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In advanced retinitis pigmentosa with retinal lesions, the lesion projection zone
(LPZ) in the early visual cortex can be driven during visual tasks, while it remains
unresponsive during passive viewing. We tested whether this finding translates to
advanced glaucoma, a major cause of acquired blindness. During visual stimulation, 3T
fMRI scans were acquired for participants with advanced glaucoma (n = 4; age range:
51–72) and compared to two reference groups, i.e., advanced retinitis pigmentosa
(n = 3; age range: 46–78) and age-matched healthy controls with simulated defects
(n = 7). The participants viewed grating patterns drifting in 8 directions (12 s) alternating
with uniform gray (12 s), either during passive viewing (PV), i.e., central fixation, or
during a one-back task (OBT), i.e., reports of succeeding identical motion directions.
As another reference, a fixation-dot task condition was included. Only in glaucoma and
retinitis pigmentosa but not in controls, fMRI-responses in the lesion projection zone
(LPZ) of V1 shifted from negative for PV to positive for OBT (p = 0.024 and p = 0.012,
respectively). In glaucoma, these effects also reached significance in V3 (p = 0.006),
while in V2 there was a non-significant trend (p = 0.069). The general absence of positive
responses in the LPZ during PV underscores the lack of early visual cortex bottom-up
plasticity for acquired visual field defects in humans. Trends in our exploratory analysis
suggesting the task-dependent LPZ responses to be inversely related to visual field
loss, indicate the benefit of patient stratification strategies in future studies with greater
sample sizes. We conclude that top-down mechanisms associated with task-elicited
demands rather than visual cortex remapping appear to shape LPZ responses not only
in retinitis pigmentosa, but also in glaucoma. These insights are of critical importance for
the development of schemes for treatment and rehabilitation in glaucoma and beyond.
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INTRODUCTION

Glaucoma, a progressive degeneration of retinal ganglion cells (RGCs), results in an irreversible
loss of vision, eventually leading to blindness (Jonas et al., 2017). Worldwide it is the second most
prevalent cause of acquired blindness, next to cataract (Quigley and Broman, 2006). Most of the
conventional therapeutic strategies, by medication or surgery, are directed toward the management
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or control of the major risk factor in glaucoma, increased intra-
ocular pressure (IOP). In fact, these interventions are known
to reduce the progression rate of the disease (Jonas et al.,
2017). However, the beneficial effects of recent advances in early
detection and progression-delaying treatment of glaucoma are
counteracted by increased life expectancy. As a consequence,
a substantial proportion of glaucoma patients will become
severely visually impaired and eventually bilaterally blind during
their lifetime (Quigley and Broman, 2006; Kapetanakis et al.,
2016). This motivates current research initiatives, not only to
focus on better disease treatment tools, but also to further
our understanding of the management of visual impairment
in advanced glaucoma. In fact, the ultimate goal is to explore
effective avenues for the restoration of visual input, which is
motivated by ongoing research progress, ranging from cell-based
therapies at the retinal level to interventions at the cortical level
(reviewed in Jutley et al., 2017; Roska and Sahel, 2018). For
this purpose, knowledge about the state and functionality of
the deafferented visual cortex in glaucoma is instrumental. In
fact, in addition to the retinal damage caused by glaucoma, the
concomitant deprivation of visual input from the retina to the
cortex has been shown to result in structural and functional
changes at the cortical level, in particular in the primary (V1) and
extra-striate (V2 and V3) visual cortex (Duncan et al., 2007; Dai
et al., 2013; Frezzotti et al., 2014; Boucard et al., 2016; Wang et al.,
2016; Zhou et al., 2017).

fMRI-based retinotopic mapping demonstrated the interplay
of plasticity and stability in congenital visual pathway
abnormalities and inherited retinal diseases (Hoffmann et al.,
2012; Hoffmann and Dumoulin, 2015; Ferreira et al., 2017;
Ahmadi et al., 2019, 2020). In contrast, reorganization of the
primary visual cortex is much more limited in patients with
acquired visual field defects as studied in detail for macular
degeneration (Baker et al., 2008; Masuda et al., 2008; Dilks et al.,
2009; Liu et al., 2010; Baseler et al., 2011; Plank et al., 2013).
Although glaucoma is a prevalent disease, the scope of cortical
plasticity in the deafferented portions of the early visual cortex in
advanced glaucoma has only received little attention. Zhou et al.
(2017) reported an enlarged para-foveal representation in the
visual cortex of glaucoma patients, but recent investigations of
simulated peripheral response dropouts in controls (Prabhakaran
et al., 2020) suggest that such effects do not necessarily reflect
veridical long-term cortical reorganization. This mirrors the
views of previous reports analyzing the limited nature of visual
cortex plasticity for foveal de-afferentation (Baseler et al., 2011;
Haak et al., 2012; Barton and Brewer, 2015). Accordingly,
reductions of amplitude and extent of fMRI BOLD responses in
the visual cortex of glaucoma patients (Duncan et al., 2007; Song
et al., 2012; Borges et al., 2015; Murphy et al., 2016) and thinning
of gray matter in the de-afferented visual cortex (Yu et al., 2014,
2015; Boucard et al., 2016) suggest the absence of large-scale
reorganization post visual field loss.

