-IONs internalized by lymphocytes and granulocytes were negligible, blood
samples were spliced to isolate T- and B cells and granulocytes. T- and B cells were isolated using RosetteSep Human
T- and B-Enrichment Cocktail kits; and, Polymorphprep was used for isolating granulocytes. Cells were counted,
and equal numbers were incubated or not with PAC-IONs for 5.5 h. Afterward, cells were extensively washed with
PBS for determining the iron content by AAS. The iron content was similar in cells exposed or not to the particles
(Figure 3C, right Y-axis); it is important to note that cell concentration and protein content were similar in cultures
exposed or not to the nanoparticles. Additional experiments (not shown) were performed to evaluate whether the
PAC-IONs could alter the polymorphonuclear neutrophils (PMN) function. These assays showed that the phorbol
myristate acetate (PMA)-induced respiratory burst and the mitochondrial stability of PMNs did not change in the
presence of PAC-IONs during a 3-h follow-up (data not shown).

PAC-IONs were internalized by monocytes & remained intracellularly until the differentiation into
macrophages was completed
To verify the PAC-ION uptake by monocytes and the intracellular permanence of the particles during the MDM
differentiation, monocytes were allowed to differentiate in the absence or presence of 32 μg/ml of PAC-IONs
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Figure 4. The poly(acrylic acid)-coated iron oxide nanoparticles are internalized by the monocytes and retained
intracellularly through their differentiation into macrophages. Photographs were taken with a phase-contrast
microscope (40x objective) for MDMs differentiated in the absence (A) or presence of PAC-IONs (B). Quantification of
the intracellular iron content by AAS (C). The iron picogram-content is expressed as the total value of iron measured
divided by the number of cells per well, calculated according to the protein concentration. The comparison was made
using a Wilcoxon test for paired samples. p = 0.0002, n = 4 independent experiments with three replicates in each.
AAS: Atomic absorption spectrometry; MDM: Differentiation into mature macrophage; PAC-ION: Poly(acrylic
acid)-coated iron oxide nanoparticle.

for 5 days and were analyzed by two strategies. The first approach was the analysis of photographic records to
compare the morphology of the MDMs. Regardless of the presence of PAC-IONs, the cells were adherent, flattened
and showed cytoplasmic projections (Figure 4A & B). The second strategy was the quantification of the cellular
iron content in MDMs exposed or not to PAC-IONs. To this purpose, after taking the photos, the monolayers
were exhaustively washed to remove the extracellular PAC-IONs; then, the iron content was measured by AAS
(Figure 4C). The differences in the cellular iron content allowed to confirm that PAC-IONs were internalized by
MPs. Additionally, the cells exposed to the PAC-IONs displayed four- to seven-times more iron content than the
non-exposed cells (p = 0.0007 for the ratio between treated and untreated cells; and p = 0.0002 for differences
between the respective means).

PAC-IONs & MF did not affect the MDM viability
Although the evidence showed that the PAC-IONs did not compromise the PBMC viability, the MDM viability
was studied to verify that cells had not been affected as a result of the high PAC-IONs uptake by their monocytic
precursors and the exposure to the MF. MDMs were differentiated in the presence of the PAC-IONs for 5 days
and then exposed to the MF for 10 min. Then, the MDM morphology was evaluated by microscopy; additionally,
the mitochondrial membrane potential and the cell membrane integrity were evaluated using DIOC6 and PI
stains, respectively. The morphological characteristics of MDMs did not change after the treatments (Figure 5A–
D). Moreover, viable DIOC6

high MDMs accounted for almost 90% of cells, and MDMs with a damaged cell
membrane (PI+) were around 10% (Figure 5E–H).

