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Simple Summary: It is recognized that the current developmental neurotoxicity (DNT) testing
paradigm is not fit-for -purpose for the assessment of a large number of chemicals. In the last
two decades there have been scientific advances made for evaluating chemical interactions with
the developing nervous system that rely on alternative to animal methods. The Organisation for
Economic Co-Operation and Development (OECD) provides a forum to develop internationally
harmonised guidance to test and assess chemicals for DNT that is primarily based on cellular
models. Given the complexity of the developing nervous system and the availability of a number
of non-animal methods to address DNT, integration of data from multiple studies is necessary and
an OECD framework for organising existing scientific knowledge can be applied as the canvas of
this integration. Herein, we provide a brief overview of the OECD DNT project and summarize
various achievements of relevance to the project. The review also presents an opportunity to describe
considerations for uptake of the DNT non animal methods in a regulatory context.

Abstract: Characterization of potential chemical-induced developmental neurotoxicity (DNT) hazard
is considered for risk assessment purposes by many regulatory sectors. However, due to test complex-
ity, difficulty in interpreting results and need of substantial resources, the use of the in vivo DNT test
guidelines has been limited and animal data on DNT are scarce. To address challenging endpoints
such as DNT, the Organisation for Economic Co-Operation and Development (OECD) chemical safety
program has been working lately toward the development of integrated approaches for testing and
assessment (IATA) that rely on a combination of multiple layers of data (e.g., in vitro, in silico and
non-mammalian in vivo models) that are supported by mechanistic knowledge organized according
to the adverse outcome pathway (AOP) framework. In 2017, the OECD convened a dedicated OECD
expert group to develop a guidance document on the application and interpretation of data derived
from a DNT testing battery that relies on key neurodevelopmental processes and is complemented by
zebrafish assays. This review will provide a brief overview of the OECD DNT project and summarize
various achievements of relevance to the project. The review also presents an opportunity to describe
considerations for uptake of the DNT in an in vitro battery in a regulatory context.

Keywords: developmental neurotoxicity; in vitro battery; integrated approaches to testing and
assessment; adverse outcome pathways

1. Introduction

It is well documented that certain chemicals can adversely interact with the devel-
opment of the nervous system in humans [1]. There are epidemiological studies and
systematic reviews available in the scientific literature describing how exposure to chem-
icals may be associated with an increased risk of some neurodevelopmental disorders,
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including autism, attention deficit disorder and mental retardation [2–5]. Although the
association between chemical exposure and adverse neurobehavioral and neurodevelop-
mental effects still remains to be clearly demonstrated, it is expected that ongoing efforts
worldwide, such as the Neurosome and the Japan Environment and Children’s Study
( https://www.neurosome.eu/, https://www.env.go.jp/chemi/ceh/en/index.html) and
new research advancements [6] will help to begin to clarify the possible causal associa-
tions between early life environmental chemical exposure and neurological disorders in
children. Recognition of the importance of safeguarding the developing nervous system
from chemical exposure is evident through the acknowledgment that characterization of
developmental neurotoxicity (DNT) hazard potential for chemicals is considered for risk
assessment by various regulatory sectors and is embedded in many regional legislations.

Historically, the unique vulnerability of the developing brain to chemicals has been
assessed using EPA or OECD Test Guidelines [7,8] that are based on animal models and
investigate alterations in neuroanatomical, neurophysiological, neurochemical and neu-
robehavioral parameters following perinatal chemical exposures [9–11]. However, no
standard regulatory data requirements for DNT currently exist in any of the chemical
regulatory sectors; most commonly, an observational finding related to neurotoxicity de-
tected in other routinely conducted in vivo studies might trigger in vivo DNT testing [12].
This fact, accompanied by substantial resource requirements, test complexity, difficulty in
interpreting data and ethical reservations, limits the use of the in vivo DNT test guidelines.
This has resulted in scarce DNT toxicological hazard information, which is estimated to be
available only for 110–140 [9,13] compounds. With over 350,000 chemicals and mixtures of
chemicals registered on the global market [14], more efficient and cost-effective methods
are needed for assessing hazard, exposure and, ultimately, risk.