Importantly, in the context of vision restoration and
rehabilitation strategies, investigations of the responsivity of
lesion projection zones (LPZ) in the visual cortex, i.e., cortical
representations of the retinal lesions, are key to understanding
the reality of adult visual cortex reorganization capabilities.

Consequently, investigations are needed to assess cortical
responses in the LPZ and their relation to visual stimulation
and visual tasks. In fact, for patients with non-glaucomatous
retinal disorders, cortical activations in the LPZ were reported.
Remarkably they appear to depend on the presence of a visual
task to be performed on the presented stimuli. In a series
of case observations Masuda et al., demonstrated these task-
dependent V1-responses in patients with macular degeneration
(MD) and retinitis pigmentosa (RP), i.e., for central (Masuda
et al., 2008, 2020) and peripheral visual field defects (Masuda
et al., 2010), respectively. These task-dependent effects have now
been confirmed in a larger cohort of RP patients (n = 13) using
spatially specific stimulation (Ferreira et al., 2019). These signals
are taken as evidence for an absence of bottom-up plasticity
and are discussed as side effects of task-related feed-back and
attentional demands from higher visual areas. Although highly
relevant for the management of advanced glaucoma, such insights
into the responsiveness of the LPZ in the early visual cortex are
currently completely missing for the entity of glaucoma patients.

In the present study, we assessed the task-dependence of
cortical responses in the LPZ in a set of glaucoma patients (GL),
carefully selected to have extensive glaucoma-related peripheral
visual field defects, and compared the findings to those in two
reference groups, i.e., advanced RP and controls with simulated
peripheral visual field defects. In fact, LPZ response signatures
and task-dependencies in RP and glaucoma matched and were
analogous to those reported previously in MD, but absent in
controls. Consequently, the lack of relevant bottom-up plasticity
appears to be a general feature of the human visual system.

MATERIALS AND METHODS

Participants
Demographics of the participants is given in Table 1. Participants
with extensive visual field (VF) defects due to advanced open-
angle glaucoma (GL; n = 4) or to retinitis pigmentosa (RP;
n = 3; RP2 also had secondary glaucoma, see Table 1) and
age-matched visually healthy controls (HC) with normal vision
[best-corrected decimal visual acuity ≥ 1.0 (Bach, 1996); n = 7]
took part in the study. Written informed consents and data
usage agreements were signed by all participants. The study
was conducted in adherence to the tenets of the Declaration
of Helsinki and was approved by the ethics committee of the
University of Magdeburg.

Visual Field Testing and Fixation Stability
Standard automated perimetry (SAP) was performed using 24–
2 Swedish Interactive Threshold Algorithm protocol (SITA-Fast;
Goldmann size III white-on-white stimuli; Humphrey Field
Analyzer 3; Carl Zeiss Meditec AG; Jena, Germany). For three
participants, VF to the central 30◦ was tested using another
perimeter (OCTOPUS R© Perimeter 101, Haag-Streit International,
Switzerland; dG2; dynamic strategy; Goldmann size III). For the
patient cohort (except 1; GL3), fixation stability was determined
with a fundus-controlled microperimeter (MP-1 microperimeter,
Nidek, Padua, Italy) during fixation of a central fixation target.

Frontiers in Neuroscience | www.frontiersin.org 2 July 2021 | Volume 15 | Article 653632

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-653632 July 23, 2021 Time: 13:43 # 3

Prabhakaran et al. Visual-Cortex Functional Dynamics in Glaucoma

TABLE 1 | Participant demographics and clinical characteristics.

Participants Age Sex Stimulated eye (fMRI) Visual acuity Visual field (MD—dB) Fixation stability1 (2◦) Onset age (yrs) Duration (yrs)

GL1 68 Female Left 1.0 −13.9 100% 59 9

GL2 70 Male Left 0.4 −25.8 100% 65 5

GL3 51 Female Right 0.8 −32.5 na 48 3

GL4 72 Male Left 0.8 −30.7 100% 47 25

RP1 56 Female Left 0.6 −23.5 97% 26 30

RP22 78 Male Left 0.05 −30.7 99% 59 19

RP3 46 Female Right 0.05 −27.3 31% 11 34

HC1 64 Male Left 1.6 1.0 na na na

HC2 79 Female Left 1.3 0.0 na na na

HC3 56 Male Left 1.3 0.0 na na na

HC4 73 Male Left 1.0 −0.9 na na na

HC5 75 Male Left 1.3 0.0 na na na

HC6 71 Female Right 1.0 −1.4 na na na

HC7 63 Female Left 1.0 na na na na

GL, glaucoma; RP, retinitis pigmentosa; HC, control participants; MD, Visual field mean deviation as measured with standard automated perimetry (SAP); na, not available.
1Proportion of central fixations within a fixation window of 2◦ radius as determined with a fundus-controlled perimeter (see section “Materials and Methods.”).
2RP participant with secondary glaucoma; visual field defects are predominantly driven by the primary disease, i.e., RP, consequently, RP2 is classified as RP.

Fixations were tracked with 25 Hz and the proportion of fixations
falling within the central 2◦ radius was determined using built-in
MP1 analysis (Table 1).