Accumulation of cytokines in cultures of MDMs differentiated in the presence of PAC-IONs &
exposed to MF
The pattern of cytokines accumulated in MDM cultures was studied to verify that it had not been affected as
a result of the high PAC-IONs uptake by their monocytic precursors and the exposure to the MF. MDMs were
differentiated in the presence of the PAC-IONs for 5 days and exposed to the MF for 10 min. Then, the MDMs
were incubated for an additional 6 days, and supernatants were collected for quantifying IL-10, IL-12, TNF-α,
IL-1β, IL-8 and IL-6. The transient MF exposure (without PAC-IONs) did not change the levels of cytokines
(Figure 6A–F); on the contrary, the exposure to the PAC-IONs (with or without the MF) increased the IL-8 and
IL-6 levels (Figure 6E & F). No significant differences were observed in the levels of IL-10 (Figure 6D), IL-12
(Figure 6B), TNF-α (Figure 6C) and IL-1β (Figure 6A). The combined exposure to the PAC-IONs and the MF
increased the IL-6 (p < 0.05; Figure 6F), but not the IL-8 (p > 0.05; Figure 6E) levels.
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Figure 5. The differentiation into mature macrophages differentiated in the presence of the poly(acrylic acid)-coated iron oxide
nanoparticles and exposed to the magnetic field does not show changes in viability or morphology. MDMs were differentiated in the
absence or presence PAC-IONs for 5 days and nonexposed or exposed to a 1.5-T MF (MF- and MF+, respectively) for 10 min. Photographs
were taken with a contrast microscope (40x objective; A–D); then, cells were detached from the plates and stained with DIOC6 and PI
(E–H). MDMs differentiated w/o PAC-IONs and MF- (A & E) w/o PAC-IONs and MF+ (B & F), with PAC-IONs and MF- (C & G) or with
PAC-IONs and MF+ (D & H) conditions. Figures are one image representative out of n = 5 independent experiments with three replicates
each, in which there were no significant differences due to the PAC-IONs or the MF.
MDM: Differentiation into mature macrophage; MF: Magnetic field; PAC-ION: Poly(acrylic acid)-coated iron oxide nanoparticle; PI:
Propidium iodide.

Accumulation of cytokines in the cocultures of MDMMs (differentiated in the presence of PAC-IONs
& MF) with autologous T cells
MDMs differentiated in the presence of the PAC-IONs for 5 days and exposed to the MF for 10 min were
incubated for an additional 6 days. Then, supernatants were removed for quantifying cytokines, as described
above, and replaced with fresh media containing highly purified autologous CFSE+ CD3+ T cells (MDM:T-cell
ratio = 1:2). The cocultures were stimulated with PHA-M as a positive control for T-cell proliferation or with
TT as a conventional antigen for the proliferation of memory T cells. Negative controls for cell proliferation were
prepared without any stimulus. After 96-h incubation, supernatants were collected to evaluate the accumulation
of Th1/Th2 cytokines: IL-10, IL-4, IL-2, IL-6, TNF-α and IFN-γ. Overall, none of these cytokines increased
in the non-stimulated co-cultures (data not shown), and IL-4 levels did not change even in cocultures stimulated
with PHA-M and TT (Figure 7B). In comparison with the nonstimulated cocultures, PHA-M and TT induced
changes in the levels of IL-10, IL-2, IL-6, TNF-α and IFN-γ (Figure 7). The previous exposure to the PAC-IONs
(without the MF) increased the levels of IL-10 in response to TT (Figure 7A), and of IL-6 (Figure 7D) in response
to PHA-M and TT. Moreover, the levels of IL-2 (Figure 7C) and TNF-α (Figure 7E) decreased in response to
PHA and TT; and, IFN-γ also decreased (Figure 7F) in response to PHA. In the case of previous exposure to the
PAC-IONs and the MF, a decrease in the IL-10 (Figure 7G) and IL-6 (Figure 7J) levels were observed in response
to PHA and TT. Besides, there was an increase in IL-2 (Figure 7I) and TNF-α (Figure 7K) levels in response to
PHA-M and TT, and no differences were found in the accumulation of IFN-γ (Figure 7L) with any of the stimuli.

Differentiation of MDMs in the presence of PAC-IONs & MF did not affect the proliferation of
autologous CD4+ or CD8+ T cells
MDMs differentiated in the presence of the PAC-IONs and exposed to the MF were cocultured with highly
purified CFSE+ CD3+ T cells and stimulated with PHA-M or TT as previously described. T cells were recovered
from the culture, labeled with anti-CD4-PE and anti-CD8-eFluor mAbs, and acquired in a flow cytometer to
evaluate the cell proliferation. SSC-Alow dead cells were excluded from the analysis in an FSC-A versus SSC-A dot
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Figure 6. The differentiation into mature macrophages differentiated in the presence of the poly(acrylic acid)-coated iron oxide
nanoparticles exhibits increased levels of IL-6 and IL-8 regardless of the exposure to the magnetic field. MDMs were differentiated in the
absence (open circles) or presence (filled circles) of PAC-IONs for 5 days and nonexposed or exposed to a 1.5-T MF (MF- and MF+,
respectively) for 10 min. The levels of cytokines were evaluated by CBA in supernatants of cultures (A–F). The comparisons were made
with a two-way ANOVA.
n = 5 independent experiments with three replicates each.
ANOVA: Analysis of variance; CBA: Cytometric bead array; MDM: Differentiation into mature macrophage; MF: Magnetic field; PAC-ION:
Poly(acrylic acid)-coated iron oxide nanoparticle.