The limited DNT in vivo testing, coupled with the recent paradigm shift in toxicity
testing which is based on the development and use of pathway-based testing strategies
rather than traditional animal–based methods, triggered interest in the research community
that subsequently developed new alternative methodologies (NAMs) for DNT [15–21].
Indeed, decades of research to understand the impact of various types of chemicals on
key neurodevelopmental processes (i.e., progenitor cell proliferation, differentiation into
neuronal and glial cells, migration, apoptosis, axonal and dendritic outgrowth, myelina-
tion, synapse formation and formation of functional networks) advanced the design and
development of phenotypic in vitro assays for testing DNT that were recently reviewed for
their readiness and use in the regulatory arena [22,23].

This review paper provides an overview of an international effort to develop guidance
on in vitro assays for use in a DNT testing battery under the auspices of the OECD. It
highlights the various achievements so far and describes the scientific and experimental
basis of the DNT in vitro testing battery that is proposed in the guidance. The review
also presents considerations for uptake of the guidance that could facilitate countries and
industry to enhance DNT testing of chemicals, focusing on the incorporation of mechanistic
understanding and practical examples that are applicable in a regulatory context.

2. Overview of the OECD DNT Project

Since 1981, OECD has developed international recognized standards, the OECD Test
Guidelines ( https://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestin
gofchemicals.htm) that are harmonized toxicity testing methods. The majority of these
guidelines that are relevant to human health endpoints are animal-based and are widely
used to generate data for consideration in chemical safety evaluations. During the last two
decades, the Test Guidelines Programme started to focus on alternative testing approaches
based on cellular models in response to the evolving regulatory needs of OECD member
countries and rapid scientific developments in the field.

Over the last 15 years, a number of scientific workshops and meetings have raised
awareness about the fact that the majority of the chemicals released into the environment, and
to which children are potentially exposed, have not been evaluated for DNT hazard [15,16,21].

https://www.neurosome.eu/
https://www.env.go.jp/chemi/ceh/en/index.html
https://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm
https://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm


Biology 2021, 10, 86 3 of 11

These international efforts highlighted the need for a new framework that would allow cost-
and time-efficient DNT testing [24,25]. Recently, a scientific consensus has emerged that the
development of in vitro, in silico and alternative species test methods, and the integration of
data derived from these methods, could facilitate the evaluation of chemicals, especially in
regard to their potential to disrupt brain development [25–27]. To address this need, an OECD
project was initiated following a workshop jointly organized by OECD and European Food
Safety Authority (EFSA). Participants in this workshop agreed that the proposed DNT in vitro
testing battery [22] could be further harmonized in an international acceptance process. This
would facilitate its use not only for chemical screening and prioritization but also for hazard
characterization [22,25].

The purpose of the OECD project, overseen by an OECD Expert Group on DNT, is to
deliver a guidance document that will introduce a framework to facilitate the regulatory
use of DNT in vitro data derived from the battery through an integrated approach to testing
and assessment (IATA) ( http://www.oecd.org/chemicalsafety/risk-assessment/iata-int
egrated-approaches-to-testing-and-assessment.htm). Although it is not envisioned as a
direct replacement of the in vivo Test Guidelines, there are a number of regulatory relevant
scenarios for which data from the DNT in vitro test battery could be applied to inform
decision-making. The majority of these scenarios will be captured in case studies that
will illustrate the applicability of the DNT in vitro battery (IVB) in a regulatory context.
Moreover, it is envisioned that the Adverse Outcome Pathway (AOP) framework that was
formalized by the OECD in 2012 ( https://www.oecd.org/chemicalsafety/testing/projec
ts-adverse-outcome-pathways.htm) will be the basis of organizing data and developing
IATA (see Section 4).

The DNT-IVB (described in Section 3) was used to generate extensive experimental
data initially by an EFSA-funded research project involving the Universities of Konstanz and
Dϋsseldorf, with additional data to be generated by the US Environmental Protection Agency
(US EPA). A protocol for the implementation and interpretation of the DNT-IVB has been
published [28]. These efforts aim to support the development of an OECD guidance document
on the interpretation and use of DNT-IVB data in regulatory decisions that is expected to be
finalized in 2021. Figure 1 illustrates the main pillars of the OECD DNT project (i.e., AOPs,
IVB and IATA) together with the main highlights and goals of the project, including the
long-term objectives to improve DNT testing for chemicals and accelerate the uptake of the
upcoming guidance document on DNT, which is expected to be finalized in 2021.
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3. Scientific and Experimental Basis of the DNT In Vitro Battery (DNT-IVB)