Visual Stimulation for fMRI
Stimulus Conditions and Rationale
Three different tasks were performed independently in separate
runs within the same session: (1) one-back task (OBT), (2) passive
viewing (PV), and (3) fixation-dot task (FDT). The underlying
rationale was to dissociate top-down modulations and bottom-
up input to the visual cortex by applying visual stimulation with
a moving pattern with (OBT) and without a stimulus related
task (PV). Specifically, during (1) OBT, the participants were
instructed to report a repetition of same drifting directions of
the pattern in two consecutive trials using a button press. They
were required to fixate on the central dot while performing
the task. One-back repetition trials were ensured to be at least
15% of the total number of trials and were randomized. All
the participants were able to perform the stimulus-locked task
without much difficulty. (2) During PV, the participants passively
viewed the stimulus while fixating the central dot, i.e., they were
explicitly instructed not to do the OBT during the PV. (3) The
FDT task was introduced as a reference condition to test whether
the effects of PV could be enhanced by fixing the participants’
attention at the center to make it more difficult to perform a
self-paced stimulus related task, e.g., the OBT. For FDT (not
locked to the stimulus, i.e., running during both on- and off-
blocks) the participants responded via button press when the
color of the fixation dot changed. In all controls and most of the
patients, the switch-colors used were black and white; however,
in some patients different colors were used depending on the
ability of participants to notice the change. The color change
occurred throughout the cycle i.e., during both the stimulus
presentation and the mean luminance gray. The spatial and

temporal properties of the stimuli were kept consistent for all
the three conditions. Each of the different task-condition was
repeated for three times in an interleaved order (ABCCBAABC;
A-PV, B-OBT, C-FDT) and the sequence was kept the same for
all participants. Before each run, the participants were informed
of the current task by the MRI technician through an audio setup
in the scanner.

Visual Stimulation
Psychtoolbox-3 (Brainard, 1997; Pelli, 1997) was used to
program the visual stimuli in MATLAB (Mathworks, Natick,
Massachusetts, United States). The stimulus employed comprised
high-contrast patterns drifting in eight different directions that
were projected to a screen at the rear end of the magnet bore,
with a resolution of 1,920 × 1,080 pixels. Participants viewed the
stimulus monocularly via the better eye [patients: based on SAP
(MD and extent of VF-loss); controls: dominant eye] at a distance
of 35 cm via an angled mirror. This resulted in an effective
stimulus size subtending approximately 24 and 14◦ radius in
the horizontal and the vertical directions, respectively. All the
patients viewed the stimulus projected on the entire screen,
whereas, in the controls, we simulated an artificial peripheral
scotoma by exposing only the central 7◦ of the stimulus through
a circular aperture. The temporal sequence of each run followed
a block design with 10 cycles of 12 s motion block (stimulus
presentation) alternating with 12 s of mean luminance gray (24
s per cycle). Within each motion block, the direction of the
contrast pattern was randomly changed every second (i.e., 12
trials per block; Figure 1). In each 1 s trial, the stimulus was
presented for 750 ms followed by a 250 ms mean luminance gray.
Participants were instructed to maintain fixation on a centrally
located fixation dot. The stimulated eye of the participants were
monitored and evaluated via an eye tracker qualitatively during
fMRI measurements. The spatial properties of the stimulus are
quite robust to account for any possible eye-movement related
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FIGURE 1 | Illustration of temporal sequence of a single stimulus cycle. Each 24 s cycle comprised a 12 s motion block (drifting patterns) block and a 12 s mean
blank block (mean luminance gray). A total of 10 cycles were presented per fMRI run, resulting in a total duration of 240 s. The motion block consisted of 12 1-s trials
comprising 750 ms motion stimulus (drifting in one of 8 different directions, as indicated by yellow arrows added for visualization) and 250 ms mean luminance gray.
Identical stimuli were presented for three different task conditions in separate fMRI runs: (i) passive viewing (PV), (ii) one-back task (OBT), (iii) fixation-dot task (FDT),
as detailed in section “Materials and Methods”.

influence in the fMRI response. In particular, even in patients
with little eye-movements, the representation of the scotoma
and intact VF remains the same because of the presence of the
stimulus on the entire screen.

In addition, to delineate the visual areas, fMRI-based
population receptive field (pRF) mapping scans were obtained
from each participant in a second session on a separate day.
A checkerboard stimulus pattern (mean luminance: 109 cd/m2;
contrast: 99%; check size: 1.57◦) moving in eight different
directions (2 horizontal, 2 vertical and 4 diagonal; Dumoulin
and Wandell, 2008) was exposed through a bar aperture. The
width of the bar subtended 1/4th (3.45◦) of the stimulus radius
(13.8◦). The spatial and temporal properties of the stimulus have
been described in Prabhakaran et al. (Prabhakaran et al., 2020).
The duration of each pRF mapping scan was 192 s and the scan
was repeated 6 times for the patient cohort and 4 times for

the controls. The participants responded to a fixation-dot color
change via button press.

