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Abstract

Background: Comparative genomics has put additional demands on the assessment of similarity between
sequences and their clustering as means for classification. However, defining the optimal number of clusters,
cluster density and boundaries for sets of potentially related sequences of genes with variable degrees of
polymorphism remains a significant challenge. The aim of this study was to develop a method that would identify
the cluster centroids and the optimal number of clusters for a given sensitivity level and could work equally well
for the different sequence datasets.

Results: A novel method that combines the linear mapping hash function and multiple sequence alignment (MSA)
was developed. This method takes advantage of the already sorted by similarity sequences from the MSA output,
and identifies the optimal number of clusters, clusters cut-offs, and clusters centroids that can represent reference
gene vouchers for the different species. The linear mapping hash function can map an already ordered by
similarity distance matrix to indices to reveal gaps in the values around which the optimal cut-offs of the different
clusters can be identified. The method was evaluated using sets of closely related (16S rRNA gene sequences of
Nocardia species) and highly variable (VP1 genomic region of Enterovirus 71) sequences and outperformed existing
unsupervised machine learning clustering methods and dimensionality reduction methods. This method does not
require prior knowledge of the number of clusters or the distance between clusters, handles clusters of different
sizes and shapes, and scales linearly with the dataset.

Conclusions: The combination of MSA with the linear mapping hash function is a computationally efficient way of
gene sequence clustering and can be a valuable tool for the assessment of similarity, clustering of different
microbial genomes, identifying reference sequences, and for the study of evolution of bacteria and viruses.

Background
The exponential accumulation of DNA and protein
sequencing data has demanded efficient tools for the
comparison, analysis, clustering, and classification of
novel and annotated sequences [1,2]. The identification
of the cluster centroid or the most representative [vou-
cher or barcode] sequence has become an important
objective in population biology and taxonomy [3-5].
Progressive Multiple Sequence Alignment (MSA)

methods perform tree clustering as an initial step before
progressively doing pair-wise alignments to build the
final MSA output. For example, MUSCLE MSA [6]
builds a distance matrix by using the k-mers distance
measure that does not require a sequence alignment.
The distance matrix can then be clustered using the
Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) [6]. MUSCLE iteratively refines the MSA out-
put over three stages to produce the final output. Evi-
dence suggests that the MUSCLE MSA output
outperforms T-COFFEE and ClustalW, and produces
the higher Balibase scores [7,8]. Unsupervised machine
learning methods such as hierarchical clustering (HC)
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or partitioning methods have been successfully applied
for gene sequence analysis [9,10].
Agglomerative HC often employs linkage matrix

building algorithms that usually have a complexity of O
(n2), for example the Euclidean minimal spanning tree
[11]. Some linkage algorithms are geometric-based and
aim at one centroid (e.g., AGglomerative NESting or
AGNES) [12], while others (e.g., SLINK) rely on connec-
tivity graph methods producing clusters of proper con-
vex shapes [13]. Other agglomerative HC methods
produce curved clusters of different sizes by choosing
cluster representatives (e.g., the CURE algorithm) [14],
but are also insensitive to outliers. More advanced
graph-based HC algorithms, such as CHAMELEON,
handle irregular cluster shapes by using two stages: a
graph-partitioning stage utilising the library HMETIS,
and an agglomerative stage based on user-defined
thresholds [15]. In contrast, divisive HC algorithms
often use Singular Value Decomposition by bisecting
data in Euclidean space by a hyper-plane that passes
through data centroids orthogonally to an eigenvector
with the largest singular value, or the largest k-singular
values (e.g., Principal Direction Divisive Partitioning)
[16]. However, many clustering methods work well only
with sequences of high similarity whilst others require
training datasets containing known clusters with many
members. Nevertheless, defining the optimal number of
clusters, cluster density and cluster boundaries for col-
lections of sequences with variable degrees of poly-
morphism remains a significant challenge [5,17].
Partitioning clustering techniques employ an iterative

