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ABSTRACT: The programmed construction of functional synthetic cells requires spatial control over arrays of biomolecules within
the cytomimetic environment. The mimicry of the natural hierarchical assembly of biomolecules remains challenging due to the lack
of an appropriate molecular toolbox. Herein, we report the implementation of DNA-decorated supramolecular assemblies as
dynamic and responsive nanoscaffolds for the localization of arrays of DNA signal cargo within hierarchically assembled complex
coacervate protocells. Protocells stabilized with a semipermeable membrane allow trafficking of single-stranded DNA between
neighboring protocells. DNA duplex operations demonstrate the responsiveness of the nanoscaffolds to different input DNA strands
via the reversible release of DNA cargo. Moreover, a second population of coacervate protocells with nanoscaffolds featuring a higher
affinity for the DNA cargo enabled chemically programmed communication between both protocell populations. This combination
of supramolecular structure and function paves the way for the next generation of protocells imbued with programmable, lifelike
behaviors.

The storage, manipulation, and utilization of information-
rich molecules such as DNA has long been a goal in the

field of bottom-up synthetic cells, alongside compartmentaliza-
tion and metabolism.1 Information processing is not only
limited to DNA transcription and subsequent protein
expression but also manifests as a wide range of behaviors
we commonly associate with living systems, such as stimuli
responsiveness, adaptability, and communication. At their core,
these behaviors revolve around signal transduction, with cells
sensing and responding to environmental cues. While this is a
challenging concept to mimic in purely synthetic, bottom-up
systems, progress is being made, and synthetic cells have been
designed to transduce both chemical2−9 and nonchemical
signals such as light10,11 or mechanical force.12 However, many
of these systems remain synthetically challenging, requiring at
some point external manipulation to obtain their final
structure. We present here a unique approach to obtaining
signal transduction in synthetic cells, with the hierarchical
organization of supramolecular components into localized
signaling hubs, generating a robust, modular, and synthetically
accessible protocell platform.
Complex coacervates, formed via the electrostatic complex-

ation of oppositely charged macromolecules, are seeing
increased application as bottom-up synthetic cell platforms.
These crowded, highly charged, and cell-sized droplets are
interesting for both their cytomimetic properties as well as
their innate ability to sequester and concentrate a wide range
of biologically relevant macromolecules13−15 and functional
subcompartments.16,17 The structural stability of the otherwise
rapidly coalescing coacervate droplets can successfully be
controlled by the use of fatty acids,18,19 silica nanoparticles,17

or, in the case of the research presented herein, block
copolymers.20 This semipermeable membrane enables the

sequestration of macromolecular entities and assemblies while
simultaneously permitting the translocation of small molecules
for signaling and catalysis.21

Within coacervate-based synthetic cells, the processing of
information-rich molecules has predominantly been focused on
the concentration and resultant enhancement in reaction
kinetics of nucleotide processing enzymes22 and the incorpo-
ration of in vitro transcription−translation processes.23,24 The
engineered colocalization of arrays of biomolecules inside
protocells, mimicking the hierarchical self-assembly of proteins
or nucleotides, has, however, seen limited attention given the
lack of the appropriate molecular toolbox. In this regard,
synthetic DNA-based supramolecular systems form ideal
nanoscaffolds to colocalize arrays of relevant biomolecules
toward the mimicry of their biological counterparts,25−27 as its
unique coded structure facilitates the design of reliable,
predictable, and biocompatible interactions28−31 such as
DNA-based computing and communication in proteinosome
protocells.2 In this communication, we report utilization of a
toolbox of orthogonal, hierarchical supramolecular interactions
to assemble DNA localization hubs within cytomimetic
particles. These unique structures are shown to transduce
external chemical signals into an internal spatial organization
which, when paired with the semipermeable membrane,
enables interprotocell communication. This combination of
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supramolecular DNA nanotechnology within hierarchically
organized protocells is an exciting direction and offers a range
of possibilities toward the development of more elegant tools
for signal localization within synthetic cells.
This system is formed via the hierarchical self-assembly of

functional components (Figure 1). First, the negatively charged

supramolecular nanoscaffold and anionic carboxymethyl-
functionalized amylose (CM-Am) were combined, and
coacervation was initiated by the addition of amylose
functionalized with a cationic quaternary amine (Q-Am).
Droplet coalescence was arrested by the introduction of a
synthetic block terpolymer designed with a careful balance
between electrostatic, hydrophilic, and hydrophobic interac-
tions (Figure 1b).20 The terpolymer consists of a poly(ethylene
glycol) (PEG) peripheral chain that prevents the incorporation
of the terpolymer inside the coacervate droplet, a poly((ε-
capro lactone)-grad ient -( t r imethy lene carbonate))
(PCLgTMC) hydrophobic core to ensure the rearrangement
of the terpolymer around the protocell, and a peripheral
poly(glutamic acid) (PGlu) anionic chain that anchors the
terpolymer to the coacervate core through long-range electro-
static interactions.20,21