MRI Acquisition
All MRI and fMRI data were collected on a 3 Tesla Siemens
Prisma scanner (Erlangen, Germany). In order to allow for an
unrestricted view of the entire projection screen, we used only
the lower section of a 64-channel head coil, resulting in a 34-
channel coil covering most of the brain. fMRI scans parallel to the
AC-PC line were acquired using a T2∗-weighted BOLD gradient-
EPI sequence (TR | TE = 1,500 | 30 ms and voxel size = 2.53

mm3). A total of 160 fMRI time series images (volumes) were
obtained for each run after the removal of the first 8 volumes
by the scanner itself to allow for steady magnetization. The fMRI
parameters were the same for the pRF mapping data, except for
the number of volumes (136). One high-resolution whole brain
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anatomical T1-weighted scan (MPRAGE, 1 mm isotropic voxels,
TR | TI | TE = 2,500 | 1,100 | 2.82 ms) was collected for each
participant to allow for cortical visualization of fMRI responses.
An inversion recovery EPI sequence (TR | TI | TE = 4,000 | 1,100
| 23 ms) with spatial coverage (FOV) and resolution identical to
the T2∗ EPI was obtained to aid in the alignment of structural and
functional data.

Data Preprocessing
Gray-white matter boundaries in the T1-weighted anatomical
images were segmented using Freesurfer1. ITK-gray was used
to manually inspect the Freesurfer segmentation and correct
for possible segmentation errors2. A 3-D rendering of the
cortical surface was generated by reconstruction of the segmented
boundaries (Wandell et al., 2000). Within and between fMRI
scans, head motion artifacts were corrected using AFNI3. For
each participant, motion-corrected fMRI time series of the
repetitions of each stimulation condition (i.e., PV, OBT, FDT,
and pRF mapping data) were averaged into separate groups
with MATLAB-based Vistasoft tools (mrVista4). The inversion
recovery EPI was aligned spatially with the anatomical scan in
two steps; first manually with rxAlign function in mrVista and
then automatically using Kendrick Kay’s alignment toolbox5. The
obtained alignment matrix was used to align the fMRI images
with the anatomy.

Data Analysis
Phase-Specified Coherence (Coherenceps)
We computed voxel-wise coherence at the fundamental stimulus
frequency and phase corrected for hemodynamic delay (phase-
specified coherence) to quantitatively investigate changes in the
strength of the BOLD response for the different task conditions.
We used the definition and formula to calculate the phase-
specified coherence (coherenceps) that has been previously used
(Masuda et al., 2008) and is also available as a function in the
mrVista toolbox.

Coherenceps =
A0√
6A2

f

cos(φ0 − ϕ)

where A0 and φ0 are the signals amplitude and phase at the
stimulation frequency, respectively, Af are the amplitudes of each
Fourier component, and ϕ is the delay in the hemodynamic
response (estimated for each participant from the positive
fMRI responses). The phase at the stimulus frequency was
estimated from the averaged fMRI time-series of all the task
conditions in a small 5 mm ROI drawn in the region of
the cortex that had reliable positive BOLD response across all
the conditions. Coherenceps can take values between −1 and
+1; voxels with positive measure reflect stimulus synchronized
fMRI response modulation and negative measures reflect

1https://surfer.nmr.mgh.harvard.edu/
2https://github.com/vistalab/itkgray
3https://afni.nimh.nih.gov/
4https://github.com/vistalab/vistasoft
5https://github.com/kendrickkay/alignvolumedata

modulation to the mean luminance gray (no or negative stimulus
related BOLD response).

Visual Area Delineation
We defined the borders of primary (V1) and extra-striate
visual cortex (V2 and V3) for each participant using fMRI-
based pRF-mapping data. Employing a 2D-Gaussian pRF model
approach described previously (Dumoulin and Wandell, 2008;
Prabhakaran et al., 2020), we estimated for each voxel their
preferred position in the visual field (x and y in Cartesian
coordinates). Eccentricity

√
(x2 + y2) and polar angle tan−1(

y
x )

measures were derived from these position parameters. Polar
angle estimates were projected onto an inflated cortical surface
and the visual areas were delineated by following the phase
reversals in the polar angle data (Sereno et al., 1995).
As in advanced glaucoma and RP, retinal and subsequent
cortical lesions render this delineation process difficult, due to
deafferentation and hence disrupted maps, it was complemented
by visual area definitions based on the Benson atlas (Benson
et al., 2014). The Bensons atlas applies for each individual an
anatomically defined template of retinotopy and thus informs
pRF-mapping based visual area definitions. The anterior extent
of the visual areas was manually drawn based on the participants
pRF mapping data and Benson atlas extracted eccentricity
predictions (14◦ in the vertical meridian representation and 24◦
in the horizontal meridian representation) in correspondence
to our stimulus size. Based on the coherenceps measures from
passive viewing (PV), we divided each visual area into two ROIs;
voxels with positive responses were classified as the normal
projection zone (NPZ) and those with negative responses as the
lesion projection zone (LPZ).

All further region of interest (ROI) analyses were performed
with custom written scripts in MATLAB and statistics in SPSS
26 (Statistical Package for the Social Sciences, IBM). For each
visual area (V1, V2, and V3) and ROIs (LPZ and NPZ),
separate two-way repeated measures ANOVAs were performed
to test for the effects of task (PV, OBT, and FDT) and group
(glaucoma, RP, control) on coherenceps and their significance,
if any. Paired t-tests were used for post hoc comparisons and
corrected for multiple comparison with the Holm-Bonferroni
correction (Holm, 1979).