Table 1 provides a list of the assays that are currently included in the battery. It is not
intended to provide a detailed description of the assays, but rather a brief summary with
references to more detailed descriptions of the assays. This battery of assays was developed
around the concept of designing phenotypic testing approaches for key neurodevelopmental
processes. This approach was developed through a series of international meetings with sci-
entists, regulators and stakeholders interested in DNT [15–17,21,26]. Although approximately
30 or more potential assays have been developed, the ones selected for this battery have been
evaluated for their readiness [22] and/or followed the recommendations of Crofton et al.,
2011 [21] in their development. In addition, the laboratories that developed the assays in this
proposed battery expressed a willingness and had the resources to pursue additional chemical
testing with these assays [28]. Thus, it is important to note that an in vitro assay, which is not
listed as part of this battery, might still be able to provide useful data for a decision regarding
DNT. However, one would need to closely evaluate that assay to determine its validity and
reproducibility with known positive and negative control compounds.

Table 1. Summary of the DNT assays in the battery.

Neurodevelopmental Event Cell Type Endpoint Site Reference

Proliferation

hNP1 BrdU incorporation USEPA [29]

Human Neuroprogenitor
Cells (hNPCs) Grown

in Neurospheres
BrdU incorporation; size Düsseldorf [30–32]

Migration

hiPSC-Derived Neural
Crest Cells

Number of cells migrating into
defined area of well. Konstanz [33]

hNPCs Grown in
Neurospheres

Migration of:
Radial Glia

Early neurons
Oligodendrocytes

Düsseldorf [34]

Differentiation hNPCs Grown in
Neurospheres

GFAP/NESTIN (radial glia)
βIII tubulin (neurons)

O4 (Oligodendrocytes)
Düsseldorf [34]

Neurite Outgrowth

hN2/CDI Igluta βIII tubulin incorporation US EPA [29,35,36]

Rat Cortical βIII tubulin incorporation US EPA [29,37]

LUHMES Neurite area visualized with
calcein AM Konstanz [38]

Human Dorsal
Root Ganglion

Neurite area visualized with
calcein AM Konstanz [39,40]

hNPCs Grown in
Neurospheres βIII tubulin Düsseldorf [34]

Synaptogenesis Rat Cortical Culture Synaptic puncta
(synaptophysin staining; HCI) US EPA [29,41]

Network Formation Rat Cortical Culture
Electrical activity development

measured by microelectrode
array recordings

US EPA [42,43]

3.1. Assays of the Proposed Battery

The systematic testing of compounds in a battery of in vitro assays that evaluate key
neurodevelopmental events is being done by researchers at three major partner institu-
tions: the US EPA, the University of Konstanz and the University of Düsseldorf. A brief
description is provided in the table below for each assay in the battery, including the key
neurodevelopmental process being tested, the assay endpoints and additional references
further describing the assay.
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3.2. Processes behind Selection of the Chemicals for Testing

A small (20–30) but not completely overlapping number of chemicals had been tested
in each of the assays in the DNT-IVB at the beginning of this project. Thus, the overall
goal in selecting chemicals for testing was to maximize the number of chemicals that had
been tested across all the assays described in Section 3.1. As a starting point, a list was
compiled that included all chemicals tested in the assays as of approximately 2017, when
the chemical selection process was started (see Figure 5 in Bal-Price et al. [22]). An expert
group of neurotoxicologists met regularly and considered additional compounds from the
following sources: those compounds listed as having considerable evidence for in vivo
neurotoxicity in Mundy et al., 2015 [15] and/or Aschner et al., 2017 [44]; compounds
for which guideline DNT studies were known to exist; compounds that were of interest
for IATA development by members of the OECD DNT expert group; putative negative
control compounds (primarily from Aschner et al., 2017 [44]; Harrill et al., 2018 [29])
and compounds in the National Toxicology Program’s set of 91 chemicals that had been
distributed to multiple labs for DNT testing [45]. This resulted in a list of compounds
that contained approximately 310 chemicals. This list was then “cross-checked” with the
ToxCast chemical library at the US Environmental Protection Agency to determine which
compounds could be obtained through that source and distributed to the labs involved in
testing. This eliminated approximately 75 compounds for reasons such as volatility, status
as a controlled substance (e.g., cocaine) and regulatory disposal issues (e.g., polychlorinated
biphenyls). Of the approximately 240 remaining chemicals, those that had been tested in
one or more, but not all, of the assays in Section 3.1 were given high priority for testing in
the other assays. Compounds for which there was in vivo evidence for DNT [15,44] and
available Test Guideline DNT studies were also given a high priority, followed by those that
were of interest for IATA case studies proposed by OECD DNT Expert Group Members,
and finally putative negative compounds. This resulted in a list of approximately 120
compounds for testing that were available through ToxCast. Individual plates were made
for each assay or group of assays based on how many of the 120 compounds had already
been tested in that assay, and the untested compounds were plated and provided to the
laboratories. The EFSA-funded researchers at the Universities of Konstanz and Dϋsseldorf
have completed their testing and submitted a report to EFSA [28], while data collection for
the US EPA assays should be complete by early 2021.