The supramolecular nanoscaffold implemented in this study
consists of previously reported amphiphilic monomers made of
bis-pyridine-based C3-symmetrical discotic molecules deco-
rated with single-stranded DNA strands (Figure 2a). The

DNA-decorated monomers self-assemble into columnar stacks,
displaying multiple colocalized copies of single-stranded DNA
in a quasi-1D fashion, capable of further interactions with other
complementary strands via DNA duplex formation.25,26

Nanoscaffolds were strongly sequestered within coacervate
protocells with an incorporation efficiency >99%, as
determined by confocal microscopy16 (Figure 2b). The
columnar stacks remained assembled upon incorporation,
confirmed by bulk fluorescence spectroscopy (Figure S1) and a
lack of punctae formation when only fluorescently labeled
single-stranded DNA was encapsulated (Figure 2b). Control
experiments revealed that sequestration of the nanoscaffold
was driven by the phosphate backbone of covalently attached
DNA strands, confirmed by the lackluster uptake of fluorescent
dyes by themselves and DNA free, dye-labeled discotics
(Figure S2). As these assemblies are approximately 100 nm
long,32 they appeared as diffraction-limited punctae. Impor-
tantly, the relatively large size of the nanoscaffolds prevent
them from crossing the terpolymer membrane (Figure S3),
which ensures that specific DNA sequences are unique to a
protocell at formation. Furthermore, the dynamic nature of
these assemblies is retained upon incorporation within the
coacervate core. Time-lapse fluorescence images (Supplemen-
tary Video 1) revealed movement of the fluorescent dots,
demonstrating that the nanoscaffold is not immobilized within
the protocells and that the coacervate core simulates the
fluidity and dynamic behavior desired for a biomimetic system.
Supramolecular assembly dynamics are also retained. Increas-
ing concentrations of DNA-functionalized monomers without
Cy3-label cause a distinct increase in the emission of Cy3-
labeled monomers, as fluorophores are on average further apart
and thus experience lower degrees of self-quenching (Figure
2c). These results show that the assembly of this complex
multicomponent system is driven by orthogonal supra-
molecular interactions, thus providing a robust platform within
which to perform DNA-based operations.
The specific and reversible recruitment of spatially confined

biomolecules in the coacervate protocell is the first step in
recapitulating biomimetic signal transduction in a synthetic
setting. Here, the display of high fidelity single-stranded DNA
recognition sites by the supramolecular nanoscaffold opens
new possibilities for the straightforward implementation of
robust DNA-duplex based operations. Protocell-specific
responses to external, DNA-based signals are enabled by the
ability of single-stranded DNA to freely diffuse through the
semipermeable membrane to find persistent, localized arrays of
nanoscaffold-bound DNA. To ensure coacervate formation
under the required salt conditions for hybridization (5 mM
MgCl2), the ratio of oppositely charged amylose derivatives
was kept equivalent (1:1 mass ratio of Q-Am:CM-Am) (Figure
S4). We then designed a reporting system that could rapidly
indicate the assembly states of DNA signals within the
coacervate protocells. This system (Figure 3) comprises a
supramolecular nanoscaffold (DNA nanoscaffold 1) that
facilitates the colocalization of a complementary reporter
DNA strand (Cy5-Reporter) in response to variable incoming
signal DNA strands (Fuel and Antifuel). First, the Cy3-labeled
DNA nanoscaffold 1 alone (at 40 nM) exhibited the
characteristic fluorescent punctae when imaging with the
Cy3 channel. Subsequent addition of Cy5-Reporter (5 nM)
resulted in the concomitant colocalization of both dyes over 25
min, confirming DNA-duplex formation on the nanoscaffold
(Figures 3a, S5). Control experiments with a mismatching

Figure 1. Depiction of protocell loading and formation. (a)
Supramolecular nanoscaffold, CM-Am, and Q-Am are mixed to
form coacervate microdroplets through multivalent electrostatic
interactions. (b) Chemical structure of the stabilizing terpolymer,
that when added to the protocells, avoids protocell coalescence and
serves as a semipermeable membrane. (c) Schematic representation of
the supramolecular DNA nanoscaffold inside the coacervate
protocells. (d) Overview of the potential of the nanoscaffold-loaded
protocell to act as a DNA localization hub and to feature programmed
interprotocell communication.
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supramolecular nanoscaffold together with Cy5-Reporter
(Figure S6) did not feature any Cy3/Cy5 colocalization.