optimization heuristic greedy technique to gradually
improve cluster’s coherency by relocating points, which
results in high quality clusters. Partitioning clustering
techniques can be probabilistic or density-based. The
first assume that the data is sampled independently
from a mixture model of Bernoulli, Poisson, Gaussian or
log-normal distributions. These methods randomly
choose the suitable model and estimate the probability
of the assignment of the different points to the different
clusters. The overall likelihood that the training dataset
belongs to the chosen mixture model is calculated by a
log-likelihood method, and then Expectation Maximiza-
tion (EM) converges to the best mixture model. These
algorithms include SNOB [18], AUTOCLASS [19], and
MCLUST [20]. K-means is defined as an algorithm that
partitions the dataset into k clusters by reducing the
within-group sums of squares using the randomly cho-
sen k centroids representing the weighted average of the
points in each cluster [21]. Choosing the optimal k is
based on the computationally costly independent run-
ning of the algorithm for different k to choose the best
k. Modifications, such as X-Means, can accelerate this
iterative process [22]. Clustering algorithms that utilise

density-based partitioning require definitions of density,
connectivity and boundary based on a point’s nearest
neighbours. These methods discover clusters of various
shapes and are not sensitive to outliers. Algorithms like
DBSCAN, GDBSCAN, OPTICS and DBCLASD relate
density to a point in the training data set and its con-
nectivity, while algorithms like DENCLUE relate the
density of a point to its attribute space [10]. Other
Grid-based methods, such as CLIQUE [23] or MAFIA
[24], employ space partitioning rather than data parti-
tioning. However, the dimensionality curse has been a
major problem for clustering algorithms as performance
degrades significantly when the dimensions (attributes)
exceed 20 making the majority of methods described
computationally unaffordable for biomedical researchers.
The process of phylogenetic classification of variable-

length DNA fragments requires the establishment of
“reference sequences” or “DNA barcodes” for species
identification and recognition of intra-species sequence
polymorphisms or “sequence types” [25,26]. Evidence
suggests that such a process of curation, in which the
designated most representative sequence of a species (or
the “centroid” sequence) is derived from discrete “spe-
cies groups” of sequences, can be automated (e.g., Inte-
grated Database Network System SmartGene), and
improves the species-level identification of clinically
relevant pathogens [27,28].
The aim of this study was to develop a clustering

method that would work equally well for different
sequence datasets as well as identify the cluster cen-
troids and the optimal number of clusters for a given
sensitivity level. The method was aimed at optimizing
the clustering results both in terms of the mathemati-
cally optimal number of clusters and the optimal cluster
boundaries.

Results
Clustering of gene sequences
Using the Multiple Sequence Alignment (MSA) output
in the aligned order (rather than the input order), the
sequences are sorted based on the tree building algo-
rithm used, making the closer family of sequences in
order before starting another family branch. The MSA
is then used to generate a pair-wise distance matrix
between the sequences. The produced sorting order
made the main diagonal in the distance matrix to be the
distance between a sequence and itself (Figure 1). The
second diagonal represented the distance between a
sequence and its closest other sequence; the third diago-
nal represented the distance between the sequence and
its second closest sequence and so forth. The heat maps
in Figure 1 illustrate the rectangular shapes of the dark-
est blue shades along the diagonal as the boundaries
around which the natural selection of a cluster should
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be identified. The process of identifying these bound-
aries is based on the linear mapping of the second diag-
onal values to a normalized index value. The linear
mapping to index values employs a deterministic hash
function. The hash function used is uniform in the con-
text of the input distance matrix. Thus, a very similar
dataset should produce similar or very close hash codes,
rather than a highly variable dataset.
According to the two sensitivity parameters used

(hash range and number of hash codes within one clus-
ter), variable cluster boundaries are shown in Figure 1.
These variable boundaries will divide any dataset from a
minimum number of clusters up to a maximum number
of clusters for each dataset, where neither less nor more
divisions can be mathematically feasible. Some highly
variable datasets produced a minimum of 16 clusters
and a maximum of 29 clusters when a hash range of 4
is used and only one code per cluster, which proves that
the distances calculated in the distance matrix control
the algorithm output and the minimum and maximum
number of clusters will vary from one dataset to
another. The number of clusters for both datasets used
in this study is plotted in Figure 2 as per the two sensi-
tivity parameters. These variable clustering boundaries

can be interpreted equally as abstractness levels (the
sensitivity of the clustering in order to decide the opti-
mal number of clusters for the dataset), or as hierarchi-
cal levels (encapsulations of sub-clusters within larger
clusters).