3.3. Availability of In Vitro DNT Data

The data from the EFSA-funded project can be found in the report [28] and on the link
to that report ( https://efsa.onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2020.EN-1938;
see “supporting information file: efs31938e-sup-0001-Annex-A.xlsx”). When it is complete,
the data from the US EPA laboratory will be made available through the US EPA’s CompTox
Chemicals Dashboard ( https://comptox.epa.gov/dashboard/chemical_lists/TOXCAST),
but this is not expected to be available to the public before mid-2021. Finally, although
separate from this project, the National Toxicology Program at the US National Institute
for Environmental Health Sciences maintains a DNT-related database (DNT DIVER,
https://sandbox.ntp.niehs.nih.gov/neurotox/) that houses data from several of these
assays as well as zebrafish behavioral assays.

3.4. Usefulness of the Battery

Several regulatory-driven scenarios that illustrate the usefulness of the DNT_IVB are
discussed in Section 4.1. In addition, because the battery is based on the disruption of
important neurodevelopmental processes, it provides information on potential mechanisms
or modalities that a compound is disrupting that cannot be obtained from in vivo guideline
studies. As such, it can provide information to help develop DNT-related AOPs, as
discussed in greater detail in Section 4.2. Further, such information could also be used
to provide scientific rationale for more focused hypothesis-driven in vivo studies when

https://efsa.onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2020.EN-1938
https://comptox.epa.gov/dashboard/chemical_lists/TOXCAST
https://sandbox.ntp.niehs.nih.gov/neurotox/
https://sandbox.ntp.niehs.nih.gov/neurotox/
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necessary. Ultimately, when implemented in the context of IATAs, the battery will have
many potential uses that could inform decision-making relative to DNT.

4. Considerations for Uptake of the DNT In Vitro Battery in a Regulatory Context
4.1. Case Studies

All stakeholders agreed that a flexible and fit-for-purpose approach is needed to cover
the different regulatory needs [27]. It is therefore expected that the OECD guidance currently
under development would include guidance on the use of new approach methodologies
(NAMs) for regulatory decisions regarding DNT. The guidance will be developed based on
problem formulation for different regulatory scenarios, and case studies will help to articulate
how to apply the NAMs to these scenarios using an IATA approach. Case studies are therefore
expected to cover examples that range from observing apical outcomes in the in vivo study to
mechanistic evaluation in assessing DNT in a regulatory context.

Targeted DNT-IVB testing should therefore be geared through a problem formulation
approach based on regulatory needs using an IATA framework, with the idea that the end-
points included in the DNT-IVB would fill the gap represented by the lack of mechanistic
understanding of DNT. Examples of regulatory scenarios identified by the DNT Expert
Group include:

(1) Use of the DNT-IVB for identification/confirmation of biological activity when predic-
tive computational models (including outcome from QSAR analyses) of DNT identify
potentially active compounds;

(2) Screening for prioritization of large numbers of chemicals that lack sufficient data
on DNT;

(3) Screening of small numbers of class-specific chemicals or mixtures;
(4) Single chemical hazard assessments related to Weight of Evidence (WoE) analysis

as part of, e.g., a DNT tiered approach when no DNT data exist, when available
in vivo DNT data exist but are inconclusive or when concern arises from new data on
alternative species or from the literature.

While scenarios 1 and 2 will cover the needs for potential DNT hazard identification,
scenarios 3 and 4 are expected to test the impact of the DNT-IVB on hazard characterization.

Based on these regulatory scenarios, several case studies were proposed by the mem-
bers of the OECD DNT expert group.