plot (Figure 8A; they were also DAPI+ cells, data not shown). CD4+ and CD8+ T cells were gated (Figure 8B) to
analyze the dilution of CFSE in the proliferating cells (Figure 8C & D). Overall, the cell proliferation, the division
indexes (data not shown) and the percentages of dividing T cells in response to TT or PHA-M (Figure 8E) did
not change in co-cultures prepared with MDMs previously exposed to the PAC-IONs and/or the MF. Although
the percentage of dividing T cells increased in the cocultures with MDMs previously exposed to PAC-IONs, this
result was not statistically significant.

CD14+CD16+ monocytes showed a higher PAC-ION uptake than the CD14+CD16- subset
In order to establish if monocyte subsets had a different ability for PAC-ION uptake, whole-blood samples were
exposed or not to the PAC-IONs only for 1.5 h (this shorter incubation time was set because the surface CD14
and CD16 expression in monocytes decreased during more extended periods). Then, cells were stained with
anti-CD45-PeCy7, anti-CD14-PE, anti-CD16-BV450 and anti-HLA-DR-FITC mAbs to be analyzed by flow
cytometry. In the first place, CD14++CD16- and CD14+CD16++ monocyte subsets were identified; then, the
cell granularity was evaluated in each cell subpopulation from cultures previously exposed or not to the PAC-IONs;
and finally, the Overton subtraction was used for comparing the granularity of the cell subsets (Figure 9A). In the
absence of the PAC-IONs, the Kolmogorov–Smirnov test between the two monocyte subsets was about 3.2%,
but in the presence of PAC-IONs, the difference was 65%. The �voltage SSC for cells before and after exposure
to the PAC-IONs showed that the CD14+CD16++ monocytes had the higher PAC-ION uptake (p ≤ 0.00001;
Figure 9B). Additionally, purified CD14+CD16- and CD14+CD16+ monocytes were allowed to differentiate in
the presence of the PAC-IONs for 5 days. Then, cells were lysed to quantify the intracellular iron content by AAS.
MDMs derived from the CD14+CD16+ monocytes showed an iron content around ten-times higher compared
with MDMs derived from the CD14+CD16- subset (p < 0.0001; Figure 9C).
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Figure 7. The differentiation into mature macrophages differentiated in the presence of the poly(acrylic acid)-coated iron oxide
nanoparticles and exposed to the magnetic field shows a different pattern of cytokines when cocultured with autologous CD3+ T cells.
MDMs were differentiated in the absence (open circles) or presence (filled circles) of PAC-IONs for 5 days and nonexposed or exposed to a
1.5-T MF for 10 min. Then, MDMs were incubated for 6 days; supernatants were removed, autologous CFSE+ CD3+ T cells were added (1:2
ratio; MDMs:T cells) and stimulated with PHA or TT for 96 h. The levels of cytokines were evaluated by CBA in supernatants of co-cultures
prepared with MDMs that had not been (A–F) or had been exposed to the MF (G–L). Comparisons were made with ANOVA II, p-values are
shown in the figure; n = 5 independent experiments with three replicates each.
ANOVA: Analysis of variance; CBA: Cytometric bead array; MDM: Differentiation into mature macrophage; MF: Magnetic field; PAC-ION:
Poly(acrylic acid)-coated iron oxide nanoparticle; PHA: Phytohemagglutinin; TT: Tetanus toxoid.

Discussion
Nanomedicine has implemented the use of materials in the nanoscale range to improve different features of clinical
processes, from diagnosis to treatment. Nanoparticles have been used as vehicles, containers for drug encapsulation,
anchor points for proteins, enzymes and even iRNA, and contrast agents, for different purposes.