Classification of sequences with different degrees of
polymorphism
The algorithm was applied to sequences of Enterovirus 71
(EV71) VP1 region (500 sequences), representing poly-
morphic sequences of highly divergent microorganisms,
and 364 sequences of the highly conserved 16S rRNA
gene of bacteria from the genus Nocardia. The ‘heat maps’
produced by the Matlab© image function for the distance
matrix accurately contrasted the highly recombinant
viruses with an over-classified collection of 80 species of
Nocardia that were less polymorphic and taxonomically
closely related. Figure 1 illustrates the combined matrices
of similarity measures between sequences of Nocardia spe-
cies (A and B) and EV71 (C and D). The matrices indicate
the different borders around the clusters of variable sensi-
tivities around the diagonal (Figure 1).
The identification of the optimal number of clusters

was based on the hash range and the number of hash

Figure 1 Heatmaps for the Distance matrix generated by the MSA of the different datasets (a) Nocardia 16S rRNA gene, 364
sequences of 80 known species; (b) Nocardia 16S rRNA gene, 97 sequences of 4 known species; (c) EV71, 109 VP1 sequences of 11
known genogroups/subgenogroups, and (d) EV71, 500 VP1 sequences of unknown genogroups/subgenogroups.
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codes (indices) to include in one cluster. Figure 2 shows
the number of clusters as per the different Hash ranges
on the x-axis and indicates between one and four
indices per cluster in the different data series for (a) the
364 sequences of 16S rRNA gene of Nocardia of 80 spe-
cies, (b) the 97 sequences of 16S rRNA gene of Nocar-
dia of 4 species, (c) the 109 EV71 sequences with
known genogroups/subgenogroups, and (d) the 500
sequences of EV71 VP1 regions. Plots in Figure 2
demonstrate the maximum number of clusters that can
be generated for each dataset, after which changing the
sensitivity parameters of the hashing function will not
divide data into further clusters because of the closeness
of the similarity measures.

Identification of cluster centroids
The combination of MSA with the linear mapping hash
function identified the centroid for each cluster, which
was then used as a reference. Centroids were the data
elements or points positioned in the middle of the

cluster cloud, i.e. these were the points with the mini-
mum total distance between them and other points in
the same cluster. For a high dimensional dataset, other
methods (such as k-means) identify different centroids
for each parameter taken as the main parameter, and it
is up to the user to decide which parameter should be
taken as the basis for the centroid definition. Figure 3
illustrates the PCA plot for the 97 Nocardia sequences
of four species (N. cyriacigeorgica, N. farcinica, N.
abscessus, and N. nova). The labels for cluster centroids
are shown close to the centroid point highlighted in a
square block. Since the clustering and the centroid iden-
tification are performed using the linear mapping
method, and the PCA plot values are calculated using
the PCA scores for the different coordinates (PC1 and
PC2 in our case), the centroids do not necessarily fall in
a geometric central point in the clusters’ two dimen-
sional space.
The implementation of our method produces mean,

median, and standard variation distance measures for

Figure 2 The optimal number of clusters for the different hash ranges and different number of indices per cluster for (a) Nocardia
16S rRNA 364 sequences of 80 known species; (b) Nocardia 16S rRNA 97 sequences of 4 known species; (c) EV71 109 sequences of
11 known genogroups/subgenogroups; and (d) EV71 500 VP1 sequences of unknown genogroups/subgenogroups.
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each cluster. If the training dataset is already composed
of a known number of classes (bacterial species or viral
genotypes [genogroups/subgenogroups] in our case), the
closest number of clusters should represent the optimal
one. Otherwise, the optimal sensitivity parameters can
be identified by multiple runs and the selection of para-
meters that minimize the standard variation of intra-
cluster similarity. The PCA plot for the first dataset of
110 EV71 sequences is presented in Figure 4 and illus-
trates clusters of different sizes and shapes, demonstrat-
ing that the method is not likely to be sensitive to
outliers. Centroids do not necessarily lie in a geometric
middle position in the cluster because their calculation
method is based on the distance sub-matrix of the clus-
ter and not on the principal component transformation
which is used for the two-dimensional plot.