(1) Two IATA case studies on DNT hazard characterization for pesticides, with the
inclusion of the DNT-IVB in the AOP-informed IATA approach;

(2) IATA case study on screening DNT hazard identification for organophosphorus
flame retardants;

(3) IATA case study on DNT hazard characterization for neonicotinoid pesticides;
(4) IATA case study using the DNT-IVB as a follow-up to the application of in silico

models to screen compounds for potential DNT hazard identification.

This initial approach is considered sufficient to cover the main regulatory needs, i.e.,
screening and prioritization or hazard characterization, with the hope that additional
IATA case studies will be developed to corroborate the use of the DNT-IVB. As such, the
guidance should be considered as a living document able to include additional new case
studies and/or testing methods that satisfy the readiness criteria and that represent a
scientific step forward in the understanding of toxicity pathways in DNT. In addition, there
is provision for guidance and case studies to be added to specifically include the zebrafish
model as an alternative assay platform. The inclusion of the zebrafish model only partially
addresses the underlying concept behind the alternative framework, as this model typically
does not provide information on the mechanism of toxicity. However, it remains relevant
and valuable because with the absence of data from mammalian models (e.g., rodents),
it represents a strategic (i.e., rapid and inexpensive) and metabolically competent in vivo
assay for which ethical and economical issues are perhaps less problematic as compared to
rodent-based assays.
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4.2. Adverse Outcome Pathways

The AOP conceptual framework describes a sequence of measurable key events (KEs)
which are expected to be triggered by the activation of a molecular initiating event, MIE. This
cascade of KEs finally results in an adverse outcome (AO) [46,47] of regulatory relevance.
The adverse outcome pathway (AOP) concept would therefore facilitate the application of
mechanistic knowledge to regulatory decisions. The AOPs also represent the ideal tool to
identify experimental data gaps or lack of knowledge in the pathophysiological process.
Indeed, the regulatory acceptance of NAMs, and particularly of DNT mechanistic endpoints
which currently lack specific guidance, needs a strong biological rationale. The understanding
of the pathological pathways leading from functional in vitro endpoints to behavioral changes
at organism level appears particularly challenging. This is because adverse behavioral effects
are difficult to measure (compared to, e.g., tumor/histopathology) and many variables may
influence the experimental results in rodents. Moreover, for human real-world situations,
many, e.g., genetic, environmental, social, modifiers may impact the outcome [6,13]. To reduce
this uncertainty, an AOP-informed IATA offers a biological context to increase the scientific
confidence for using mechanistic information in regulatory decision-making. This is because
the AOP allows for a structured organization of evaluated information for which a biological
causal relationship between the MIEs the downstream KEs and the AO can be documented,
and a quantitative uncertainty assessment can be done [12].

The iterative approach in the IATA framework would therefore be a combination of
building blocks where the AOP is paving the biological understanding for addressing the
regulatory problem formulation. AOPs will assist in structuring the available information in
terms of MIE, KEs and AO, and in the identification of missing data and/or in the design of
testing strategies. One relevant consideration is that the endpoints measured in the DNT-IVB,
in the AOP conceptual framework, represent KEs and not MIEs. However, more downstream
KEs, closer to the AO, are expected to be more comprehensive in terms of coverage of
potentially relevant pathways and the expected propagation of effects within the AOP to
higher levels of organization may be more certain and consequently regulatory relevant.

It is therefore important to establish the amount of data to be gathered in an AOP-
informed IATA, still based on problem formulation. More uncertainty can be an acceptable
condition for screening and prioritization of a large number of chemicals. This might be
less acceptable for, e.g., single chemical risk assessments. In this case, the DNT-IVB will
be part of the mechanistic evidence influencing the overall WoE for the postulated AOP.
The use of a prototype chemical stressor can be therefore an option to inform on the most
probable MIE.

Mapping the available DNT-IVB data in the AOP wiki ( https://aopkb.oecd.org/
and https://aopwiki.org/) enables the generation of DNT AOP networks and provides
evidence that the DNT-IVB is indeed testing the fundamental neurodevelopment KEs in
an AOP network [12]. This greatly facilitates the use of the DNT-IVB data for overall WoE
in the IATA case studies, and the identification of missing data and/or design of testing
strategies in accordance with the IATA iterative process. This approach will be described
in the guidance through the case studies.