The contrast agents used in nanomedicine are coated or uncoated metal nanoparticles. The core can be made
of gold, silver or magnetic oxides (copper, iron, cobalt and titanium). The latter allow the detection of a magnetic
response when the nanomaterials are exposed to an MF. Previous studies have shown that iron oxides coated
with polymers have a reasonable degree of biocompatibility [46–49]. For this reason, PAC-IONs were used in this
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Figure 8. The differentiation into mature macrophages differentiated in the presence of the poly(acrylic
acid)-coated iron oxide nanoparticles and exposed to the magnetic field retains the ability to stimulate the
proliferation of autologous CD3+ T cells. MDMs were differentiated in the absence or presence of the PAC-IONs for
5 days and non-exposed or exposed to a 1.5-T MF for 10 min. Autologous CFSE+ CD3+ T cells were added (1:2 ratio;
MDMs:T cells) and stimulated with PHA or TT for 96 h. CD3+ T cells were stained with anti-CD4 and anti-CD8 mAbs.
Flow cytometry FSC-A versus SSC-A dot plots for selection of viable lymphocytes (A) followed by gating of CD4+ and
CD8+ subpopulations (B) to evaluate their proliferation in response to a negative control, PHA and TT by the dilution
of CFSE. Histograms from a representative experiment show resting cells (red), dividing cells (pink) and the predicted
model of cell proliferation (green line) in the FlowJo software version 7.6.2 (C, CD4+ and D, CD8+ T cells).
Consolidated data of the percentages of dividing CD4+ and CD8+ T cells (E). Differences were evaluated with the
Wilcoxon test, n = 5, independent experiments.
ANOVA: Analysis of variance; CBA: Cytometric bead array; CFSE: Carboxyfluorescein diacetate succinimidyl ester; FSC:
Forward scatter; mAb: Monoclonal antibody; MDM: Differentiation into mature macrophage; MF: Magnetic field;
PAC-ION: Poly(acrylic acid)-coated iron oxide nanoparticle; PHA: Phytohemagglutinin; SSC: Side scatter; TT: Tetanus
toxoid.

study as a putative interface to interact with monocytes. This study evaluated some of the possible effects of these
nanoparticles on PBMCs and MPs, taking into account that the PAC-IONs are a putative interface to interact with
MPs through scavenger receptors [50].
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Figure 9. Nonclassical monocytes have a higher uptake of poly(acrylic acid)-coated iron oxide nanoparticles.
Whole-blood samples were treated with PAC-IONs for 1.5 h and stained with anti-CD45-PE-Cy7, anti-CD14-PE,
anti-CD16 V450 and anti-HLA-DR-FITC. Flow cytometer dot plots show the distribution of classical, nonclassical and
intermediate monocytes, then overlaid histograms through the K–S Goodness-of-Fit test compared the granularity in
the absence (left) or in the presence of PAC-IONs (right). The changes in the granularity for classical and nonclassical
monocytes were compared by test in the FlowJo program version 7.6.2. The consolidated information of five
independent experiments is shown in (B). MDMs were differentiated from CD14+CD16- (CD14+) or CD14+CD16+

(CD16+) monocytes in the absence or presence of PAC-IONs for 5 days (C); then, MDMs were lysed and acid-digested
for quantifying the intracellular iron content by AAS. The comparison was made with the Wilcoxon test, n = 4,
independent experiments.
AAS: Atomic absorption spectrometry; KS: Kolmogorov–Smirnov; MDM: Differentiation into mature macrophage;
PAC-ION: Poly(acrylic acid)-coated iron oxide nanoparticle; SSC: Side scatter.

Effect of the PAC-IONs on the viability of PBMCs
The results showed that the PAC-IONs and the MF do not affect either the cell membrane integrity or the
mitochondrial membrane potential of PBMCs after 12 h of exposure; besides, they do not induce DNA strand
breaks, apoptosis or changes in the proliferation of PBMCs stimulated with PHA or TT. These results agree with
data published in the literature that reported that human T cells exposed to PAC-IONs with a diameter of 10.1 nm
did not undergo alterations in either chromosomes or cell proliferation [47]. However, another study in a murine
model found that cardiac tissues exposed to polyethylene glycol-coated IONs with an average diameter of 5 nm
showed an increased production of intracellular reactive oxygen species (ROS), as well as DNA damage, evidenced
by the COMETA assay [51]. Another study found that the treatment of K562 cells with daunorubicin (inhibitor of
topoisomerases) plus Fe3O4 nanoparticles 30 nm average diameter enhanced the nuclear fragmentation induced
by the drug through the caspase-8/PARP pathway [52]. Overall, these studies highlight the relevance of the particle
size rather than the type of coating in the activation of different pathways able to induce cell damage.
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Selective PAC-IONs uptake by the leukocyte subpopulations
Because the PAC-IONs did not affect the PBMC viability, the selective particle uptake by different leukocyte subsets
was evaluated through the changes in cell granularity (SSC-A) by flow cytometry, as previously reported [53,54]. The
highest PAC-ION uptake by monocytes was verified by quantification of the intracellular iron content by AAS, as
previously reported by other authors [45]. The MDMs cultured in the presence of PAC-IONs had an iron content
seven-times greater (Figure 4C) than the amount observed in MDMs differentiated without the nanoparticles. This
finding confirmed that the change in the monocyte granularity was related to the PAC-IONs internalization.