Discussion
This paper described a new method for the efficient
optimal clustering of gene sequences and the identifica-
tion of the most representative members of each cluster
from the alignment of multiple sequences. This method
identifies discontinuities between each group of pair-
wise distances to delineate cluster boundaries and to
define the most “optimal” clusters. It applies Principal
Component Analysis as a dimensionality reduction to
represent pair-wise distances between a dataset of

aligned sequences [29]. The method sorts the data
points (sequences) by shortest distances along the sec-
ond diagonal of the distance matrix and defines the
optimal cluster cut-offs among this diagonal. The
method utilises a binary tree-building algorithm as lin-
ear sorting algorithms could not produce the required
output for two-dimensional data. While other unsuper-
vised clustering methods require either a known number
of clusters or a fixed distance between clusters [30], our
algorithm defines the optimal number of clusters using
a hash function with two sensitivity parameters. The
first one is a positive maximum number of indices (hash
range) to map the distance measures. The larger the
hash range, the bigger the number of clusters that can
be generated. The second sensitivity parameter is the
number of hash codes to include in one cluster. The
more hash codes to encapsulate in one cluster, the
fewer the number of clusters produced. The second sen-
sitivity parameter defines an intermediate level of sensi-
tivity before increasing the hash range.
The optimal number of clusters can be defined

through data presentation requirements. The analogy of
cities, countries and continents can be used, with a city
(sequence) described as belonging to a specific country
or a continent (parameters). By changing the para-
meters, the resulting sequence membership to clusters
will vary between a larger encapsulating cluster

Figure 3 Largest four Nocardia species clusters. Positions of cluster centroids are highlighted in square blocks, on PCA 1 and 2 as x-axis and
y-axis coordinates, and linear mapping clustering results.
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(continent) and a smaller subset of a cluster (country),
with bounds on the maximum and minimum of mathe-
matically feasible numbers of clusters. The larger and
smaller cluster boundaries maintain the same distance
measure information, so that outliers will always appear
in their own clusters relative to the distance measure
normalizations and the abstractness level required. This
avoids the geometric shape approximations found in
other methods, and the averaging found in UPGMA.
Increasing the sensitivity parameters in the cities, coun-
tries and continent analogy, with the city falling on the
right edge of a country which in turn falls on the right
edge of a continent A that has a neighbouring continent
B from the right side, means that the city will continue
belonging to the encapsulating continent A only when
the calculated distance between this city and the nearest
neighbouring city in continent A is shorter than the dis-
tance between this city and the nearest neighbouring
city in continent B. If the city falls in its own country
and continent and the distance between it and its neigh-
bouring city in another continent remains larger than
the distances between the second city and other cities in
the other continent, then the first city will remain in its
own continent in the higher level of abstractness.
MUSCLE produces its own distance matrix using the

k-mers method. The evolutionary distance between each

pair of sequences is estimated by computing the fraction
of common k-mers (substrings of length k) in a com-
pressed amino acid alphabet. UPGMA is then used to
build the tree topology [6]. However, it does not print it
in the output to the user. Therefore, a regeneration of
the distance matrix is done from the produced MUSCLE
alignment using the distMat application from the
EMBOSS suite [31] in some experiments, or the Dna-
Dist application from the Phylib package [32] in other
experiments. Euclidean distances using Matlab functions
are also evaluated [33]. Importantly, there is a maximum
number of clusters that can be generated for every data-
set, and once this maximum is reached, increasing the
hash range will not increase the maximum possible
number of clusters. The hashing function will not be
able to merge the dataset into fewer clusters if the dis-
tances between the data points provide large gaps that
cannot be over-fitted into one cluster. And similarly, it
is not possible to divide a cluster into more clusters if
all data points included in this cluster are too close to
each other, as compared to other data points in other
clusters and in the whole dataset. This normalization
does not lose the original distance information - it is
only translateed into a cluster membership.
The quality of the alignment and the distance matrix