Cy5-Reporter can be displaced from nanoscaffold 1 via so-
called toehold DNA strand displacement with the addition of

Figure 2. (a) Molecular structure of the DNA-decorated discotic monomer that self-assembles into columnar stacks in water, resulting in DNA-
decorated supramolecular nanoscaffolds. (b) The negatively charged nature of DNA drives strong sequestration into coacervate protocells. Whereas
ssDNA freely diffuses throughout the coacervate (top), the supramolecular nanoscaffolds force the localization of DNA templates into distinct
punctae (bottom). Top and bottom scale bars represent 10 and 5 μm, respectively. (c) Dilution and subsequent dequenching of the Cy3-labeled
supramolecular nanoscaffold with nonlabeled DNA-decorated monomers (white side chains) demonstrate retention of supramolecular dynamics
within the coacervate. Bar graphs represent the mean Cy3 fluorescence of each coacervate. Scale bars represent 20 μm.

Figure 3. Schematic and accompanying single plane confocal images of nanoscaffold-mediated DNA location control. (a) Addition of
complementary Cy5-Reporter strand to the exterior of protocells results in colocalization on the supramolecular nanoscaffold. (b) The spatial
organization of Cy5-Reporter strand can be controlled by the addition of a Fuel displacer strand, releasing the Cy5-Reporter from the
supramolecular nanoscaffold. (c) This process can be reverted by the addition of an Antifuel strand, which binds the Fuel strand and allows the
Cy5-Reporter to return to the supramolecular nanoscaffold. Scale bars represent 10 μm.
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an external stimulus (Fuel strand, 100 nM) that features a
higher affinity to nanoscaffold 1 (Figure 3b). The release of
Cy5-Reporter leads to its homogeneous distribution through-
out the coacervate protocell, approximately 30 min after the
addition of the fuel strand. This reorganization of Cy5-
Reporter within the protocell core also results in a 10-fold
increase in the average intensity of the Cy5 channel (Figure
S5) due to fluorescence dequenching when released from the
supramolecular nanoscaffold. A concomitant increase in the
Cy3 channel fluorescence intensity from the nanoscaffold is
also observed. This behavior was not an artifact of
heterogeneous local concentrations of reactants, as the same
reorganization was observed when Cy5-Reporter was pre-
incubated with nanoscaffold 1 for 2 h prior to Fuel strand
addition to ensure complete hybridization (Figure S7).
The programmable nature of DNA allows to reverse this

spatial reorganization in a sequence-specific manner. To
relocalize Cy5-Reporter on nanoscaffold 1, the Fuel strand
needs to first be displaced. This was accomplished by an
Antifuel strand that outcompetes nanoscaffold 1 for the Fuel
strand, resulting in a clearly observable change in the
distribution of Cy5-Reporter from homogeneous back to
punctate, colocalized structures (Figures 3c, S5c, Supplemen-
tary Video 2). These experiments highlight the ability of this
supramolecular system to receive external chemical signals and
transduce them into reversible outputs, namely the protocell-
wide spatial organization of macromolecules.
The ability to control the spatial organization of functional

molecules coupled with a semipermeable membrane make this
system an ideal candidate for cell−cell communication. This
was demonstrated by the addition of a second population of
coacervate protocells loaded with an analogous, FAM-labeled
nanoscaffold 2 that can capture any Cy5-Reporter that is
released from a separate population containing nanoscaffold 1.
The system is designed so that the diffusing Cy5-Reporter
features a higher affinity for nanoscaffold 2 than for 1. The
translocation of Cy5-Reporter between neighboring coacervate
populations upon the addition of Fuel strands is observable by
the colocalization of Cy5/FAM in the nanoscaffold 2
population of protocells (Figures 4, S8a, Supplementary
Video 3). While there is a slow background translocation of
Cy5-Reporter, the addition of Fuel clearly accelerates this
process (Figure S8b). Successful transmission of an informa-
tion-rich signal between synthetic cells is facilitated by the
semipermeable interface, which both effectively limits content
mixing, creating discrete populations, while permitting free
translocation of small DNA signaling strands.
Here, we demonstrated the hierarchical assembly of a

synthetic cell platform capable of localized signal transduction.
The electrostatically driven incorporation of supramolecular
localization hubs has provided the individual protocells with
information-rich signatures, enabling the binding and up-
concentration of DNA-based signaling molecules at specific
loci. Combined with the semipermeable terpolymer mem-
brane, these protocells can receive and transduce external
signals, effecting changes in local spatial organization and the
transmission of a DNA-based reporter. This control over the
positioning of information-rich molecules in bottom-up
synthetic cells has important ramifications for the next
generation of synthetic cells, enabling a range of biologically
relevant responses to external DNA signals or for the
modulation of internal structure or assembly of enzyme
cascades. These responses have the potential to initiate a range

of downstream processes, creating more complex, quorum-
based biomimetic behaviors.
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