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Differential abundance analysis is a crucial task in many microbiome studies, where the

central goal is to identify microbiome taxa associated with certain biological or clinical

conditions. There are two different modes of microbiome differential abundance analysis:

the individual-based univariate differential abundance analysis and the group-based

multivariate differential abundance analysis. The univariate analysis identifies differentially

abundant microbiome taxa subject to multiple correction under certain statistical

error measurements such as false discovery rate, which is typically complicated

by the high-dimensionality of taxa and complex correlation structure among taxa.

The multivariate analysis evaluates the overall shift in the abundance of microbiome

composition between two conditions, which provides useful preliminary differential

information for the necessity of follow-up validation studies. In this paper, we present a

novel Adaptive multivariate two-sample test forMicrobiome Differential Analysis (AMDA)

to examine whether the composition of a taxa-set are different between two conditions.

Our simulation studies and real data applications demonstrated that the AMDA test was

often more powerful than several competing methods while preserving the correct type I

error rate. A free implementation of our AMDAmethod in R software is available at https://

github.com/xyz5074/AMDA.

Keywords: adaptive microbiome differential analysis (AMDA), maximum mean discrepancy (MMD), multivariate

two-sample test, permutation, subset testing, taxa-set

1. INTRODUCTION

The human microbiome, referred as the aggregate of microorganisms that resides on or within
any human tissues and biofluids, has recently gained substantial scientific interest due to its
vital role in many human health and disease conditions, including but are not limited to obesity
(Turnbaugh et al., 2009), type 2 diabetes (Qin et al., 2012), rheumatoid arthritis (Zhang et al.,
2015), inflammatory bowel disease (Morgan et al., 2015), bacterial vaginosis (Mitchell et al.,
2017), and colorectal cancer (Louis et al., 2014). High-throughput sequencing technologies have
revolutionized microbiome research by allowing culture-free profiling of entire microbiome
community. For the most part, 16S rRNA gene amplicon sequencing and metagenomics shotgun
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sequencing are routinely used for quantitative characterization
of microbiome composition (Wang and Jia, 2016). Although
data produced by high-throughput sequencing has been proven
extremely useful for quantification of microbiome composition,
yet appropriate analysis of such microbiome composition data
is still computationally and statistically challenging due to some
technical aspects of the data, including high-dimensionality,
count or compositional data structure, sparsity (zero-inflation),
over-dispersion, among others.

In many microbiome studies, the investigators are often
interested in studying how the abundance of microbiome is
related with clinical characteristics of the samples, such as
health/disease status, smoking status, or dietary habit (high-
calorie or low-calorie). That is, many studies attempt to detect
differentially abundant microbiome features (species/OTUs)
between two predefined classes of samples, where a microbiome
feature is considered differentially abundant, if its mean
proportion is significantly different between two conditions. This
type of analysis can improve understanding the pathology of
the disease from a microbiome perspective and potentially lead
to preventive or therapeutic strategies (Virgin and Todd, 2011).
Microbiome differential abundance analysis (MDA) is a direct
analogy to differential expression analysis for gene expression
and RNA-seq data, however, the distinct nature of microbiome
data renders classic differential expression analysis methods such
as DESeq (Anders and Huber, 2010) and edgeR (Robinson
et al., 2010) inappropriate for microbiome data (McMurdie and
Holmes, 2014; Weiss et al., 2017). Thus, new statistical methods
for microbiome differential abundance analysis are desired.

Similar to individual gene-based and pathway-based
differential expression analysis, there are two types of
microbiome differential analyses: individual taxon-based
univariate analysis and taxa set-based multivariate analysis.
Along with the recent huge scientific interest in microbiome
studies, many statistical methods for microbiome differential
analysis have also been proposed (Sohn et al., 2015; Zhao
et al., 2015; Zhang et al., 2016; Chen et al., 2017), with
most of them focus on examining whether a single taxon
is differentially abundant between two different conditions,
followed by multiple testing correction methods adjusting for
individual taxon p-values (e.g., the Benjamini-Hochberg/BH
procedure, Benjamini and Hochberg, 1995). The control of
False Discovery Rate (FDR) is necessary, as an excess of false
discoveries may lead to costly follow-up validation studies
on false positive taxa, which essentially are not differentially
abundant. Despite their potential usefulness in identifying
differentially abundant taxa, these individual analyses may suffer
from the following inherent limitations. First, the type I error
of an individual microbiome differential analysis may not be
correct (Hawinkel et al., 2017). The BH procedure or its variant
can control FDR when individual tests are either independent
or under positive dependence assumptions (Benjamini and
Hochberg, 1995; Benjamini and Yekutieli, 2001), while negative
correlation among taxa abundance is common in microbiome
data, especially for compositional data. It is possible that these
BH procedures (Benjamini and Hochberg, 1995; Benjamini
and Yekutieli, 2001) may fail to control FDR in presence of

negative correlations (Hawinkel et al., 2017). Second, the high-
dimensionality nature of microbiome data increases multiple
correction burden of individual analyses, which reduces the
power of detecting differentially abundant taxa. Third, as widely
observed in literature, the performance of most individual
microbiome differential analysis methods heavily rely on the
normalization and/or transformation, leading to challenges in
independent replication studies (McMurdie and Holmes, 2014;
Sohn et al., 2015; Weiss et al., 2017).