calculation method can affect the clustering results

Figure 4 The linear mapping clustering for the 109 EV71 VP1 sequences shown on the first and second PCA coordinates. Eleven
clusters corresponding to the genogroups/subgenogroups are presented. The legend indicates EV71 VP1 genogroups/subgenogroups, years of
isolation for sequences viruses or their deposition to GenBank, and country of origin. Relevant cluster centroids are highlighted in red. Isolate AF
119795 (&), belonging to C/B genogroups, is a result of intergenotypic recombination [41]. Abbreviations: AUS, Australia; CHN, the Chinese
mainland; JAP, Japan; MAL, Malaysia; NOR, Norway; SK, South Korea; SA, South Africa; SIN, Singapore; TW, Taiwan; UK, United Kingdom; USA,
United States of America.
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[8,34]. If the alignment order has already been per-
formed in the MUSCLE MSA output, and is preserved
in the distance matrix, a classical exact clustering algo-
rithm would sort the data elements, which repeats steps
that are already included in the MUSCLE method. The
important unanswered questions in this instance revolve
around the optimal number of clusters for the dataset,
the optimal cut-offs (boundaries) for these clusters, and
the choice of reference vouchers for species (cluster
representatives from the datasets) [35]. Our approach
takes advantage of the information already included in
the MSA output, and focuses on optimizing the cluster-
ing results. It captures and visualises the complexity of
inter- and intra-species relationships and represents
gene distances reflecting the discontinuity between spe-
cies and genogroups (Figures 3 and 4).
The presented method has achieved higher scores

than HC, partitioning, and dimensionality reduction
clustering methods. In addition, our method does not
appear to be sensitive to outliers. Our experience
demonstrated that the spatial clustering that relied solely
on the PCA plot (like encapsulating the nearby
sequences into one cluster) did not produce accurate
clustering that matched the existing knowledge about
the species [28]. The clustering structure in the dataset
might be captured in any of the highest scoring coordi-
nates, not necessarily the first and second, and is often
difficult to correlate to other clustering methods. On the
other hand, the PCA spatial clustering usually suggests a
smaller number of clusters, and is not as sensitive as the
presented linear mapping method.
This study adds to the growing range of applications

for classification of variable-length DNA fragments. In
contrast to many recently proposed tools that target
high-volume metagenomics data sets (e.g., Compost-Bin
[36] or Phylo-Pythia [37]), our approach utilises rela-
tively small sets of sequences of house-keeping genes in
order to identify the most representative sequences. The
method described below is deterministic and computa-
tionally not expensive. However, it requires the efficient
generation of MSA in the alignment order and the dis-
tance matrix. The method runs in O(N), where N is the
number of sequences, to scan the second diagonal dis-
tance matrix values and to identify the cut-offs of the
clusters. The dimensionality scalability in this problem’s
context is still expressed in the number of sequences
used, as it clusters the pair-wise distance measures from
each sequence to all others in the dataset. The effective-
ness of the method can be limited by the performance
of the MSA algorithm. For example, the performance of
MUSCLE (the MSA method used in this study) for
default parameters was defined as N4 + NL2, where N is
the number of sequences, and L is the average sequence
length. It was reported that MUSCLE computed an

MSA for 5000 sequences with average lengths of 350 bp
in 7 minutes [6]. However, the assessment of our
method in relation to different distance definitions and
comparison with other methods of estimation of the
number of clusters, such as UPGMA and the Eigen
values, were beyond the scope of this study. These ques-
tions warrant further separate investigations. It is note-
worthy that UPGMA assumes that a constant rate of
evolution is maintained on all sequences from the root.
If this assumption fails, the averaging of matrix distances
can lead to errors in the topology of results. In such a
scenario, the application of Eigen values to estimate the
number of clusters based on the UPGMA branch
lengths might not be appropriate to define the correct
cluster borders (cut-off points). Our approach counter-
balances this potential averaging drawback by ignoring
the averaged distances (branch lengths) generated by the
UPGMA, using the UPGMA ordering of the sequences
only (grouped by smallest distance measures), and
employing the original distance matrix to define the
clusters.

Conclusions
The combination of MSA with the linear mapping hash
function is a computationally efficient way of gene
sequence clustering and can be a valuable tool for the
assessment of similarity or for the classification of differ-
ent microbial genomes and for the study of evolution of
bacteria and viruses. A linear mapping hash function
can map an already ordered by similarity distance
matrix to indices to reveal gaps in the values around
which the optimal cut-offs of the different clusters can
be identified. This method does not require prior knowl-
edge about the number of clusters or the distance
between clusters. It is not sensitive to outliers, handles
clusters of different sizes and shapes, and scales linearly
with dataset of different complexity.