RESULTS

Task-Dependent Responses in Lesion
Projection Zone (LPZ)
Firstly, as a validation and replication of the existing literature,
we examined the scope of aberrant cortical responses in
the deafferented visual cortex of a reference group of three
participants with RP. Consistent with the results from Masuda
and colleagues (Masuda et al., 2010) in their cohort of three RP
participants primary visual cortex (V1), we found task-dependent
activity in the peripheral LPZ in V1 (OBT-PV: t = 16.8; p = 0.012),
and non-significant trends in V2 (OBT-PV: t = 6.2; p = 0.075) and
V3 (OBT-PV: t = 3.7; p = 0.198) (see Figure 2, Supplementary
Figure 1, and Supplementary Table 1).

Frontiers in Neuroscience | www.frontiersin.org 5 July 2021 | Volume 15 | Article 653632

https://surfer.nmr.mgh.harvard.edu/
https://github.com/vistalab/itkgray
https://afni.nimh.nih.gov/
https://github.com/vistalab/vistasoft
https://github.com/kendrickkay/alignvolumedata
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-653632 July 23, 2021 Time: 13:43 # 6

Prabhakaran et al. Visual-Cortex Functional Dynamics in Glaucoma

FIGURE 2 | Task dependence of coherenceps in V1 (A), V2 (B), and V3 (C) for the control (n = 7), glaucoma (n = 4), and retinitis pigmentosa groups (n = 3;
mean ± SEM). Controls and patients differ specifically for LPZ. Only in the patient groups’ LPZ, negative coherenceps during PV is shifted to positive values for OBT.
Significance tests (corrected paired t-tests) on task effects were performed for all the participant groups, *p < 0.05 and **p < 0.01. PV, passive viewing; OBT,
one-back task; FDT, fixation-dot task.

Next, we explored task-dependent LPZ responses in
participants with advanced VF defects due to glaucoma.
For a qualitative assessment, the fMRI-responses in the visual
cortex of a representative participant with glaucoma (GL1) and
a healthy control (HC1) with simulated peripheral VF-defect are
shown in Figure 3 for three different stimulation conditions (PV,
OBT, FDT). In the healthy control, LPZ responses were largely
similar for all stimulation conditions, i.e., negative coherenceps
and BOLD modulations. In contrast, LPZ responses in the
glaucoma patient resulted in positive coherenceps and BOLD
modulations for OBT, while negative coherenceps and negative
BOLD modulations, as for the control, were obtained only for
PV and FDT. Taken together, the response signatures for the
participant with glaucoma resembled those reported for RP
(Supplementary Figure 1).

In a quantitative assessment, the above task dependence of
the LPZ-responses in glaucoma was further confirmed at the
group level. Each participant’s mean phase-specified coherence
(coherenceps) was extracted from NPZ and LPZ voxels for each

of the three stimulation conditions. The mean coherenceps of
the three participant groups is depicted for V1 in Figure 2. For
all participant groups, in NPZ we observed a strong positive
coherenceps, which was enhanced for OBT. In contrast, in LPZ
the negative coherenceps for PV turned positive for OBT in
the glaucoma and RP group, while it remained negative, albeit
reduced, for the control group. This differential effect between
patient and control groups in LPZ was also directly evident from
the inspection of the average single-cycle BOLD time series in
LPZ. As depicted in Figure 4 for the group averages, only for
glaucoma and RP did negative responses during stimulation (first
12 s) for PV shift to positive responses for OBT. As a consequence
the BOLD-peak for OBT shifts from the second block (12–24 s) in
healthy controls to the first block (first 12 s) in RP and glaucoma.

The significance of the task effect on V1 coherenceps and
its difference across participant groups were assessed with two-
way repeated measures ANOVA [between-subject factor: group
(glaucoma, RP, control); within-subject factor: task (PV, OBT,
FDT)] for the LPZ and NPZ separately. The effect of task was
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FIGURE 3 | Stimulus schematics and fMRI-based activations. (A) Control HC1 (A1) Illustration of stimulated visual field for the controls with the simulation of a
scotoma by peripheral masking beyond 7◦. (A2) BOLD-activations (coherenceps) for the three task conditions projected onto the inflated occipital lobe as false-color
overlays. V1 boundaries (white dashed) and the anterior extent (white solid line) were determined from the participants pRF mapping; NPZ and LPZ are indicated.
(A3) Average single-cycle BOLD time series for the three conditions in the NPZ (red) and LPZ (blue) ROIs. White and gray zones indicate motion and blank blocks,
respectively. The induced BOLD response is shifted due to the hemodynamic delay. Stimulus related BOLD modulations in LPZ are negative, irrespective of the task
condition, as indicated by the arrows. (B) Glaucoma participant GL1. (B1) Visual field sensitivities for the study eye (left eye SAP) as determined perimetrically are
superimposed onto stimulus layout (absolute scotomas are highlighted by white discs). (B2) BOLD-activations (coherenceps) depicted as for A2. V1 was determined
from the participants pRF mapping data informed by atlas mapping as detailed in section “Materials and Methods.”. (B3) Average single-cycle BOLD time series
depicted as for A3. Depending on task, LPZ responses were negative (PV/FDT) or positive (OBT), as indicated by the arrows. NPZ, normal projection zone; LPZ,
lesion projection zone; RH, right hemisphere; LH, left hemisphere.