Cell granularity as an indicator of particle uptake has been used by other authors who reported that iron levels
could be equivalent to 50% of the uptake observed in the present study [56]. This finding could be attributed to the
different concentration of nanoparticles; in fact, they used 100 μg/ml while the present study used 32 μg/ml in all
cases. On the other hand, polyacrylate could have given selectivity for the PAC-IONs to monocytes; however, there
is not enough evidence to determine the cause of the higher nanoparticle uptake observed in the present study.
To date, there are no reports about the mechanism of recognition involved in the PAC-IONs internalization by
monocytes; however, the selectivity for monocytes is attributed to the Z potential. This factor allows the interaction
with receptors that can bind negatively charged particles, that can enter monocytes via the MARCO scavenger
receptor [55]. Previous reports have proposed that the potential interaction between nanoparticles and scavenger
receptors could be related to the sodium polyacrylate conjugated on the surface of liposomes [50]. Moreover, owing
to the PAC-IONs’ sodium polyacrylate coat, the nanoparticle surface is enriched in carboxyl groups, and can
interact with the CD36 scavenger receptor [50].

Effect of the PAC-IONs & the MF on the MDM viability
According to the present study, the PAC-IONs had a higher selectivity for monocytes; therefore, the following
analysis was focused on this leukocyte subpopulation. Viability, morphology and cytokine production were evaluated
in MDMs differentiated in the presence of the PAC-IONs and the MF.

MDMs differentiated in the presence of the PAC-IONs and/or the MF did not show any difference in the DIOC6

uptake compared with MDMs differentiated in the absence of those treatments. This observation indicated that
neither the presence of the PAC-IONs nor the exposure to the MF affected the MDM viability. These findings
agree with a previous work in which the monocyte viability was not affected by four independent preparations of
polymeric dextran-coating IONs [45].

In addition to cell viability, it was relevant to evaluate the events involved in the function of the MPs, including
adherence, differentiation and cytokine production. To this purpose, MDMs differentiated in the presence of the
PAC-IONs and exposed to the MF were visualized under phase-contrast microscopy. The images showed that the
adherence to the plate and the typical cytoplasmic projections were similar to those observed in the control cultures.

Other authors exposed monocytes to 100 μg Fe/ml of dextran coated-IONs for 2 h and found no effect on the
CD11b expression [45]. The fact that the PAC-IONs and the MF did not change the protein content suggested that
cellular adhesion had not been altered, and it was considered that the number of adherent cells did not change during
the process of differentiation in the presence or absence of the PAC-IONs. The exposure of U937 promonocytes
to a 6-mT MF together with 12-0-tetradecanoyl-13-phorbol-acetate, a differentiation inducer, altered the cell
morphology, decreased the number of adherent cells and affected the differentiation of the cell line [56].

Effect of the PAC-IONs & the MF in the production of cytokines in MDM cultures & cocultures of
MDMs with autologous T cells
To explore functional changes in MDMs differentiated in the presence of the PAC-IONs and the MF, two
parameters were evaluated: the levels of cytokines in the cultures of MDMs and the interaction of MDMs with
autologous T cells.