Methods
Data sets
Two sets of gene sequences representing distinct taxo-
nomic ranks within viruses and bacteria were used. The
first sequence set contained RNA sequences of VP1
genomic regions of enterovirus 71 (EV71). In the first
experiment, the similarity of 109 EV71 sequences in
VP1 genomic regions classified into three genogroups A,
B (including subgenogroups B1, B2, B3, B4, and B5),
and C (including subgenogroups C1, C2, C3, C4, and
C5) was explored. The alignment was done for 84 com-
plete genomic sequences (average 7415 nucleotides, with
min 7312 nucleotides and max 8170 nucleotides), 20
partial genomic sequences containing VP1 regions (aver-
age 3234 nucleotides, with min 3202 nucleotides and
max 3486 nucleotides), and 5 VP1 regions (all with min
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891 nucleotides). In the second experiment, 500 EV71
VP1 sequences with unknown genogroups/subge-
nogroups (average length 875 nucleotides, with min 410
nucleotides and max 891 nucleotides) were aligned to
test the effectiveness of the method on larger datasets of
high variability.
The second data set consisted of 364 sequences of the

full length 16S rRNA gene of Nocardia species down-
loaded from the GenBank [38], as well as sequences of
isolates previously identified in the Clinical Mycology
Laboratory, Centre for Infectious Diseases and Micro-
biology, Westmead Hospital, Sydney [39]. The dataset
represented 80 different Nocardia species with a rela-
tively low level of polymorphism whose identification
was concordant with those archived within the “List of
Prokaryotic names with Standing in Nomenclature” [40].
Another experiment was conducted by extracting the
sequences of four of the most common Nocardia spe-
cies (Nocarida cyriacigeorgica, Nocardia farcinica,
Nocardia abscessus, and Nocardia nova) represented by
97 sequences contained in [40].

Data matrices
Two types of data can be supported: (1) a square data
matrix (the number of rows was equal to the number of
columns) represented symmetric distance measures of
pair-wise distances of data elements, which were listed
on the rows and on the columns; and (2) a rectangular
matrix containing columns of parametric measures for
the data elements as rows. In case of a rectangular data
matrix, distances (Euclidian by default) need to be calcu-
lated between the parameter variables for every pair of
the data elements, and a distance matrix will be gener-
ated accordingly.

Data sorting
Progressive MSA methods rely on tree-building algo-
rithms that cluster the sequences so that the most simi-
lar sequences are grouped together. For instance, the
MUSCLE method [6] uses the k-mers distance measure
to build a tree using UPGMA clustering. Consequently,
distance matrix generation programs preserved the clus-
tering order on rows and symmetrically on columns.
The linear mapping to index values employed a determi-
nistic hash function. The hash function used was uni-
form in the context of the input distance matrix. Thus,
a very similar dataset produced similar or very close
hash codes, rather than a highly variable dataset.
The image function implemented in Matlab© [33]

mapped the distance values to a colour index, a blue/
red colour map of 64 colour shades. The smaller the
distance (i.e. highest similarity), the closer the colour
shade was to the darkest blue shade. The larger the dis-
tance (i.e. highest dissimilarity), the further away the

colour index was and the closer it was to the darkest
red shade. Accordingly, the clustering process was visua-
lized as the identification of any colour discontinuity on
the second diagonal in the distance matrix as a break
point to start a new cluster, creating rectangular regions
around the diagonal of a single-colour intensity. The lin-
ear scaling function in Matlab© was as follows:

index = (C-min)/(max-min)*(m-1))+1

where C was the distance matrix value, m was the
length of the colour map (which was 64 colours by
default), and the colour index in the colour map ranged
from 1 (darkest blue) to 64 (darkest red). min and max
represented the smallest and largest values of the dis-
tance matrix.
Using the same mapping function as the clustering

hash function, the clustering algorithm generalized to
any colour map size (hash range). Every two consecutive
index values (as mapped from the diagonal scores in the
distance matrix) were compared, and break points that
separated the clusters were identified based on the dif-
ference. If the difference was greater than the number of
indices allowed in one cluster, a new cluster breaking
point was selected.