An alternative approach to taxon-level microbiome
differential analysis is to compare the microbiome composition
at the level of taxa-set. Examples of such a taxa set can be either
a group of OTUs belonging to the same upper-level taxonomic
rank (e.g., phylum, class, order, family, or genus) or even all
OTUs in the microbiome community. The multivariate-type
microbiome differential analysis usually gains power by reducing
the multiple testing correction burden and aggregating modest
effects across multiple taxa. Moreover, the multivariate analysis
is typically less sensitive to normalization/transformation
compared to individual analysis as it has a much larger analysis
unit. Motivated by this, many statistical methods for microbiome
community-level analysis have been recently proposed (McArdle
and Anderson, 2001; Zhao et al., 2015; Tang et al., 2016, 2017;
Plantinga et al., 2017; Zhan et al., 2017a).

Despite of the potential power gain, a major critique of
these existing multivariate microbiome analyses (e.g., differential
analysis) is that the result of the test is global and is unable
to identify specific taxon in the taxa-set that are differentially
abundant. Besides the limitation in results’ interpretation, it
may also jeopardize the power of the test when the taxa-set
contains many taxa that are not differentially abundant (Cao
et al., 2017). To enhance both interpretation and power of
existing multivariate analysis in the framework of MDA, we
propose a two-stage Adaptive Microbiome Differential Analysis
(AMDA) procedure, which first selects some putative taxa that
are more likely to be differentially abundant between two
conditions, and then examines the differential abundances of
the selected taxa-set with a multivariate two-sample test using
Maximum Mean Discrepancy (MMD) (Gretton et al., 2007,
2012). Since the test is applied to a subset of taxa that are more
likely to be differentially abundant, permutations are used to
establish statistical significance to avoid inflated type I error.
Despite being a set-based multivariate test that does not target
at identifying individual differentially abundant microbial taxa,
the intermediate testing subset selection procedure in AMDA
can provide useful information regarding the importance of
individual taxon in the taxa-set. Simulation studies and real data
applications demonstrate the potential usefulness of the new
proposed AMDA method and show its superior performance
over existing methods across a wide range of scenarios.

2. MATERIALS AND METHODS

2.1. Data and Normalization
Assume that we have measured the microbiome abundances of
a community of p taxa from n(= n1 + n2) samples collected
from two groups with sizes of n1 and n2, respectively. Here, the
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term community refers as a taxa-set, which typically consists
of taxa from the same taxonomic rank such as genus, family,

phylum, or bacteria kingdom. Let X(k) = (X
(k)
1 , . . . ,X

(k)
nk )

T be
the observed nk × p OTU matrix for group k(k = 1, 2), where

X
(k)
i (i = 1, . . . , nk; k = 1, 2) represents a p × 1 microbiome

composition vector (subject to appropriate normalization or

transformation). Suppose that, X
(k)
1 , . . . ,X

(k)
nk (k = 1, 2) are

two independent samples, from p-dimensional multivariate
distribution with mean parameters µ

(1) and µ
(2), respectively.

In many practical problems, the hypothesis of interest is to
examine whether microbiome abundances are different under
two different conditions, that is,

H0 :µ
(1) = µ

(2) vs. H1 :µ
(1) 6= µ

(2). (1)

Formicrobiome data, due to the varying amount of DNA yielding
materials across different samples, the count of microbiome
sequencing reads can vary greatly from sample to sample. The
normalization of the raw sequencing read counts to relative
abundances makes the microbial abundances comparable across
samples. Therefore, it is a common practice to analyze high-
dimensional microbiome compositional data with a unit sum (Li,
2015). As such, applying standard statistical methods developed
for unconstrained data to analyze microbiome composition
data is usually underpowered and sometimes can render
inappropriate results (Cao et al., 2017; Weiss et al., 2017).