Accumulation of cytokines in MDM cultures

Cytokines were measured in supernatants from MDMs differentiated in the presence of the PAC-IONs and exposed
to the MF. IL-6 and IL-8 increased in the MDM cultures differentiated in the presence of PAC-IONs regardless
of the exposure to the MF. Similar results were reported by some authors who argued that the phenomenon could
be explained by an increase in the ROS levels [57,58]. Although ROS production was not evaluated in the present
study, it is possible to suppose that mitochondria were not compromised because the DIOC6 uptake was similar in
cultures exposed or not to the treatments. Neutrophils increase the ROS production in response to polyacrylate-
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coated nanoparticles, in a mechanism dependent on the NADPH oxidase system [59]. In the experimental model
here presented, a test for a specific evaluation of ROS production in response to PAC-IONs would be convenient.
In another study, the treatment of whole blood with PAC-IONs induced the production of IL-1β, TNF-α, IL-6,
IL- 8, IFN-γ and IL-10 [46], a finding partly similar to results here described where only increased levels of IL-6
and IL-8 were observed. Other authors found that proinflammatory cytokines (TNF-α, IL-1β, IL-6) did not
increase in cultures of the human monocytic cell line THP-1 exposed to polymeric chitosan DNA-encapsulating
nanoparticles [60], suggesting a possible role for the type of coating.

Considering that the MDMs were not only treated with the PAC-IONs but also exposed to the MF, it is necessary
to deliberate if this treatment could alter the production of cytokines. It is known that MFs can affect the channels,
such as the voltage-gated calcium one, which in turn participates in the proper functioning of the potassium
channels [61,62]. These latter ones are involved in the production of some cytokines [56,63], an event activated as
soon as the macrophages begin to adhere in response to IL-2 or IL-6 [63]. These observations could partly explain
the increased levels of IL-8 and IL-6 in the MDM cultures differentiated in the presence of the PAC-IONs and
exposed to the MF.

Accumulation of cytokines in cocultures of MDMs & autologous T cells

A stepwise system for coculture of MDMs and T cells was prepared. In the first stage, monocytes were isolated,
treated with the PAC-IONs and the MF, and allowed to differentiate into MDMs for 5 days. In the second stage,
the MDMs were washed and incubated for 5 days before being cocultured with purified autologous CD3+ T cells
(1:2 cell ratio) and treated with PHA or TT for an additional 96 h. In the absence of the PAC-IONs and/or the
MF, the cytokine accumulation was similar. In the presence of the PAC-IONs and/or the MF, without PHA or
TT, there was no effect either. In contrast, in cocultures prepared with MDMs differentiated in the presence of the
PAC-IONs but non-exposed to the MF, and stimulated with PHA or TT, the levels of IL-2, TNF-α and IFN-γ
decreased and those of IL-10 and IL-6 increased. An inversion of this effect was observed for MDMs differentiated
in the presence of the PAC-IONs and the MF.

The effect of the interaction between the PAC-IONs and the MF on the cytokine accumulation was evaluated up
to the second degree with an ANOVA II. No significant interactions were observed for any of the cytokines analyzed.
It is important to note that IL-6 accumulation, observed even in nonstimulated cultures, was not evidenced after
the addition of T cells, whereas the lymphocytes were added after washing the cultures. Possibly, the consumption
of this cytokine by the cellular interactions did not allow it to be detected in the culture supernatants. Besides, the
treatments could affect other interactions between MPs and T cells that were not detectable by the approach used.

Proliferation of memory T cells co-cultured with MDMs differentiated in the presence of the
PAC-IONs & exposed to the MF
Other functions of MDMs, such as their role in the antigen-dependent proliferation of CD4+ and CD8+ T
cells seems to not affect the interactions with PAC-IONs, suggesting that the nanoparticles did not functionally
compromise the monocyte differentiation into macrophages. Besides, this finding directly supports our previous
observation that HLA-DR and CD80 (involved in antigen presentation and stimulation of T-cell proliferation)
are not affected by the differentiation of MDMs in the presence of the PAC-IONs; moreover, it provides indirect
evidence of a similar effect for the MF.

PHA and TT require different pathways to induce the proliferation of T cells. While PHA induces a nonspecific
polyclonal proliferation that does not require antigen presentation, the TT does. However, the pattern of cytokines
accumulated in the cocultures changed regardless of being stimulated with PHA or TT. This result suggested that
the altered pattern of cytokines could not be attributed to the MDM–lymphocyte interaction but the response of
MDMs to the PAC-IONs and the MF.