significant for both LPZ and NPZ (p < 0.001; see Supplementary
Table 1), but the effect of group was significant only for the
LPZ (p < 0.05). No significant interactions (task × group)
were observed. Post hoc tests (corrected) were performed to
identify the significant comparisons as indicated in Figure 2A.
To assess the task-dependence of LPZ responses in glaucoma,

the comparisons of the conditions OBT and PV in the control
and glaucoma group are of particular relevance: for glaucoma
there was a significant difference (t = 5.4; p = 0.024), but not
for the controls. This effect was also significant in glaucoma V3
(t = 10.2; p = 0.006), while the same trend in V2 (t = 2.8; p = 0.069)
failed to reach significance (Figures 2B,C). We further tested in
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FIGURE 4 | Average single-cycle BOLD time series ± SEM. Group-averaged
fMRI response modulation across participants of V1 LPZ during PV (cyan) and
OBT (blue) conditions. The panels show the plots for (A) HCs (B) Glaucoma
(C) Retinits Pigmentosa. Yellow arrows indicate time-points with peak
responses for OBT; the BOLD-peak for OBT shifts from the second block
(12–24 s) in HC to the first block (first 12 s) in RP and glaucoma.

glaucoma for any hierarchical effects of task-dependence in V1,
V2, and V3 by calculating the effect size (computed as Cohen’s
d) of the observed task-related coherenceps modulations in LPZ.
We observed a stronger effect size in V1 (d = 0.70) and relatively
lower effect size for V2 (d = 0.50) and V3 (d = 0.51). However,
a repeated measures one-way ANOVA with visual areas (V1–
V3) as the within-subject factor did not show any significant
difference on the task-dependent effects across the visual areas
[F(2, 6) = 1.1; p = n.s.]. Finally, it was assessed whether the FDT-
condition might serve as a better reference condition than PV by
resulting in more negative coherenceps values in LPZ. However,
this was not the case, modulations for FDT fell short of that for
PV, an effect that reached significance in glaucoma for V1 and V2.

LPZ Responses as a Function of Clinical
Characteristics
Considering that our patients (both glaucoma and RP)
demonstrated significant task-dependent LPZ responses, we

employed an exploratory approach to investigate the relationship
of the magnitude of difference in coherenceps (i.e., OBT minus
PV) with patient specific clinical characteristics. Specifically, the
clinical measures included visual acuity (VA), disease duration,
percentage of visual field loss (VFloss), mean deviation (MD),
foveal sensitivity. VFloss was computed from the SAP-based VFs
as the ratio of number of non-responsive test points vs. the
total number of test points and considered only the regions of
the VF representing our fMRI stimulus size. The relationship
of the percentage of differential coherenceps in LPZ with these
clinical measures was tested with a simple linear regression model
[R2(adjusted), p < 0.05]. We did not find a significant association
of the task-dependent responses with any of the afore-mentioned
clinical correlates, except for MD and task-effect in the visual
area V2. Nonetheless, based on the magnitude of R2, a negative
trend in the task-effect with both MD (V1: 0.29; V2: 0.49) and
the percentage of VFloss (V1: 0.18; V2: 0.38) in V1 and V2 was
indicated, but not for V3.

Cortical Thickness as a Measure of
Structural Integrity
In an exploratory analysis, we probed for the presence of
structural changes of the visual cortex following visual field
deficits in patients compared to the controls. Freesurfer derived
cortical thickness estimates, measured as the distance between
the gray/white boundary and the pial surface (Fischl and Dale,
2000) was used as the indicator for structural integrity. For each
participant and visual area (V1–V3) voxel-wise cortical thickness
was extracted. Based on eccentricity estimates from a participant-
specific anatomy driven retinotopic atlas (Benson et al., 2014), 12
ROIs of 2◦ eccentricity bins (0–24◦) were created for each visual
area and the mean cortical thickness was computed for each ROI.
To investigate for differences in cortical thickness across groups
a repeated measure ANOVA with participant group (patients and
controls) as between-subject factor and eccentricity (0–24◦) and
visual areas (V1–V3) as within-subject factors was performed.
The subject-specific global cortical thickness was included as a
covariate to account for participant variability. While there was
an overall trend for smaller cortical thickness in the patient group
[cortical thickness controls vs. patients (mm) mean ± SEM:
1.76± 0.03 vs. 1.65± 0.02 (V1); 1.99± 0.05 vs. 1.93± 0.05 (V2);
2.31 ± 0.07 vs. 2.08 ± 0.05 (V3)], this did not reach significance.
No other significant main effects or interaction were found. In
addition, we tested for any potential association between the
duration of visual field deficits and cortical thickness across the
patients and did not find any significant relationship [R2: 0.08
(V1); 0.12 (V2); 0.20 (V3)].