A popular approach to relax the compositional constraint of
microbiome data is to perform the statistical analysis through
log-ratio transformations (Aitchison, 1982). In particular, the
centered log-ratio transformation has been widely used among
various form of log-ratio transformations (Cao et al., 2017; Zhao
et al., 2018). Specifically, the centered log-ratio transformation

Z
(k)
ij of microbiome relative abundance X

(k)
ij is defined as

Z
(k)
ij = log





X
(k)
ij

(5
p
j=1X

(k)
ij )1/p



 , i = 1, . . . , nk, j = 1, . . . , p,

k = 1, 2. (2)

To avoid a zero relative abundance in Equation (2), as a common
practice, a zero count is usually replaced by a pseudo count of 0.5
before the relative abundance normalization and centered log-
ratio transformation (Li, 2015; Cao et al., 2017). For community-
based multivariate differential abundance analysis, it has been
shown that testing equality of two compositional vectors is

equivalent to testing H′
0 :µ

(1)
Z = µ

(2)
Z (Cao et al., 2017), where

µ
(k)
Z is the mean of centered log-ratio transformed compositional

vector Z
(k)
i , i = 1, . . . , nk and k = 1, 2. We will develop our

AMDA method based on these centered log-ratio transformed
relative abundances in the rest of this paper.

2.2. A Multivariate Two-Sample Test Using
Maximum Mean Discrepancy
Two-sample testing on the equality of two high-dimensional
means has been well studied in the statistical literature (Bai

and Saranadasa, 1996; Chen et al., 2010; Cai et al., 2014).
These methods are typically not applicable to MDA analysis due
to the following two reasons. First, existing methods usually
assume normal data, which is not the case for microbiome
compositional data. It has been observed that classic statistical
methods developed for multivariate Gaussian data may fail for
microbiome compositional data (Li, 2015; Cao et al., 2017; Zhao
et al., 2018). Second, most existing methods require estimating
the covariance matrix. Given the small or modest sample size
in a typical microbiome study, the relatively large estimation
error of covariance matrix probably deteriorates the performance
of two-sample test, as observed in microbiome association
tests (Zhan et al., 2017b, 2018).

An alternative approach to test hypothesis (Equation 1)is
to use a non-parametric test that does not need to estimate
the covariance matrix. One such test is the kernel-based
maximum mean discrepancy (MMD) test (Gretton et al., 2007,
2012), originally proposed to examine whether the underlying
distribution of two samples are identical. An MMD test first
maps the two distributions into a reproducing kernel Hilbert
space (RKHS) and then the maximum mean discrepancy metric
between the two distributions is defined as the distance of their
corresponding images in the RKHS. A good property about
MMD is that, MMD is zero if and only if two distributions
are identical when the RKHS is sufficiently rich (contain a
large enough class of functions). Since the test can be used to
examine equality of two multivariate distributions, it suffices for
testing (Equation 1), that is, to examine the equality of the mean
parameters of two underlying distributions.

In particular, the MMD statistic between two independent

samples X
(1)
1 , . . . ,X

(1)
n1 and X

(2)
1 , . . . ,X

(2)
n2 is defined as

MMD2 =
1

n21

n1
∑

i=1

n1
∑

j=1

k(X
(1)
i ,X

(1)
j )+

1

n22

n2
∑

i=1

n2
∑

j=1

k(X
(2)
i ,X

(2)
j )

−
2

n1n2

n1
∑

i=1

n2
∑

j=1

k(X
(1)
i ,X

(2)
j ), (3)

where k(·, ·) is a characteristic kernel (Gretton et al., 2007,
2012), which spans a RKHS which is sufficiently large that
MMD is zero if and only if two samples are from the
same underlying distribution. Examples of characteristic kernel
include the Gaussian kernel and the Laplace kernel. Under
the null hypothesis of identical distribution, the population-
level MMD2 statistic is zero, and thus, a larger MMD2 statistic
indicates a larger discrepancy between the two distributions.
Asymptotically, MMD2 follows a mixture of χ2

1 distribution
(Gretton et al., 2007, 2012). As observed in literature, the
asymptotic mixture of χ2

1 distribution is typically not accurate
for a statistic calculated from a small sample size, as frequently
encountered inmicrobiome studies (Chen et al., 2016; Zhan et al.,
2017b, 2018). A more accurate approach to establish significance
is using resamplings (e.g., permuting the group label of each
observation) (Wu et al., 2016).
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2.3. An Adaptive Two-Sample Test for
Microbiome Differential Abundance
Analysis
A limitation of the aforementioned MMD test is that it equally
utilizes information in all dimensions. When the signal is sparse,
the MMD test typically has a low power due to the high
degrees of freedom paid for many noise variables. The same
phenomenon has been widely observed in the field of set-based
genetic association studies (Cai et al., 2012; Pan et al., 2014,
2015; Zhan et al., 2015) and community-based microbiome
association studies (Wu et al., 2016; Koh et al., 2017). There
are in general two types of two-sample test of high-dimensional
means. One is based on the sum of squares of mean differences
of each dimension [e.g., MiRKAT proposed in Zhao et al.,
2015], and the other is based on the largest componentwise
mean difference (e.g., the max-type test proposed in Cao et al.
(2017)). For microbiome differential abundance analysis, the
max-type test tends to be more powerful when only a few taxa are
truly differentially abundant. On the other hand, the MiRKAT-
type test can be more powerful than the max-type test under
the scenario of dense signals. In practice, the true underlying
biological scenario is never known and thus adaptive methods
for microbiome differential abundance analysis are desired.