Evaluation of the PAC-ION uptake by monocyte subpopulations
When the monocyte subpopulations were cultured with the PAC-IONs, the CD14+CD16+ subset showed an
increased granularity (data not shown). Besides, higher iron content was found in the lysates prepared from
macrophages derived from the CD14+CD16+ monocytes and differentiated in the presence of the PAC-IONs.
These MDMs had the highest PAC-ION uptake, 20–25 pg of Fe/cell versus 2–4 pg of Fe/cell by the macrophages
derived from the classical CD14+CD16- monocytes. This result contrasts with a previous study [45] in which
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CD14+CD16- monocytes showed the highest uptake of polymer-coated IONs, 5–30 pg Fe/cell versus 2–10 pg
Fe/cell for the CD14+CD16++ monocytes [45].

Considering that PAC-IONs can be used for drug-anchoring, an interesting perspective would be the concomitant
use of PAC-IONs and rifampicin in animal models with tuberculosis to evaluate the possibility of reducing the
antibiotic efflux. This strategy was used in a model with Mycobacterium smegmatis, where it increased the effectiveness
of the antibiotic treatment. Also, this strategy could allow the location of infiltrating monocytes in the pulmonary
tissue [64].

Considering that the PAC-IONs’ sodium polyacrylate coating seems to define their selectivity for monocytes, it
would be essential to determine the way this interaction occurs in the translation into specific applications. The
particles have a carboxyl-enriched surface available for the union of different molecules, such as iRNA, that could
be useful for other purposes. The PAC-ION relevance in drug-anchoring has been reported in the modulation
of osteoclasts by blocking the expression of RANK with shRNA [65]. In a murine model of arthritis, bullet
monocytes can be prepolarized before they arrive at the joint to avoid their differentiation into osteoclasts [66].
Other different diseases, such as chronic obstructive pulmonary disease or asthma [67], cigarette smoking with
asthma or scleroderma-associated fibrosing alveolitis [68,69], could be studied with nanoparticles, precluding the
requirement of invasive biopsies; additionally, they could be used to perform drug delivery. Bierry et al. [70] used
MRI with superparamagnetic iron oxide (SPIO) gadolinium to identify the macrophages present in injured tissues
of patients with infectious vertebral osteomyelitis and degenerative disk-related inflammatory endplates [70]. In
knees of rabbits that had been presensitized with methylated bovine serum albumin and unilateral arthritis was
induced by means of intra-articular injection of the same antigen, imaging at 1.5 T and 24 h after the contrast agent
administration could evidence the ultrasmall superparamagnetic iron oxide (USPIO) uptake by phagocytic-active
macrophages in the synovium of all the arthritic knees [71].

Putting the results in perspective, if the PAC-IONs were considered for use as a contrast agent, it would be
crucial to study their biodistribution and pharmacokinetics in animal models. Although these studies are beyond
our laboratory feasibilities, it is important to highlight that it is feasible to selectively track phagocytes as reported
by Tracke et al. [72], who developed an approach with beads 0.5–1 m that were preferentially internalized by
nonclassical monocytes [72]. Then, the authors considered that it was possible to selectively label mouse monocyte
subsets in vivo without further perturbations to the animal; it is worth noting that these treatments had minimal
impact on the physiological cell function [73], which is in agreement with our findings.

Conclusion & future perspective
PAC-IONs can selectively interact with MPs, particularly with the nonclassical ones, without affecting their MDMs.
Moreover, the exposure of these monocytes to the PAC-IONs and the MF do not induce cell damage or compromise
their function as antigen-presenting cells, evaluated in terms of cytokine production and induction of the activation
and proliferation of T cells in response to standard antigens. The fact that PAC-IONs seem to be more selective
for nonclassical monocytes makes them a very attractive and clinically relevant tool to study these cells by MRI
and for specific purposes to control monocyte differentiation, polarization and interaction with endothelial cells.
It is hoped that very soon PAC-IONs will allow identification of the location of inflammatory monocytes without
requiring invasive strategies.

Summary points

• Poly(acrylic acid)-coated iron oxide nanoparticles (PAC-IONs) are selectively internalized by monocytes.
• Monocytes differentiate into macrophages (MDMs) in the presence of PAC-IONs without undergoing cell damage.
• The magnetic field (MF) does not alter the MDM viability even in the presence of PAC-IONs.
• MDMs differentiated in the presence of PAC-IONs and exposed to MFs do not show a significant compromise in

the accumulation of cytokines.
• MDMs differentiated in the presence of PAC-IONs and exposed to MFs can activate T cells properly.
• The selective PAC-ION uptake by nonclassical monocytes makes these cells an attractive tool to target diseases

with a chronic inflammatory process.
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