Multiple sequence alignment
Sequences of microbial genes were sorted according to
their unaligned similarity scores by progressive MSA.
The MUSCLE MSA algorithm [6] was employed
through the EMBL portal, and the final distances were
calculated using the distMat application from the
EMBOSS suite [31] or the DnaDist application from the
Phylib package [32]. Both applications take the MSA as
input and calculate a distance matrix.
Hash Function and Clustering. Using the Matlab

programming notation, the following pseudo-code
describes the steps of defining the clustering break
points, and the starting and ending indices of each clus-
ter.

cluster (clusteringData, m, hashrange,
indicesinCluster)
diagscore ¬ diagonal(clusteringData,
1);
minVal ¬ min (clusteringData);
maxVal ¬ max (clusteringData);
cNum ¬ i ¬ 1;
sCluster(1) ¬ 1;
while i < m-1

index1 ¬ (diagScore(i)- minVal)/
(maxVal - minVal)*(hashrange -1))+1;
index2 ¬ (diagScore(i+1)- minVal)/
(maxVal - minVal)*(hashrange-1))+1;
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if (abs(index2-index1) > =
indicesinCluster)

breakpoint(cNum) ¬ i + 1;
if(diagScore(breakpoint(cNum)-1)
> diagScore(breakpoint(cNum)))
eCluster(cNum) ¬ breakpoint
(cNum) - 1;
else
eCluster(cNum) ¬ breakpoint
(cNum);
end

sCluster(cNum +1) ¬ eCluster
(cNum) + 1;
cNum ¬ cNum +1;
i¬i+2;

else
i¬i+1;

end if
end
eCluster(cNum) ¬ m;
end cluster

Figure 5 Three main steps of the MSA method, the second diagonal extraction, the hashing of the distance measures, and the
clustering of the hash codes.
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The inputs are the “clusteringData“ (sorted distance
matrix), “m“ (size of the distance matrix, number of
sequences), “hashrange“ (first sensitivity parameter), and
“indicesinCluster“ (second sensitivity parameter). A lin-
ear scaling of the “diagScore” uses “hashRange” to deter-
mine the scaling and “indicesinCluster” to determine the
jump in successive values to determine the edge of a
cluster. The algorithm produces the cNum (number of
clusters) and the sCluster and eCluster (the starting and
ending indices of each cluster). The diagonal function
returns a vector of the values in the first parameter
(clusteringData) falling on the diagonal of the order
defined in the second parameters. The first diagonal
(ranked 0) in the distance matrix should always be equal
to zero due to its symmetry. The method retrieves the
second diagonal (ranked 1) to cluster based on the dis-
tances between a sequence and its most similar follow-
ing sequence.
Identification of Centroids. The sub-matrix for dis-

tance measures of a cluster was extracted from the start-
ing and ending indices of this particular cluster (sCluster
and eCluster from the above pseudo-code). If the cluster
contains 2 or 1 sequences, the first sequence is consid-
ered the centroid. Otherwise, the index of the data ele-
ment, where the total distance to all other elements in
the cluster was the minimum, was then identified. This
process is outlined in the following pseudo-code:

for i = 1 to cNum
cSize ¬ eCluster(i)-sCluster(i)
if (cSize > 2)

CM ¬ clusteringData(sCluster (i):
eCluster (i), sCluster (i): eClus-
ter (i))
for k = 1 to cSize
distSum(k) ¬ sum(CM (k,:))
end
[minDist idx] ¬ min(distSum)
centroid (i) ¬ sCluster (i)+idx-1

else
centroid(i) ¬ sCluster (i)

end
end

The main steps of this process are summarised in Fig-
ure 5, using an example dataset of four sequences (a, b,
c, and d). The MSA method (MUSCLE) builds a dis-
tance matrix (k-mers) that orders the sequences by simi-
larity as (b, d, c, a), and clusters them by UPGMA as
shown in the tree. The remaining steps proposed by this
method are the diagonal extraction, the conversion of
these scores into hash codes, and the clustering of these
codes by identifying the natural gaps between the codes
based on the sensitivity parameters chosen.

Data visualisation
To visualize the spatial distribution of the points on
two-dimensional plots, Principal Component Analysis
(PCA) was applied on the distance matrix using the
Matlab© “princomp” function. The highest scoring first
(x-axis) and second (y-axis) coordinates were used for
the plotting of the sequences on a two dimensional
plane, while the symbols representing the different clus-
ters reflected the clustering results produced by the lin-
ear mapping method.
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