A common adaptive approach in a multivariate association
test or two-sample test is to assign different weights to variables
so that important variables are up-weighted and non-informative
variables are down-weighted (Cai et al., 2012; Pan et al., 2014,
2015; Wu et al., 2016; Koh et al., 2017). Yet it is often difficult
to determine the optimal weights. Some authors propose another
loop of permutations to combine multiple sets of weights, which
may be computationally challenging since most adaptive tests
already need permutations to establish significance (Pan et al.,
2014, 2015). In this paper, we propose a different adaptive
method, which tests the hypothesis in a selected subset of
microbiome features. In other words, instead of applying the
MMD test to all p taxa X = (X1, . . . ,Xp), we apply the test on
a putative testing subset XS, where S ⊂ {1, . . . , p}. Our method
can also be viewed as a weighted approach in the sense that a
zero weight is assigned to a feature that is not selected in the
testing subset, and an equal weight is assigned to each feature
in the testing subset. We defer details of selecting such a testing
subset to the next section and present our adaptive microbiome
differential analysis (AMDA) procedure in Algorithm 1:

2.4. A New Permutation-Based Testing
Subset Selection Procedure
There is a vast statistical literature on high-dimensional variable
selection. Some famous examples include the lasso (Tibshirani,
1996) and the knockoff filter (Barber and Candès, 2015; Candes
et al., 2018). The lasso has proven to be a versatile tool with
nice asymptotic estimation and prediction properties, yet its
performance under small sample size is not guaranteed. On the
other hand, knockoff is able to select variables under FDR control
with finite samples. But it tends to select a smaller set of variables
with less false positives to achieve FDR control ( see Table S1

in the online supplemental material). As a consequence, many

Algorithm 1: An adaptive two-sample test for microbiome
differential abundance analysis

Input: A n × p microbiome composition matrix X =

(X
(1)
1 , . . . ,X

(1)
n1 ,X

(2)
1 , . . . ,X

(2)
n2 )

T and a n×1 group label vector y =
(1, . . . , 1, 2, . . . , 2) associated with the microbiome compositions.
Output: A p-value for H0 :µ

(1) = µ
(2) vs. H1 :µ

(1) 6= µ
(2).

Procedure:

1. Apply the centered log-ratio transformation Equation (2)
to the microbiome composition matrix. Without loss of
generality, we still use X to denote the centered log-ratio
transformed data.

2. Use the testing subset selection procedure described in section
2.4 to select a testing subset XS from X, and then calculate
the MMD statistic using XS and y. Denote this statistic as
MMD2

obs
.

3. For b = 1, . . . ,B, permute the group label of observations to
obtain ỹ and use ỹ to repeat Step 2 with X and ỹ. Calculate the
corresponding statistics asMMD2

b
for b = 1, . . . ,B.

4. Calculate the final p-value as pv = 1
B

∑B
b=1 I[MMD2

b
≥

MMD2
obs

], where I[·] is the indicator function.

signals are not selected by knockoff, typically leading to a less
powerful test. Recall that, our ultimate goal is to construct a
differential test with relatively high power. For this reason, we
prefer a procedure that can select a testing subset that contains
as many signals as possible. To achieve this goal, we propose the
following permutation-based testing subset selection procedure.

We first randomly permute the row indices of matrix X

(defined in Algorithm 1) and obtain a permuted microbiome
composition matrix X̃. By the nature of its construction, X̃ is not
related to outcome y. Next, a one-dimensional two-sample test
(e.g., the Kolmogorov-Smirnov test) is applied to each dimension
of X and X̃, and we denote the corresponding p-values as
p1, . . . , pp and p̃1, . . . , p̃p, respectively. Because the dimension p
is typically much larger than sample size in microbiome studies,
we calculate the marginal p-values rather than joint p-values
for testing subset selection. For a truly differentially expressed
variable Xj, as X̃j is not constructed to be outcome-related, it
is expected that pj < p̃j. Hence, we select the testing subset as
S = {j : pj < p̃j} and conduct our MMD test based on the sub-

design matrix XS . Finally, as we are testing H0 :µ
(1) = µ

(2)

usingmicrobiome features that are more likely to be differentially
expressed, to avoid inflated type I error, resampling methods are
required to establish the significance (see details inAlgorithm 1).

It should be noted that the aforementioned permutation-
based procedure is one way to achieve testing subset selection
but not the only way, and it is possible to select testing
subset XS using other methods such as lasso and knockoff.
We conduct comprehensive simulation studies to compare
the power of adaptive two-sample test using different testing
subset selection procedures and report the results in the online
Supplementary Material. As can be observed there, adaptive test
based on our permutation-based procedure is more powerful
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than both lasso-based and knockoff-based tests, as both lasso and
knockoff tend to miss more true signals for the sake of achieving
sparsity (lasso) or FDR control (knockoff).