One critical limitation is that there are currently very few DNT AOPs that are not
thyroid-related in the AOP Knowledgebase and AOP wiki ( https://aopkb.oecd.org/ and
https://aopwiki.org/) that have been reviewed and accepted through the OECD process.
While missing fully characterized AOPs is an uncertainty, the increase in confidence for
the regulatory use of the DNT-IVB may be based on the fact that it is covering multiple
important neurodevelopmental processes (functional KEs). The AOP framework support-
ing regulatory decisions may therefore include putative AOP networks postulated using
the outcome of the DNT-IVB. Indeed, where the amount of mechanistic information is
scarce or lacking, the DNT-IVB will be the source for the identification of KEs that can be
pragmatically framed in the AOP and used for the overall estimation of the regulatory
weight of evidence.

https://aopkb.oecd.org/
https://aopwiki.org/
https://aopkb.oecd.org/
https://aopwiki.org/
https://aopwiki.org/
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4.3. Regulatory Engagement

The consensus statement [27] involved several stakeholders acknowledging that a
more formal regulatory step is needed for the use of alternative methodologies for exploring
and assessing the potential of a chemical to induce DNT. The OECD DNT expert group,
and the development of guidance for the use and interpretation of the DNT-IVB, represents
the summit of more than a decade of effort from academia and research institutions in
the field of DNT. The framework therefore offers the opportunity to change the DNT
testing paradigm in regulatory risk assessment. Multiple regulatory agencies and research
institutions are at the helm of this process under the OECD umbrella (e.g., US EPA, NTP,
Leibniz Institute for Environmental Medicine, University of Konstanz, Danish EPA, EFSA,
European Union Joint Research Centre), but the involvement of additional institutions
would be welcomed and should be encouraged. In the European context, for example, it
will be strategically important to actively include additional agencies beyond the current
institutional engagement in the process. This is important not only for the scientific
benefit but also for the correct positioning of the DNT-IVB in the European jurisdiction of
regulated chemicals with the engagement of the risk managers in defining the regulatory
road map during and after publication of the guidance by the OECD. The strengthening
of the regulatory engagement will encourage regulatory use of the DNT-IVB. This will
also depend on whether specific data requirements for DNT assessment are adopted or
changed by different jurisdictions, if a tiered approach for DNT is necessary and if specific
test guidelines are written which encourage commercial laboratories to set up and run
these assays.

5. Conclusions

One of the main duties of regulatory risk assessors dealing with environmental chemi-
cals is to ensure that their use is not harmful to exposed populations. The consequences
of neurodevelopmental disorders have a relevant socioeconomical impact and, while the
recent increase in the prevalence of neurodevelopmental disorders has been associated
with pre- and postnatal exposure to environmental chemicals, much remains unknown
about causal relationships. DNT hazard identification remains a critical information gap
that needs bridging to address these concerns. This information gap is due in part to the
limited data requirements for DNT across the different jurisdictions and the uncertainties
associated with the current in vivo assay-based DNT assessments [13]. This concern culmi-
nated in a consensus statement that a new framework for assessment of chemicals with the
potential to disrupt brain development needs to be adopted [27].

It is therefore critical from the regulatory perspective to develop a framework based
on NAMs in a regulatory context of international value, by adopting, as an underlying
scientific principle, the assumption that dis-regulation of a fundamental process in brain
development has the potential to lead to an unhealthy outcome.

The best option to resolve this was to first develop guidance on the use and interpreta-
tion of a DNT-IVB. This guidance should cover different regulatory problem formulations
accompanied by a definition of the acceptable level of uncertainty for the DNT hazard
characterization [18,25]. The OECD DNT expert group acknowledged that the transition
from method development to test implementation needs to be achieved with a reasonably
acceptable level of uncertainty, which is dependent on the regulatory problem formulation.
Because of the high complexity of developmental neurotoxicity, multiple tests have been
developed and assembled in a battery, for which readiness criteria were achieved.

Although multiple tests have been developed, the critical step of their comparison
using larger chemical libraries is still lacking. Recently, this issue has been reduced by the
publication of more experimental work testing a consolidated list of compounds in the
DNT-IVB [28]. These considerations led the OECD DNT experts to propose a significant
step in the regulatory application of the DNT-IVB, namely the decision to develop guidance
on the use and interpretation of data from in vitro DNT assays (with the inclusion of the
zebrafish model). The guidance will be strengthened by the inclusion of several IATA
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case studies based on regulatory problem formulations, and this would allow for the
immediate implementation of the framework. The IATA represents the best tool for an
iterative approach to answer the defined question in each specific regulatory context by
considering the acceptable level of associated uncertainty.
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