DISCUSSION

We report that activations in the LPZ of the early visual cortex
were strongly related to performing a one-back task in glaucoma
and retinitis pigmentosa (RP), but not in controls with simulated
LPZ. This indicates that the limited remapping, previously
reported in RP and MD, is also a feature in glaucoma. These
results thus suggest that strong limits of bottom-up plasticity
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are a general feature of the early human visual cortex that was
de-afferented due to acquired lesions at the level of the retinal
photoreceptors or ganglion cells.

The response pattern we observed, i.e., LPZ activation for
visual stimulus-locked tasks, had previously not been reported
for glaucoma. At the same time, it fits well into the context
of other studies on visual plasticity in acquired retinal defects
(for e.g., MD, Masuda et al., 2008, 2020; Baseler et al., 2011;
RP, Masuda et al., 2010; Ferreira et al., 2019). From the initial
apparent heterogeneity of reports on the scope of plasticity in
the LPZ of human V1, ranging from the absence of relevant
cortical remapping (Sunness et al., 2004; Baseler et al., 2011)
to large-scale reorganization (Baker et al., 2008; Dilks et al.,
2009), the picture of limited bottom-up plasticity in human V1
has eventually emerged (Wandell and Smirnakis, 2009; Morland,
2015). Accordingly, Masuda et al. (2008) observed LPZ-responses
in V1 during the performance of stimulus-related visual tasks
and concluded that they were associated with task-dependent
feedback instead of bottom-up plasticity in MD (Masuda et al.,
2008) and RP (Masuda et al., 2010). In a larger RP cohort,
Ferreira et al. (2019) demonstrated similar task-dependent
responses using spatial specific stimulation, as opposed to full-
field stimulation employed by Masuda and colleagues (2020).
This, in addition to recent findings of LPZ responsiveness to be
modality independent [i.e., induced also by auditory and tactile
stimulation associated tasks (Masuda et al., 2020)], adds further
evidence to the hypothesis of LPZ responses to be dependent
on the demands of task. In conclusion, we here demonstrate
that these mechanisms are not specific to the rare disease
RP, but they also apply to the much more prevalent disease
entity of glaucoma.

Early Visual Cortex Stability and
Plasticity
The potential of remapping in V1 in acquired defects is often
inferred from adult animal models (Kaas et al., 1990; Gilbert
and Wiesel, 1992; Giannikopoulos and Eysel, 2006). While some
degree of developmental V1 plasticity has been reported for
congenital vision disorders (Baseler et al., 2002), the nature
and magnitude of a large-scale reorganization in adulthood is
questionable (Wandell and Smirnakis, 2009) and still warrants
quantitative ascertainment. The differential comprehension in
the above literature on LPZ activation primarily arises from the
variable definitions of cortical reorganization and remapping
(Morland, 2015). While the proponents of plasticity speculate
that the mere presence of abnormal LPZ responses is sufficient
evidence, the critiques point out the need for such responses
to be non-explainable by the normal visual cortex organization
following visual field loss. In the context of the latter definition
of cortical reorganization, from our data, bottom-up large-scale
reorganization appears an unlikely cause of the reported LPZ
activation in glaucoma, as it would lead to LPZ responses
irrespective of the condition, i.e., task. While this supports top-
down effects as a cause of the task-related LPZ responses, these
do not appear to strictly follow the inverse visual hierarchy, i.e.,
a decreasing effect size from V3 to V1, as might be expected

for top-down modulations. In fact, the differential activation
(reflected by Cohen’s d) we observed in V1 was not exceeded by
those in V2 and V3 and did not reach statistical significance in
a respective ANOVA. A stronger effect size in the extra-striate
areas (i.e., V3 > V2 > V1) would have added further evidence to
a top-down hypothesis. Further research is necessary to decipher
the nature of the top-down modulations. One rewarding avenue
to pursue for this purpose is paved by the advent of MRI at
submillimeter resolution (Ress et al., 2007; Yakupov et al., 2017;
Fracasso et al., 2018; Kashyap et al., 2018). It opens the possibility
to recover information on the directionality of information
flow in the cortex via laminar imaging (Dumoulin et al., 2018;
Lawrence et al., 2019) that allows to dissociate activations in
cortical input and output layers. Consequently, future studies
measuring layer-specific functional activity in the visual cortex
might unravel the missing pieces of information, i.e., origin
and directionality of task-related LPZ activations, to validate
or invalidate existing theories on the aberrant cortical activity
observed in patients with de-afferented visual cortex.

Clinical Relevance in the Context of
Emerging Therapeutic Interventions
A subset of glaucoma patients continues advancing toward
blindness regardless of disease management. While restoration
therapies might offer treatment options for this patient entity,
it has been suggested that vision loss associated changes at the
level of visual cortex might be a reason for treatment failure
in such cases (Gupta and Yücel, 2007; Davis et al., 2016; Nuzzi
et al., 2018). Remarkably, the existence of cortical responses in
the de-afferented visual cortex, as demonstrated in the present
study, suggests that the LPZ is still to some degree operational.
These finding are of particular importance for current promising
initiatives to restore the visual input to the cortex (Roska
and Sahel, 2018), which include retinal gene (Ashtari et al.,
2015; Aguirre, 2017; Russell et al., 2017) and stem-cell therapy
(Schwartz et al., 2015; Jutley et al., 2017; Mead et al., 2018;
Wang et al., 2020), and retinal (da Cruz et al., 2016; Edwards
et al., 2018) and visual cortex implants (Beauchamp et al., 2020).
Our findings demonstrate the relevance of fMRI-investigations
of the functionality of the visual cortex for the preparation
of such demanding vision restoration procedures, e.g., via the
individualized prediction of their clinical effectiveness.