3. RESULTS

3.1. Simulation Settings
A comprehensive simulation study has been conducted to
compare the performance of AMDA to a wide range of existing
microbiome association tests in the framework of microbiome
differential abundance analysis. The five other tests evaluated
in this simulation include the MiRKAT (Zhao et al., 2015), the
original MMD test without testing subset selection (Gretton
et al., 2007, 2012), theQuasi-Conditional Association Test/QCAT
(Tang et al., 2017), the maximum-type (MAX) test based on the
largest sample mean difference (Cao et al., 2017) and the optimal
microbiome-based association test/OMiAT (Koh et al., 2017).
AMDA, MiRKAT, MMD, QCAT, and MAX are a single test,
while OMiAT takes advantage of two series of tests. One is the
MiSPU tests (Wu et al., 2016) with different weighting schemes
on each individual taxon in the taxa-set. The other is theMiRKAT
tests with different kernel functions. The spirit of OMiAT can
be easily implemented in AMDA, MiRKAT, and MMD by
evaluating multiple kernels and taking the optimal kernel test
with minimum p-value. We do not incorporate this strategy,
for ease of presenting, and only evaluate the Gaussian kernel-
based test for AMDA, MiRKAT, and MMD in this simulation.
Correspondingly, we evaluate the OMiAT as the optimal of a
series of MiSPU tests (without MiRKAT tests of different kernels)
for fair comparison. With a slight abuse of notation, we still term
this test as OMiAT, though it does not contain the MiRKAT
component compared to the original one (Koh et al., 2017).
Moreover, QCAT and MAX tests with asymptotic p-values are
found to have inflated type I errors (data not shown). For this
reason, we use permutations to calculate the MAX test p-value
and the resampling option in the QCAT software (Tang et al.,
2017) to calculate QCAT p-value. Finally, the permutation-based
procedure is used to select testing subset in the intermediate
stage of AMDA in this simulation. The performance of AMDA
test based on other subset selection methods such as lasso
and knockoff were evaluated in additional simulation studies
presented in the online Supplementary Material.

We closely followed the simulation design of the MAX test
(Cao et al., 2017) to generate microbiome relative abundances
data using the logistic normal distribution (Atchison and Shen,

1980). We first simulatedW
(k)
i ∼ Np(µ

(k),6) for i = 1, 2, . . . , n,
k = 1, 2 and then calculated the microbiome relative abundances
as X

(k)
ij = exp[W

(k)
ij ]/

∑p
j=1 exp[W

(k)
ij ] and its centered log-ratio

transformation Z
(k)
ij according to Equation (2). Following the

simulation design of MAX (Cao et al., 2017), the components
of µ

(1) were drawn from a uniform distribution Unif(0,10) and
we considered the banded covariance structure 6 = D

1/2
AD

1/2,
where D is a diagonal matrix with entries randomly drawn from
Unif(1,3) and A has nonzero entries ajj = 1, aj,j−1 = aj−1,j =

−0.5. Under the null model, we set µ
(2) = µ

(1). Under the
alternative model, we randomly picked a subset S ⊂ {1, 2, . . . , p}

such that µ
(2)
j = µ

(1)
j + ej, where ej ∼ Unif (−0.5, 0.5) for all

j ∈ S . For the size of signal set S (number of taxa that are
truly differentially abundant), we considered low, medium and
high signal density levels: p∗ = |S| = 10%p, 30%p and 50%p
with the indices randomly chosen from {1, 2, . . . , p}. Throughout
this simulation, we varied n = 50, 100, 200 with n1 = n2 =

n/2 to investigate the test’s performance under different sample
sizes, and considered p = 50, 100, 200, 500 representing taxa-sets
under different taxonomic ranks.

After the data were simulated, we applied AMDA, MAX,
OMiAT, MMD, MiRKAT, and QCAT to examine the two-sample
differences. The first three tests AMDA, MAX, OMiAT are
adaptive in the sense that they either use a testing subset of the
taxa (AMDA and MAX) or assign a different weight for each
taxon in the set (OMiAT) to conduct the multivariate two-sample
test. The Gaussian kernel (k(x, y) = exp{−||x − y||2/ρ}, where
x and y are two microbiome compositional vectors) was used
in AMDA, MMD, and MiRKAT with the shape parameter ρ

selected as the median of sample pairwise Euclidean distance
||x − y||2. The type I error was evaluated using 5,000 replicates
generated under the null model and the power of test was assessed
with 1,000 replicates under the alternative model. Without loss
of generality, we set the nominal significance level α = 0.05
throughout this simulation.

3.2. Simulation Results
The type I error of different tests are reported in Table 1, where
one can see that all tests have the correct type I error across all
(n, p)-configurations. The power of different tests are reported
Figure 1 (p = 50 and 100) and Figure 2 (p = 200 and
500). Since the effect size was arbitrarily chosen to avoid power
saturation, we care about the relative power among different
methods rather than their absolute magnitudes. As can be seen
from both figures, adaptive tests (AMDA,MAX, and OMiAT) are
consistently more powerful than the non-adaptive ones (MMD,
MiRKAT, and QCAT). This is because the scenarios considered
in our simulation studies are relatively sparse (p∗/p ≤ 50%), and
the adaptive tests can largely boost the power by treating variables
(signals and noises) differently.

Among three non-adaptive tests, MMD and MiRKAT have
similar power under each scenario. On the other hand, QCAT
has the highest power when the dimension of taxa-set is relatively
low (Figure 1) especially when the sample size is relatively large
(n = 200). When the dimension of taxa-set increases, QCAT can
quickly lose power and become less powerful than both MMD
and MiRKAT (Figure 2).

Among the three more powerful adaptive tests, MAX seems
to be slightly more powerful than AMDA and OMiAT when
the density of signal is sparse (p∗/p = 10%) and dimension is
relatively low (p = 50,100, and 200) as indicated in Figure 1

and the top row of Figure 2. Compared to AMDA, MAX only
utilizes the strongest signal, which could be beneficial when
the signals are extremely sparse. When p = 500, there are
p∗ = 50 even under the sparse scenario and AMDA can
be more powerful than MAX by including more signals in
the testing subset (bottom row of Figure 2). On the other
hand, when the signal level is moderate (p∗/p = 30%)
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TABLE 1 | Empirical type I errors of different tests for microbiome differential abundance analysis under nominal significance level α = 0.05.

p n AMDA MAX OMiAT MMD MiRKAT QCAT

50 0.0478 0.0478 0.0506 0.0516 0.0508 0.0436

50 100 0.0464 0.0458 0.0492 0.0536 0.0540 0.0488

200 0.0504 0.0542 0.0530 0.0534 0.0548 0.0480

50 0.0486 0.0478 0.0490 0.0434 0.0424 0.0532

100 100 0.0464 0.0494 0.0492 0.0544 0.0542 0.0478

200 0.0524 0.0558 0.0514 0.0440 0.0424 0.0470

50 0.0454 0.0498 0.0492 0.0438 0.0400 0.0490

200 100 0.0514 0.0476 0.0464 0.0530 0.0516 0.0538

200 0.0464 0.0510 0.0506 0.0542 0.0530 0.0476

50 0.0480 0.0464 0.0504 0.0556 0.0442 0.0474

500 100 0.0540 0.0544 0.0566 0.0570 0.0498 0.0468

200 0.0556 0.0576 0.0456 0.0490 0.0442 0.0336

Results are averaged over 5,000 replicates.

FIGURE 1 | Empirical power of different tests under p = 50 (first row) and p = 100 (second row). The Y-axis represents the power and the X-axis represents the

sparsity level at 10, 30, and 50%.

or relatively dense (p∗/p = 50%), AMDA is much more
powerful than MAX under most scenarios in both Figures 1,
2. Finally, as seen from both figures, AMDA is always more
powerful than OMiAT across all scenarios. AMDA and OMiAT
treat variables in different ways. AMDA selects some variables
and excludes the rest for further subset testing, while OMiAT
assigns different weights for different variables when calculating

the multivariate score test statistic. Despite that a small non-
zero weight may be assigned to a noise variable in OMiAT,
due to the relatively sparse signal density (p∗/p ≤ 50%,
which means there are much more noises than signals), the
accumulated adverse effects of noise variables can still deteriorate
the performance of OMiAT. As a comparison, a zero weight
is assigned to a noise variable (by excluding it from the
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FIGURE 2 | Empirical power of different tests under p = 200 (first row) and p = 500 (second row). The Y-axis represents the power and the X-axis represents the

sparsity level at 10, 30, and 50%.

testing subset) in AMDA, which explains power gain in AMDA
over OiMAT.

To conclude, like five other methods, the proposed AMDA
method is able to preserve the nominal type I error in
microbiome differential abundance analysis. Power-wise
speaking, there is no uniformly most powerful test in our
simulations. However, the proposed AMDA method is always
the most powerful one among all six tests being evaluated in
this simulation under most scenarios, and the power advantage
of AMDA over the other five methods can be huge (Figures 1,
2). Under only a few particular scenarios with extremely sparse
signal (p∗/p = 10%) under relative low dimensions (p = 50,100,
and 200), MAX can be slightly more powerful than AMDA.