Relationship of Cortical Responses With
Clinical Correlates
The presence and magnitude of LPZ task-dependent responses
are likely also related to the patient’s clinical characteristics and
their variability (Ferreira et al., 2019). Testing this, we observed
a non-significant trend for the task-elicited LPZ responses to
be negatively associated with the VF loss, i.e., the smaller the
deficit the larger the response. This might suggest that the task-
dependent LPZ-activations do not depend on the presence of
extensive scotomas. Given the limited sample size in the present
study, this explorative observation disserves following up in
future studies. Nevertheless, the findings emphasize the benefits
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of patient stratification strategies for the investigation of disease
related changes in the visual cortex.

Limitations and Future Directions
As a primary limitation in the study, we acknowledge the
small sample size of glaucoma patients, which was still fully
sufficient to identify the relevant effects. It should be noted,
that our target patients were those with strongly advanced
VF defects. Consequently, as glaucoma is an age-progressive
disorder, such patients are mostly in their later stages of life
and likely to have at least one MRI-related contraindication,
which makes them a rare cohort for fMRI investigations. Studies
investigating the dynamics of the observed task-dependent LPZ
responses in patients with different stages of the pathology are
limited (Ferreira et al., 2017, 2019) which should be addressed
by future research and more importantly aim to uncover
the mechanisms underlying such responses with submillimeter
laminar fMRI imaging.

Our definition of the lesion projection zone (LPZ) was
based on negative modulations observed with full-field visual
stimulation in accordance with previous studies (Masuda et al.,
2010; 2008), but not on explicit spatial VF mapping. In
consideration to previous studies (Plank et al., 2017) reporting
changes in BOLD response modulation with stimulus type (for
e.g., faces vs. checkerboard), it is to be noted that there might be
a marginally differential characterization of LPZ with a full-field
stimulus (in this case, gratings) compared to a spatial mapping
stimulus. Importantly, in the context of population receptive
field properties, distinctions in the cortical representation of
visual field has been even reported for different spatial mapping-
based approaches (Alvarez et al., 2015). As we tested for the
presence of task-dependent responses in advanced glaucoma with
substantial VF loss, full-field stimulation eliciting robust fMRI
responses was preferred over a precise spatial delineation of the
LPZ with spatially specific stimuli. Given the fact, irrespective
of the stimulus type, keeping it consistent across the different
conditions sufficed for our objective, the choice of stimulus
could be rationalized. Nevertheless, a comparative analysis of
LPZ definitions with different stimulation approaches might be of
relevant interest to understand the dynamics of LPZ boundaries.

Some of our patients (GL2, RP2, and RP3) had quite low
visual acuity and one of these patients (RP3) was predicted
to have unreliable fixation with fundus-controlled perimetry,
and the quantitative eye tracking data might have been
informative. Despite this limitation, the qualitative monitoring
and evaluation of the stimulated eye during scanning indicated
all our participants to have good fixation of the stimulus in the
scanner. In addition, given that the intact VF of our low visual
acuity patients was largely constricted to central few degrees, we
believe the responsive central visual field to be well within the
stimulus window for potential small or moderate eye movements,
thereby mitigating any possible eye-movement related influence
in the fMRI response.

We also acknowledge a potential confound in our study
with one RP patient also diagnosed with secondary glaucoma.
Considering that, RP is not the primary disease under
investigation in this study and used as a reference cohort to

demonstrate the replicability and reproducibility of previous
reports of task-dependent LPZ responses, we did not see a reason
to exclude this patient in our analysis.

It should also be noted that our characterization of artificial
scotoma was based on a generalized pattern of VF deficits
as observed in peripheral vision disorders and not aiming at
the simulation of our patient cohort’s idiosyncratic individual
VF deficits. Although we acknowledge benefits of the latter
approach, as our primary aim was to look at the task-dependent
effects at a group level rather than individual patient-to-control
comparison, the employed approach in the present study has the
benefit of better within-group comparability. In addition, future
research should also explore alternative methods to efficiently
simulate artificial scotomas which closely correspond to patient
like VF deficits, for e.g., via retinal bleaching (Magnussen et al.,
2001; Gaffney et al., 2013) with high luminance levels and
temporarily desensitizing the locations intended to represent an
artificial scotoma.

CONCLUSION

In summary, we demonstrated in patients with advanced
glaucoma, the existence of aberrant cortical responses in the
supposedly de-afferented regions of the early visual cortex.
The fMRI modulations are more likely to be driven by task-
elicited top-down neural mechanisms than bottom-up cortical
reorganization. Given similar findings in glaucoma as in RP and
MD, the results are indicative of a general mechanism behind
such aberrant cortical responses that is not limited to the distinct
pathophysiology of a specific disease. We believe that these
insights are of importance for the development of treatment and
rehabilitation schemes in glaucoma and beyond.
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