3.3. Application to Oral Microbiome Data
Collected From Children With Autism
Spectrum Disorder
We applied the proposed AMDAmethod to a study investigating
how the oral microbiome differs across children with autistic
behaviors (Hicks et al., 2018). The study enrolled 346 children
(between 2 and 6 years old), which were divided into three
groups according to the severity of disorder/developmental
status: autism spectrum disorder (ASD, n = 180), non-autistic
developmental delay (DD, n = 60), and typically developing

(TD, n = 106). The ASD group was defined using criteria
specified in the Diagnostic and Statistical Manual of Mental
Disorders (DSM–5) by the American Psychiatric Association.
The DD group included children who did not meet DSM-
5 criteria for ASD but had developmental delay symptoms
(e.g., expressive speech delay and intellectual disability). TD
children included children with negative ASD screening and
met typical developmental milestones on standardized physician
assessment. The oral microbiome composition of these children
was quantified with next generation sequencing. The data along
with details of data processing are available in the previous
publication (Hicks et al., 2018).

Taxonomic reads were further filtered to include only the
taxa with counts of more than 10, in more than 20% samples,
which ended up with a oral microbiome community of 753 taxa.
Sequence alignment with the k-SLAM (Ainsworth et al., 2017)
method was used for comprehensive taxonomic classification,
and these 753 taxa were classified into 457 species, 266 genera,
142 families, 73 orders, 33 classes, and 16 phyla (each rank
had a Unclassified group for taxonomic sequence not identified
at that rank). Because the proposed AMDA method is an
adaptive multivariate two-sample test, we focused our analysis
on higher taxonomic ranks (family, order, class, phylum, and
the community of all 753 taxa), as many lower taxonomic ranks
contain only a single taxon (e.g., 410 of the 457 species are
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a singleton). Similarly, for the taxonomic ranks (family, order,
class, and phylum) being considered, we further limited our
analysis to a particular taxa-set that contains more than two
taxa. As a result, 52 families, 34 orders, 18 classes, and 10 phyla
were tested in our data analysis. We applied AMDA, MAX,
OMiAT, MMD, MiRKAT, and QCAT to this data to examine
the oral microbiome differences among three different children
developmental profile groups (particularly, ASD vs. DD and
ASD vs. TD) at different taxonomic ranks. As 52 families/34
orders/18 classes/10 phyla were tested, we adjusted for multiple
testing using the Bonferroni correction to control the family-
wise error rate at α = 0.05. Correspondingly, B = 10, 000
permutations/resamplings were used in AMDA, MAX, OMiAT,
MMD, and QCAT to increase the precision of the test p-values,
while the MiRKAT calculates the p-value analytically.

We first applied these tests to examine whether there is an
overall shift in oral microbiome composition between different
developmental groups by testing the differential abundances
of all 753 taxa as a whole community. For the comparison
of ASD vs. DD, the test p-values of AMDA, MAX, OMiAT,
MMD, MiRKAT, and QCAT are 0.0113, 0.1409, 0.5244, 0.1321,
0.1377, and 0.9802, respectively. AMDA is the only method
that is able to detect a significant (p-value < 0.05) difference
of microbiome community profiles between ASD and DD. For
the comparison of ASD vs. TD, the test p-values of AMDA,
MAX, OMiAT, MMD, MiRKAT, and QCAT are 0.0021, 0.0017,
0.0323, 0.3039, 0.3099, and 0.1782, respectively. All three adaptive
methods (AMDA, MAX, and OMiAT) are able to detect a
significant difference between ASD and TD. In the original
study (Hicks et al., 2018), the Mann-Whitney U-test based
individual differential analysis was applied to each taxon and
only three/six taxa were differentially abundant between ASD vs.
DD/ASD vs. TD under FDR = 0.05 [see Table 2 of Hicks et al.
(2018)]. According to the previous simulation results, when the
number of signals is relatively small (p∗ = 3 or 6 as suggested
in the original analysis) compared to the number of variables
(p = 753), the non-adaptive tests have a low power. This
explains that MMD/MiRKAT/QCAT methods are not able to
detect a significant difference of microbiome profiles between
two conditions in this data. Finally, the AMDA/MAX/OMiAT p-
value of comparison ASD vs. TD is much smaller than that of
comparison ASD vs. DD, indicating a more significant overall
oral microbiome composition difference between ASD vs. TD
than the between ASD vs. DD, which is consistent with the
severity of disorder.

Next, we shift our analysis unit to lower ranks than
the community-level to comprehensively assess taxa-set (with
multiple taxa) at each taxonomic rank that are differentially
abundant among different developmental status groups. The
testing results are summarized here in Table 2 . Based on
this table, one can observe that the proposed AMDA always
declares more significant differences than the other two
tests except for one scenario (class-level differential analysis
between ASD and TD). The absolute difference among three
methods presented in Table 2 may be small due to the
conservativeness of the Bonferroni correction. To observe the
relative trends of different tests, the p-values of these tests

at family-level are presented in Figure 3 (p-values at other
taxonomic ranks have the similar pattern and hence are not
reported). The AMDA p-values tend to be the smallest among
p-values of all six tests. Therefore, our method has a clear
advantage over the other methods in terms of detecting more
significant differences in this oral microbiome data differential
abundance analysis.

4. DISCUSSION

With the ever-increasing availability of microbiome and
metagenomics data generated by next generation sequencing
technology, the need to develop and implement efficient
statistical analysis for the data is important to ensure both
statistical rigor and biological relevance. In this paper, we
consider the problem of differential abundance analysis for
microbiome data, which leads to a better understanding of the
behavior of microbiome communities. Most existing methods
tackle this problem using individual taxon-based approach
followed by multiple testing adjustment. However, as taxa
living in the same community do not grow independently,
the complicated interactions among taxa result in complicated
correlation structures among taxa relative abundances, which
may violate the correlation assumptions (among individual tests)
of existing multiple correction methods (Hawinkel et al., 2017).
On the other hand, the newly proposed AMDA examines the
differential abundance of a taxa-set typically containing taxa from
the same genus/family/order/class/phylum, which provides an
invaluable compliment to the individual taxon-based differential
abundance analysis. Given evidence of an association of a taxa-
set with the outcome and assuming that at least one outcome-
associated taxon within the set exist, applying AMDA to a high
taxonomic rank can provide a useful preliminary screening of the
whole microbiome (all species in the community) and facilitate
more targeted downstream laboratory-based microbiome fine-
mapping and functional studies (Wang and Jia, 2016).

The AMDA method has two main advantages compared
to a traditional individual taxon-based approach. First, it
can provide new biological and biomedical insights. The joint
modeling of all taxa in the set is able to capture conditional
effects of taxa that are missed in the traditional individual
taxon-based approach, and thus new insights can be gained by
shifting the analysis unit to a higher taxonomic rank. Second,
it is statistically powerful by aggregating marginal signals of
individual taxon and reducing the multiple testing burden.
By adaptively choosing the subset being tested, our AMDA
further boosts the statistical testing power compared to existing
taxa set-based differential abundance analyses (e.g., MiRKAT).
Moreover, the adaptive strategy used in AMDA could be easily
extended to other hypothesis testing framework (e.g., association
testing) beyond the two-sample problem considered in this
paper. We conducted comprehensive numerical simulation
studies to show the superior performance of AMDA over
existing approaches in terms of maintaining the correct
type I error while having a higher power to detect a true
difference. The potential usefulness of AMDA was further
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TABLE 2 | Number of significant differential abundant taxa-set at each taxonomic rank detected by different methods under family-wise error rate of 0.05.

Comparison Rank AMDA MAX OMiAT MMD MiRKAT QCAT

Phylum (10) 3 1 0 0 0 1

ASD vs. DD Class (18) 3 1 1 2 2 1

Order (34) 2 0 0 1 1 2

Family (52) 1 0 0 0 0 1

Phylum (10) 2 2 2 0 0 1

ASD vs. TD Class (18) 4 3 3 2 2 5

Order (34) 3 2 1 1 1 2

Family (52) 2 2 1 2 2 2

Number in parentheses denotes the total number of tests conducted at that rank.

FIGURE 3 | P-values of AMDA, MAX, OMiAT, MMD, MiRKAT, and QCAT for family-level differential abundance analysis. The left panel corresponds to the comparison

between ASD and DD, and right panel corresponds to the comparison between ASD and TD.

demonstrated via its application to an oral microbiome data,
where AMDA tends to detect more significant differences than
its competitors.

For illustration of our method, we applied the Gaussian
kernel-based MMD test, which has been shown to be a
consistent two-sample test (Gretton et al., 2007, 2012). The
numerical performance of AMDA using other kernels including
Unifrac and Bray-Curtis (Zhao et al., 2015) is similar to
the one based on the Gaussian kernel (data not shown). As
the field matures, more complex (such as family-based and
longitudinal) study designs have become increasingly popular
in the scientific community to study the association between

microbiome and various clinical and biological covariates. This
is partially because these advanced designs can be more efficient
to control potential confounders compared to the population-
based studies with unrelated individuals. The current adaptive
multivariate microbiome differential abundance analysis is
developed for independent samples. It is of further interest
to extend it to accommodate correlated microbiome samples
collected from a study using such a complex design. The
current permutation-based testing subset selection procedure
has been shown to have better numerical performance in
terms of selecting more signals into testing subset than existing
methods across a wide range of scenarios. Yet, any theoretical
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guarantees of this permutation-based selection procedure is
largely unknown. It is also of interest to further incorporate
the phylogenetic tree information into AMDA to facilitate
a comprehensive microbiome differential abundance analysis
besides applying AMDA to one taxonnomic rank of the tree
each time. We believe these issues are of importance and warrant
further investigation.
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